
1 23

Telecommunication Systems
Modelling, Analysis, Design and
Management

ISSN 1018-4864
Volume 67
Number 2

Telecommun Syst (2018) 67:309-322
DOI 10.1007/s11235-017-0337-9

Design, implementation and performance
evaluation of a proactive overload control
mechanism for networks of SIP servers

Ahmadreza Montazerolghaem &
M. H. Yaghmaee Moghaddam

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Telecommun Syst (2018) 67:309–322
https://doi.org/10.1007/s11235-017-0337-9

Design, implementation and performance evaluation
of a proactive overload control mechanism for networks of SIP
servers

Ahmadreza Montazerolghaem1 · M. H. Yaghmaee Moghaddam1

Published online: 30 May 2017
© Springer Science+Business Media New York 2017

Abstract The extent and diversity of systems, provided by
IP networks, have made various technologies approach inte-
grating different types of access networks and convert to the
next generation network (NGN). The session initiation proto-
col (SIP) with respect to facilities such as being in text form,
end-to-end connection, independence from the type of trans-
mitted data, and support various forms of transmission, is an
appropriate choice for signalling protocol in order to make
connection between two IP network users. These advantages
have made SIP be considered as a signalling protocol in IP
multimedia subsystem (IMS), a proposed signalling platform
for NGNs. Despite having all these advantages, SIP protocol
lacks appropriate mechanism for addressing overload caus-
ing serious problems for SIP servers. SIP overload occurs
when a SIP server does not have enough resources to process
messages. The fact is that the performance of SIP servers
is largely degraded during overload periods because of the
retransmission mechanism of SIP. In this paper, we propose
an advancedmechanism,which is an improvedmethod of the
windows based overload control in RFC 6357. In the win-
dows based overload control method, the window is used
to limit the amount of message generated by SIP proxy
server. A distributed adaptive window-based overload con-
trol algorithm, which does not use explicit feedback from the
downstream server, is proposed. The number of confirmation
messages is used as ameasure of the downstream server load.
Thus, the proposed algorithm does not impose any additional
complexity or processing on the downstream server, which

B M. H. Yaghmaee Moghaddam
hyaghmae@um.ac.ir

Ahmadreza Montazerolghaem
ahmadreza.montazerolghaem@stu.um.ac.ir

1 Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq.,
Mashhad, Khorasan Razavi, Iran

is overloaded, making it a robust approach. Our proposed
algorithm is developed and implemented based on an open
source proxy. The results of evaluation show that proposed
method could maintain the throughput close to the theoreti-
cal throughput, practically and fairly. As we know, this is the
only SIP overload control mechanism, which is implemented
on a real platform without using explicit feedback.

Keywords Overload control (OC) · Voice over IP (VoIP) ·
Session initiation protocol (SIP) · SIP server

1 Introduction

SIP is the signalling protocol in application layer, which is
used to initiate, modify, and tear down the session between
two or more applications [1]. Themajor components of a SIP
network are user agents and server proxies [2]. User agent
is the terminal component in SIP session. Figure1 illustrates
the typical SIP trapezoid topology and the standard SIP voice
call signalling consisting of the INVITE-BYE message
sequence. When the caller (User Agent Client: UAC) sends
an INVITE request to the callee (User Agent Server: UAS),
which is routed through SIP proxies in the path between
them, setting up a session starts. Returning a 100 Trying
response to the previous hop on the path confirms the recep-
tion of this request in each proxy. As the UAS receives the
INVITE request, it sends back a 180 Ringing response
to the caller. It later also sends back a 200 OK response
when the application accepts the call in charge of taking the
call. Finally, in order to acknowledge the reception of 200
OK, an ACK request is sent to the callee. After this three-way
handshake, the media is independently established between
the two parties. The session is then terminated when one

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-017-0337-9&domain=pdf
http://orcid.org/0000-0003-4968-2375

310 A. Montazerolghaem, M. H. Y. Moghaddam

Upstream SIP Proxy Downstream SIP Proxy tnegAresUPIStnegAresUPIS

INVITE INVITE INVITE 100 Trying

180 Ringing 180 Ringing 180 Ringing

200 OK200 OK200 OK

ACKACKACK

Media(end to end)

BYE BYE BYE

200 OK
200 OK200 OK

Fig. 1 Exchanged messages for establishing SIP connection

party sends a BYE request and the other responds with a
200 OK [3].

SIP server is an application one. The overload problem
in SIP server is distinguished with ones in other HTTP
servers for at least three reasons. Firstly, the messages of
SIP pass several proxy to reach destination, which could
make overload between two SIP proxy servers. Secondly,
SIP has several retransmit timers which are used for dealing
with packet loss, especially when the packet is sent via User
Datagram Protocol (UDP). This could lead to overload on
SIP proxy server. Thirdly, SIP requests are used as real time
session signalling to have a high sensitivity [4].

Overload in SIP networks occurs when the server does not
have resources necessary for handling every received call [5].
Reviews accomplished in overloaded SIP proxy server show
that increasing request rate results in sudden increase in delay
to establish connection and to drop proxy throughput and
therefore to increase in unsuccessful call rates. Therefore, the
aim in overload control in SIP is maintaining the throughput
of overloaded server near its capacity [6].

The rest of this paper is organized as follows: Sects. 2
and 2 include SIP overload problems and existing related
works. In Sect. 4, the detail of proposed overload control
algorithm, which is developed in an open source software,
is presented. In Sect. 5, we present our network topologies
and configurations. Section 6 includes performance evalu-
ation and experimental results. This section also considers
the effect of fairness of the proposed scheme. Finally Sect. 7
concludes the paper and outlines future work.

2 SIP overload problem

SIP uses its own reliability mechanism, which uses a large
set of re-transmission timers, especially when used on
an unreliable transport protocol, such as UDP [7,8]. For

instance, Timer A is responsible for scheduling INVITE
re-transmissions. It starts with an initial value of typically
T1 = 500ms and doubles whenever it expires. After waiting
64 × T1 = 32 s, SIP will stop re-transmitting and declare
call failure [9]. This mechanism is useful in case of hav-
ing unreliable links, but in overload conditions, it is a major
cause of performance degradation. During overload, mes-
sages that arrive at the overloaded server either get dropped
or incur in high delay. Hence, the UACs (and also possibly
the upstream proxies) start re-transmitting unacknowledged
messages. Furthermore, incoming responses from the UAS,
before being processed by the server, experience loss or
extensive delay. This makes the server itself to re-transmit
some parts of the requests it has already forwarded to the
UAS [10]. Therefore, the actual server load increases in a
regenerative way so that the call fails.

The curve labeled as “No control” in Fig. 7a shows the
dramatic decrease in server throughput. Here, the capacity
of SIP server equals to 700 calls per second (cps). When the
load increases beyond this limit, the server becomes over-
loaded and congestion collapse occurs. CPU can consider
this throughput degradation as the cost of running the over-
load control algorithm.

3 Related work

Generally, there are local and distributed methods for over-
load control [11].

In local control, when SIP proxy server reaches its capac-
ity threshold, it starts to reject requests; SIP estimates this
threshold by calculating CPU consumption or queue length
[12]. For instance, queue length-based algorithms have been
proposed in [13–16]. In queue length-based methods, which
are called Bang Bang Control (BBC), two thresholds are
considered for the number of packets on the proxy queue.
As long as the number of packets on the queue is less than
the low threshold, new requests are more likely to be admit-
ted. However, in case the number of packets on the queue is
increased until a value ofmore than the upper threshold, extra
requests are more probably rejected. Admission or rejection
probability of new calls are often calculated by parameters
including current queue length. Occupancy-based overload
control algorithms, namely OCC, which use CPU utiliza-
tion as a trigger for rejecting calls, have also been proposed
in [13,15].However, thesemechanisms impose cost itself and
when server is overloaded, it is compelled to allocate frac-
tion of resources to reject requests, which in turn decreases
efficiency in SIP proxy server.

In distributed method, upstream servers control the load
of downstream servers through rejecting requests and try to
maintain it under their capacity [17,18]. Generally, the over-
loaded server monitors its resources and sends an explicit

123

Author's personal copy

Design, implementation and performance evaluation of a proactive overload control mechanism… 311

feedback to all upstream servers with purpose of informing
them that it is overloaded. It also possibly communicates
the amount of load it can accept. Accordingly, the upstream
servers lower their forwarding rate. Design considerations
for a SIP overload control mechanism were discussed in SIP
overload control (SOC) workgroup in 2011. The resulted
design namely RFC 6357 [19] was standardized in the
workgroup. Five ways of distributed overload control are
described in this standard:

– Rate-based overload control
– Loss-based overload control
– Window-based overload control
– Signal-based overload control
– On/off overload control

Among these methods, window-based algorithms due to
more effective, has been more attention recently. Therefore,
this paper focused on window-based overload control. Low
complexity and simple application are among the charac-
teristics of the proposed method. Other advantages of the
proposed method are that this method does not require any
cooperation between proxies nor any change in the main
mechanism of SIP protocol. We refer to several prominent
paper in this context, in the following.

Shen et al. [20] propose three distributed window-based
methods in which the downstream server dynamically esti-
mates its capacity and generates a feedback indicating the
number of currently available window slots.

In the overload control method introduced in [21], first,
transmitting load rate to downstream proxy is determined
by considering a window with a constant size. Second, the
criterion for rejecting new calls is the difference between
predicted latency for making each call and latency stated in
Service Level Agreement (SLA) for that call. Furthermore,
the rate of transmitting calls by the upstream proxy is accom-
plished by frequently monitoring CPU application level of
the overloadedproxyby implicit feedback.On theother hand,
in the proposed method of the present article, an active win-
dow controls load rate transmitted by the upstream proxy to
each of downstream proxies and window size is constantly
adjusted considering the responsiveness of the downstream
proxy.

A definite fluid flow model to examine a tandem SIP
servers in overload situation is developed by [22]. Also, a
fluid flow model to specify the behaviour of the overloaded
SIP server is presented in [23]. Overload control problem for
a set of SIP proxies with limited resources is proved NP-hard
in [24,25]. Khazaei et al. investigate a window based end-to-
end overload mechanism with dynamic holonic multi-agent
approach [26].

In [27], awindowcomposed of the calls to the downstream
proxy is stored in the upstream proxy and also receiving 100
Trying and 503 messages is regarded a positive and neg-

ative feedback, respectively. Also, a counter is used to count
the number of positive feedbacks. When the counter reaches
a specific limit, one-tenth of the unit is added to the window
size. On the other hand,when one transmitting call is expired,
the counter is reset and half a unit decreases the window
size. Also, to reject new calls in the downstream server, BBC
method is applied and queue length of the proxy is adjusted
so that the queue latency for the received calls is always
less than the values of T1 counter (the counter related to re-
transmission). This issue causes the conversion of increased
latency and packet loss or call expiration. However, in the
present approach, it is assumed that the target proxy does
not apply any call rejection mechanism or overload control.
The important point regarding the proposedmethod in [27] is
that receiving the 100 Trying message as positive feed-
back for increasing the transmitting load to the overloaded
proxy does not have the required efficiency. Because receiv-
ing this response message does not mean termination of the
signalling related to a transaction and, as long as the trans-
action signalling is not terminated, the resources allotted for
that call in the proxy would not be released. In other words,
the imposed load of the related call on the overloaded proxy
is not decreased.1 Therefore, increasing its transmission load
under this condition does not seem to be a correct decision.
Also, applying the expiration of a call in [27] as the only
stimulus for decreasing transmission load rate to the loaded
server might impose so much overload on the downstream
server that makes its return to the normal condition impos-
sible. Besides, in this algorithm, many parameters must be
adjusted and in the case of increased link latency, capacity
of the input queue must be reduced to prevent the activation
of re-transmission mechanism.

In sum, while local overload control methods suffer
fromnon-negligible rejection cost,most proposed distributed
algorithms increase the complexity of the overloaded server
by requiring load monitor and calculation of an explicit feed-
back. Another drawback of using explicit feedback is the
delay of the feedback takes to reach upstream servers, which
may result in the instability or at least performance fluctua-
tions of the algorithm. In the context of Internet congestion
control algorithms, this is a well-known phenomenon [28].

1 SIP provides a wide variety of response messages regarding request
messages. Nonetheless, most of them cannot be used as a confirmation
message. For instance, 100 Trying response message does not show
that a message has been successfully delivered. As demonstrated in
Fig. 1, when the proxy receives INVITE message, in case of being
unsure about sending 200 Okmessage within 200ms to the sender of
INVITE message, it uses 100 Trying message to prevent the re-
transmission of INVITEmessage. Therefore, 100 Trying response
messagedoes not provide any confirmation for the successful processing
of a message. In this article, 200 OK response message which shows
whether a message is successfully processed and removed from the
bufferwas used as conformation. Therefore,200 OK responsemessage
was chosen as the confirmation message.

123

Author's personal copy

312 A. Montazerolghaem, M. H. Y. Moghaddam

123...n

Wmax
Signaling Flow Control Window

Downstream
Server

Forward
Message

Update Cseq list
& Calculate

Nresponse , Rcon

Upstream SIP Server

Response
Message

Update
 Wmax & SSTHUAC(s)

Request
Message

Update Cseq list
& Calculate

Nrequest

Creation Messages Queue

Reject request
(503 Service Unavailable)

Cseq list

Non INVITE

INVITE

Fig. 2 The basic architecture of proposed flow controller

4 Proposed overload control method

The key issue in window-based algorithms is the window
lengths, which should be regulated through feedback in
downstream proxy. Therefore, it could be concluded that we
can prevent overload through limiting window length. In this
algorithms, the upstream server keeps a window of active
transactions. If the window has any empty space, new calls
will be accepted. However, some vulnerabilities are first,
immediate reflectance of current conditions of destination
proxy in sender proxy is nerve racking, since the maximum
window size is changed via received feedback from the des-
tination proxy. In other words, proxy tolerable rate for each
moment is calculated by the proxy itself, and forwarded as
a feedback and in the form of current window size to all
upstream proxies. This increases the delay too. Second, the
processing resource for forwarding feedback is supplied by
the proxy processing resources and has an effect on OC dur-
ing overload periods.

In this section, we propose an effective implicit feed-
back based method for window-based OC where the number
of confirmation messages is considered as a solution for
such problems. Also, we limit various request messages to
only 5 types (INVITE, BYE, CANCEL, REGISTER, and
OPTIONS). These five requests play an important role as SIP
signalling between proxy servers. Furthermore, themain rea-
sons of overload in SIP proxies are these five types of request
message.

In traditional window-based overload control, feedback
is used to recalculate the maximum window size, while the
proposed method in this paper does not use feedback with
the aim to conserve server’s resources.

Figure2 shows a diagramof the upstream serverwhere our
proposed OC algorithm is employed. The upstream server
maintains a signalling flow control window of length n, the
number of outstanding transactions that have been started
with a destination server. In other words, there is one window
per destination SIP server. Note that the downstream (i.e.,

destination) server is a plain SIP proxy which, does not have
any modification.

In this method, priority servicing to received packets
is proposed, and two separate queues are considered for
INVITE and non-INVITE messages. Higher priority is
allocated to service thenon-INVITE ones.When the server
is faced with overload, as long as the server is in the overload
state and no free slot is created in the window, no new call
would be admitted (INVITE messages are rejected by 503
message). Therefore, the current messages of the system are
eliminated by lower probability and the SIP server also pro-
hibits re-transmission. To highlight the logic behind such a
strategy, this point must be mentioned that INVITE mes-
sages generally refer to new sessions, while non-INVITE
messages indicate transactions or sessions, which have been
previously accepted by the system.

A description of message process procedure for upstream
server is shown in Fig. 3. INVITEmessages, which indicate
request for setting up new calls and are arrived from UACs
(or other servers) are placed in the queue of transaction-make
messages.2 If there are any empty slots in the window [deci-
sion box (1) in Fig. 3], server accepts new INVITE requests.
Otherwise, new messages are rejected by sending a 503
Service Unavailable message. Wmax indicates the
maximum window size for limiting number of messages.
Nrequest and Nresponse show the number of messages and
replies, respectively, in a sender proxy. Rconfirmation (Rcon)
results by dividing Nresponse to Nrequest (Nresponse/Nrequest).
In first step, Wmax is initiated at pre-defined value of Winit.
The amount of load sent to destination proxy could be con-
trolled through regulating maximum window size. After that
Wmax is initiated, sender proxy peruses message type repeat-

2 Limitation of admitting and transmitting new transactions is only
applied toINVITE transactions, which is because other transactions are
basically related to a working session and maintaining active sessions
is preferred to initiating new sessions. Also, by rejecting a response for
making a new session (INVITE message) by 503 response message,
all the signalling related to a single call would be rejected.

123

Author's personal copy

Design, implementation and performance evaluation of a proactive overload control mechanism… 313

Parse message
egasseMtseuqeRegasseMesnopseR

OthersCancelEliminate
request in
Cseq list

Type of
 Request
Message

Enroll the
request in
Cseq list

Nrequest =
Nrequest + 1

Invite

Wmax full ?
(1)

Reject request
(reply=503 Service

Unavailable)

Yes

No Forward
message

Enroll the
Cancel in Cseq

list

Nrequest =
Nrequest + 2

Forward
message

SSTH=Wmax / 2
Wmax = 1

(2)

503 Service Unavailable
(overload)

Nresponse =
Nresponse + 1

YesNo

Others

Check the
Cesq list

Type of
Response
Message

Cseq exist in
list?

Eliminate
response in

Cseq list

Rcon =
Nresponse /

Nrequest

Rcon < Rth
(overload

avoidance)
(6)

SSTH = Wmax/2
Wmax = Wmax/2

Yes

Wmax < SSTH
(5)

No

Wmax = Wmax + 1
(4)

Wmax = Wmax×2
(3) End

NoYes

Start Processing a
new message

Fig. 3 Proposed flowchart

edly. Receiving a 503 response message by sender proxy
means that downstream proxy is overloaded. Therefore, if a
message is reviewed and understood as a 503 response, then
the value of Wmax is updated to one and server’s overload
could be alleviated [box (2)]. In normal conditions, the value
of Wmax increases after it is initiated. While a downstream-
overload condition is not triggered, the upstream server will
increase its window size as shown in boxes (3) and (4).
Box (4) results only in conditions of additive increase in
the window size. Also in order to increase window size
more rapidly and achieve a higher throughput, for each call
setup, window size is multiplied by two until it reaches a
specified threshold SSTH [decision box (5)]. Low amount
of Rcon means there is a high load in server. For this rea-
son, whenever Rcon lowers than a threshold, Wmax decreases
to its half. This threshold is indicated by the symbol Rth.
This process is shown in the decision box (6). Therefore, as
soon as an imminent overload is predicted to occur [deci-
sion box (6)], the upstream server halves its window size and
also modifies SSTH threshold to half of the current window

size. This decreases signalling load imposed on downstream
server. Halving SSTH threshold allows window size to reach
to half of its previous amount instantly, after which addi-
tive increase phase occurs consequently. This is an Additive
Increase and Multiplicative Decrease (AIMD) flow current
mechanism. It is proved that this mechanism converges to
maximum throughput [29].

Therefore, we study about how the values Nresponse and
Nrequest are calculated and adapted (to evolve Rcon) by sender
proxy. All SIP messages include Cseq header. Cseq consists
of a sequence number and a method type. The former facil-
itates recognition and arrangement of transactions. We use
Cseq header as a means of mapping a request on a response
message. For this reason a table consisting of Cseq values is
made in load sender proxy. Therefore, considering the ratio
between response and request messages, dynamic control of
server load is feasible. Whenever a request message enters
the sender proxy, its type is investigated firstly. In this investi-
gation, there is a distinction between CANCEL message and
others. General messages except CANCEL are recorded in

123

Author's personal copy

314 A. Montazerolghaem, M. H. Y. Moghaddam

Cseq table. Then, the new amount of Nrequest(Nrequest + 1) is
calculated.

In addition tomessage sending procedure that is described
in Fig. 1, a session could be cancelled when the caller wants
to cancel a request message sent to the other party or when
the callee intends to reject a request message sent by a caller.
In other words, CANCEL message is used to cancel either a
session or a request message sent by the client previously.
However a CANCEL message should not be used to cancel
non-INVITE requests. It is feasible to treat reply messages
using counting mechanism which was described before, but
due to Cseq repetition problem CANCEL messages may not
be applied in an equivalent procedure. If a CANCELmessage
reaches destination proxy before receiving the confirmation
message for related request, Cseq is recorded in the table
repeatedly. Destination proxy generates a confirmation mes-
sage just for CANCELmessage, leading to omission of one of
two Cseq duplications. Accumulation of duplicate values in
the table influencesRcon. To solve this problem, as a CANCEL
request message enters a load sender proxy, a Cseq of tar-
get message that had to be cancelled is removed from Cseq
table. Then a Cseq related to CANCEL message is recorded
in the table and the new amount for Nrequest is calculated
(Nrequest + 2). This procedure for CANCELmessage leads to
a more accurate value of Rcon.

After sending more than one request, load sender proxy
waits response messages that indicate confirmation. As a
response message is received, Cseq header field of the mes-
sage is investigated. If the number of Cseq is available in
Cseq table that was made before, load sender proxy recog-
nizes the response message. In other words, only if the load
sender proxy receives reply messages related to request mes-
sages sent from it, the response messages are recognized as
confirmations, i.e., other messages are treated as castaway.
Also, counting 503 response messages is prevented, since as
mentioned before such reply messages indicate a retroactive
overload in SIP server. In this phase, the message is removed
fromCseq table, and Nresponse is increased by one. In order to
ensure correct and accurate receiving and count of messages,
better management, and consequently accurate estimate of
the load of downstream servers, a time parameter, Tn, is used
in our algorithm and tests. Figure 4 is a descriptive pseudo-
code for the process procedure of message in the proposed
algorithm for the upstream proxy. Figure 5 schematically
shows the manner of maximum variation of the window size,
which was discussed.

5 Network topologies, configurations and practical
considerations

The SIP trapezoid topology shown in Fig. 6a, is used as the
basic network topology. In this topology, two proxies (the

Overload Control Algorithm
Upstream SIP server behaviour with request message:

1. Wmax = 1, SSTH, Rth
2. If INVITE Then
3. /* new session */
4. If Wmax = full Then
5. Reject (request)
6. /*503 Service Unavailable*/
7. Else
8. Update Cseq list
9. Nrequest = Nrequest + 1
10 Forward (Message)
11. Else If Cancel Then
12. Update Cseq list
13. Nrequest = Nrequest + 2
14. Forward (Message)
15. Else
16. Update Cseq list
17. Nrequest = Nrequest + 1
18. Forward (Message)

Upstream SIP server behaviour with response message:
Inspect the kind of response in every Tn,

19. If 503 Service Unavailable Then
20. /* overloaded */
21. SSTH = (Wmax / 2)
22. Wmax = 1
23. Else
24. Check the Cseq list
25. /*this is an existing session*/
26. Update Cseq list
27. Nresponce = Nresponce + 1
28. Rcon = Nresponse / Nrequest
29. If Rcon < Rth Then
30. SSTH = (Wmax / 2)
31. Wmax = (Wmax / 2)
32. Else
33. If Wmax < SSTH Then
34. /*Slow Start*/
35. Wmax = (Wmax * 2)
36. Else
37. /*Overload Avoidance*/
38. Wmax = (Wmax + 1)

Parameters:

Wmax: Maximum Windows Size
Nrequest: The Number of Request
Nresponse: The Number of Response
Rcon: Nresponse/Nrequest
SSTH: Slow Start Threshold
Tn: Measurement Interval to deduct Rcon

Fig. 4 Overview of the pseudo-code of the proposed algorithm

upstream and downstream) are used for handling outgoing
and incoming calls, respectively. In order to easily study
OC performance, the upstream proxy is made faster than the
downstream. All calls are originated from the clients of the
upstream proxy and are destined to those of the downstream
proxy. In this topology, it is assumed that M transmitter or
upstream proxies (e.g. M = 1) make an overload in a des-
tination (downstream) proxy by sending many call-making
requests. Theoverload,which the proxy in this topology faces
with, is in the form of server-server. In this form of overload,

123

Author's personal copy

Design, implementation and performance evaluation of a proactive overload control mechanism… 315

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

W
in

do
w

 s
iz

e

Time

Wmax

SSTH

SSTH
SSTH

503 Service Unavailable

Rcon < Rth

Slow Start Period

Overload Avoidance

"Server overloaded"

"Close to Overload"

Fig. 5 General scheme of Wmax variations

a limited number of upstream proxies send a huge volume
of traffic to a downstream proxy and leads it to face with
overload.

The next network topology (Edge-Core) is depicted in
Fig. 6b. This topology consists of a number of edge servers
that communicate signalling messages through one core
server, which will be overloaded in our experiments. This is
a representative of the topology used in the IMS proposed by
3rd Generation Partnership Project (3GPP). All edge servers
are assumed and configured to be fast enough so that they
are not overloaded. We show how proposed overload control
extends to the multiple upstream case while parameters such
as fairness as well as throughput are considered.

Our testbed setup, which is composed of two Linux
PCs connected over a 100BaseT Ethernet LAN is shown
in Fig. 6c. The faster PC functions as the upstream proxy
while the slower one is considered as the downstream proxy
with a nominal capacity of approximately 700cps. Asterisk
software [30] and Spirent Abacus 5000 tester device are used
for implementing proxy servers and user agents, respectively.
Asterisk is the most popular open source VoIP telephone sys-
tem in the world and currently many available IP-PBXs are
produced on its basis. Asterisk is based on C programming
language and could be loaded in various operating systems
such as Linux,Windows, UNIX, Solaris, andMacOSX. This
software uses UDP and TCP transmission protocols to send
and receive SIPmessages. By receiving SIPmessages, it first
intercepts the message and then decides whether to reply it
or forward it to next destination. In this paper, UDP trans-
mission protocol is used to receive and send SIP messages.
Asterisk uses several Worker Processes to receive and send
SIP messages. Every Worker Process receives message indi-
vidually and makes decision about it. In order to process
a SIP message, Worker Process should make a connection
between the message and the transaction; the message could
relate to a transaction, which already existed or it may be new
message for which a transaction is created; these transactions
are saved in shared memory of Worker Processes [31].

Domain 1Domain 0

Upstream
Proxy

Downstream
Proxy

UAC(s) UAS(s)

UAS(s)

Domain 1

Domain 0

Domain 2

Upstream Proxy 0

Upstream Proxy 1

Downstream
Proxy

Caller
Group 0

Caller
Group 1

Asterisk SIP Proxy Server
(downstream)

Asterisk SIP Proxy Server
(upstream)

IP-PBX LAN

Spirent Abacus 5000
Call Generator

Test Dispatch
Terminal

Intel Dual Core
1.8GHz
2GB RAM
CentOS 6.3
192.168.10.11
Capacity:700cps

Intel Dual Core
3.0GHz
4GB RAM
CentOS 6.3
192.168.10.10

Domain 1Domain 0

Upstream
Proxy

Downstream
Proxy

UAC(s) UAS(s)

UAS(s)

Domain 1

Domain 0

Domain 2

Upstream Proxy 0

Upstream Proxy 1

Downstream
Proxy

Caller
Group 0

Caller
Group 1

100 Mbps Ethernet IP-PBX LAN

(a)

(b)

(c)

Fig. 6 Topology and testbed setup. aTrapezoid topology.bEdge-Core
topology. c Testbed setup

Regarding the above mentioned points, we modify the
source code of Asterisk as follow, to achieve a satisfac-
tory proxy for implementation of the proposed algorithm.
In our experiment, the configuration of Asterisk is per-
formed via a file named asterisk.cfg. This configuration file
controls the modules to be loaded and their correspond-
ing parameters. All of the SIP flows are also controlled
in several routing blocks defined in this file. The main
core of this file is responsible for managing SIP messages
and basic functions are placed there. So, the configuration

123

Author's personal copy

316 A. Montazerolghaem, M. H. Y. Moghaddam

file controls the modules to be loaded besides providing
the capability of assignments of relevant parameters to the
user.

We use Spirent Abacus 5000 device to create traffic with
different transmission rates and various distributions. This
production is able to test the efficiency and extensibility of
tested proxy by producing hundreds to thousands of calls.
According to Fig. 1, user agents, whose role is played by
Spirent Abacus 5000 device, produce signalling load. We
have implemented our proposed mechanism on the upstream
server, by modifying Asterisk code. However the down-
stream proxy is intact.

6 Evaluation of efficiency

6.1 Methodology of tests and metrics

Reports produced by Spirent Abacus 5000 device are used
to check the time and type of sent and received messages by
users. A part of the parameters, which can be set by Spirent
for the transmission of desirable load by this device to the
proxy along, is given in Table1. Each run lasts for 100s
after a warmup period of 300s. The request rate starts from
low amount (100cps) and increases to heavy rates of about
1600cps. After the maximum rate is reached, it is sustained.
Spirent Abacus 5000 is used in open loop mode and calls are
generated at the configured rate.

Also, the reports of asterisk are used to measure the sta-
tus of progression of calls and transactions that occurred in
proxy; and also oprofile software is used to measure the pro-
cessing load of proxy.

There are various criteria to determine the efficiency of
SIP [32], amongst which in this study we concentrated on
the delay of connection establishment (the interval between
sending INVITE from UAC to receiving 200 OK from
proxy), retransmission rate, and proxy throughput (the num-
ber of successful calls per unit of time).

6.2 Throughput

Figure7a shows the throughput as a function of rate in
received call requests in case of existence and non-existence
of overload control method. It represents that proxy’s
throughput could maintain at around maximum capacity in
case of existence of overload control mechanism. This fig-
ure shows throughput when perfect overload control is done
(curve labeled “Theoretical”), which keeps throughput at the
maximum downstream server capacity of 700cps. Under
overload conditions, the throughput of proposed mecha-
nism converges to 635 cps and is almost independent of
the load. On the other hand, the throughput of the “Local
OC” approach ([13]) is lower than that of proposed mecha-
nism and furthermore decreases as load increases. The curve
labeled “WIN-DISC” is an explicit feedback window-based
approach proposed in [20] by Shen et al. in which the down-
stream server calculates and sends back a window size at
the end of each discrete control interval of Tc = 200ms,
determining the number of new sessions it can accept for the
next control interval (in experiments parameter values were
used that yielded maximum throughput, i.e., DB = 200ms
and Tm = 100ms, exactly as reported in [20]). The through-
put of proposed mechanism is constantly higher than that
of WIN-DISC. The poor throughput of WIN-DISC may be

Table 1 Some of the properties
and parameters that can be set in
Spirent Abacus 5000

Parameter Description Value

Call duration Test duration 100s

Calling profile Traffic generation method Exponential

Number of channel Number of calls 1600

Number of originate Number of callers 800

Number of terminate Number of call-receivers 800

IP Address IP address of the downstream proxy 192.168.10.11

IP Address IP address of the upstream proxy 192.168.10.10

Gateway address Gateway address 192.168.10.9

TCP or UDP Type of transport layer protocols UDP

DHCP Settings DHCP settings Static IP

IPv4 or IPv6 Using IPv4 of IPv6 IPv4

Authentication setting Using authentication settings AKAv1-MD5

Port number Number of used Port 5060

Retry timeout Timeout 30s

Timing adjustment Call timing settings for initiation 0.3 s

SIP proxy capacity Theoretical capacity ∼700cps

123

Author's personal copy

Design, implementation and performance evaluation of a proactive overload control mechanism… 317

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (c

ps
)

Rate(cps)

No control Theore�cal Local WIN-DISC Proposed

1

10

100

1000

10000

100000

Av
er

ag
e

de
la

y(
m

s)

Rate(cps)

No control Theore�cal Local WIN-DISC Proposed

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 200 400 600 800 1000 1200 1400 1600

Re
tr

an
sm

is
si

on
 ra

te
(r

ps
)

Rate(cps)

No control-INVITE No control-BYE WIN-DISC-BYE WIN-DISC-INVITE

Proposed-INVITE Proposed-BYE Theore�cal-INVITE Theore�cal-BYE

0
100
200
300
400
500
600
700
800

0 10 20 30 40 50 60 70 80 90 100

Lo
ad

 (c
ps

)

Time(second)

Window varia�ons Throughput-Proposed

Rejec�on rate Throughput-Theore�cal

(a) (b)

(d)(c)

0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

Fig. 7 Result comparison of our mechanism with WIN-DISC and no control methods. a Performance. b Average delay. c Retransmission rate. d
Windows variations, throughput and rejection rate with rate 800cps

Table 2 Effect of Rth on
throughput of proposed method Rth 0.1 0.2 0.3 0.4 0.5

Throughput (load is 680) 677.8 678.3 679.3 679.2 679.2

Throughput (load is 1000) 657 655 650 645 643

attributed to the explicit nature of the feedback used, which
is known to result in throughput degradation and stability
problems as the feedback loop delay increases.

Using OCC the CPU utilization rapidly fluctuates and the
fluctuations become more severe as overload deteriorates.
This is due to the regenerative nature of overload where
calls progressively take much more CPU time due to re-
transmissions. However, once enough calls are rejected, the
CPU utilization drops dramatically. This will again cause the
OCC algorithm to send a feedback causing incoming call rate
to increase, which will put the server into overload repeat-
ing the same pattern. Due to using Rcon (Nrequest/Nresponse)

as opposed to CPU utilization, this is not the case for our
proposed algorithm.

We also study about the effect of Rth on the through-
put of proposed mechanism. Table2 shows the throughput
sensitivity of our algorithm on Rth when overloaded with
1000cps. For larger values of Rth, server reacts to overload
more slowly and its throughput roughly drops by 10–15%.

However, applying too small values (e.g., 0.1) for increases
overload false alarmswhile the downstream server is actually
working under normal load.

Also, Table2 shows that when the input load equals to
680cps and Rth = 0.1, throughput is slightly less than input
load but approaches it as Rth increases to 0.5. Therefore, a
conservative value should be chosen for Rth.

For instance, each proxy or network administrator is aware
of conventional Rth, by putting this parameter as an algorithm
input, we can expect to receive the maximum possible effi-
ciency for the network composed of SIP proxies, even in
overload conditions. Also, to generalize the proposed initial
algorithm which uses the deviation of Rcon parameter from
a specific threshold as a stimulus for decreasing the trans-
mitting load to the downstream proxy, new methods can be
presented in future, in which the stimulus for decreasing rate
of transmitted load to the upstream proxy would be deter-
mined by actively estimating Rth depending on the network
status.

123

Author's personal copy

318 A. Montazerolghaem, M. H. Y. Moghaddam

6.3 Average delay of call establishment

The size of window increases along with receiving new
requests, so does Rcon. When the Rcon is lower than Rth,
the size of window reduces to half. Also, SSTH reduces to
half of the size of window and then starts to increase again.
As it is shown in Fig. 7b, this makes increases the average
time of call establishment in this proxy to about 1500cps
linearly and with a growth rate far much lower than the case
in which the overload control mechanism is not used.

6.4 Retransmission rate

Figure7c illustrates retransmission rate for INVITE and
BYE requests from user side, individually. As it is expected,
whenwe use overload controlmechanism in upstream server,
retransmission rates of messages decrease considerably.
Overload leads to loss of OK packets related to the passed
calls. Therefore, the proxy is required to resend INVITE
requests related to lost packets. In this case, the increase
of retransmission rate makes proxy spend much of its time
on resending requests related to ongoing calls and therefore
throughput rate of proxy falls considerably. Processing the
abundant packets, which exist in proxy’s queue, delays the
passes calls more and increases the retransmission rate in
caller’s side.

6.5 Window size variations

In this scenario, Spirent Abacus 5000 generates load traffic
with rate 800cps for 100s. The upstream server transfers this
traffic to the downstream server,while the latter operates at its
maximum capacity. Until Rcon gets lower that Rth, window
size increases as new requests are received. At this moment
both window size and SSTH decreases to half of the window
size, then window size starts to increase again. As shown in
Fig. 7d, this leads to retention of throughput at the capacity of
downstream proxy and rejection of other incoming requests.

6.6 Effect of Tn

Furthermore, numerous tests were conducted to analyze and
determine the optimum value for Tn, some results of which
are presented in the following section. As given in Fig. 8,
with increasing Tn, high fluctuation throughput and its aver-
age are decreased. High Tn size means slow reflection of
confirmation rate and consequently slow reaction of the win-
dow. Therefore, the more the rate of our proxy sampling
from the receivedmessages, themore the awareness from the
condition of proxy and network and consequently the faster
and more precise the reaction for adjusting the window size,
which would help in achieving maximum throughput and
proxy stability.

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t

(c
ps

)

Rate(cps)

Proposed-Tn=16s Proposed-Tn=8s Proposed-Tn=2s

Proposed-Tn=1s Theore�cal

Fig. 8 Effect of different Tns on the throughput of the proposedmethod

6.7 Effect of network and link latency

Network and link latency are negligible in previous tests;
therefore, in such a state, message loss or fail to the server
will not happen. To evaluate the efficiency of our mechanism
in the casewith a negligible amount of network (link) latency,
a series of tests is performed in the networkswith link latency,
the results of which are presented below.

In order to simulate network latency and packet loss,
netem network simulator [33], which is a part of the core
of Fedora 12 distribution, is used.

Figure9a compares throughput of the proposed algorithm
with WIN-DISC for different network latencies from zero
to 150 ms. In WIN-DISC, the downstream server calculates
the window size at the end of each control discrete interval
(Tc = 200ms), refers to it, and then determines the number
of new sessions which can admit for the following control
interval.

As expected, increasing network latency decreases
throughput of all the algorithms. This issue is caused by
the increase in the number of re-transmissions, which occurs
when the process of call-making is prolonged. In otherwords,
more messages per call sequence are resulted and conse-
quently the throughput is decreased.Nonetheless, throughput
of the proposed algorithm is decreased from 655cps to
550cps, which is higher than that of WIN-DISC. Low
throughput of WIN-DISC is related to the explicit nature of
the used feedback; it is known that by increasing the latency
of feedback loop, throughput is decreased and stability prob-
lems are emerged. Noted that, in theory, in spite of the high
network latency, maximum throughput can be achieved by
removing all the re-transmissions. As shown in Fig. 9a enti-
tled “Theoretical” curve, maximum theoretical throughput in
a network with the latency of 150 ms is 690cps.

Figure9b shows the sensitivity of the throughput of our
algorithms to Rth when it is overloaded by 800cps for dif-
ferent network latencies (Dlink). Higher values of Rth lead
to slower reactions and generally decrease the throughput by

123

Author's personal copy

Design, implementation and performance evaluation of a proactive overload control mechanism… 319

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (c

ps
)

Network Latency (ms)

No control Theore�cal Local WIN-DISC Proposed

0
100
200
300
400
500
600
700
800

0 50 100 150

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Th
ro

ug
hp

ut
 (c

ps
)

Rth

D-Link=0 D-Link=50ms D-Link=75ms

D-Link=100ms D-Link=150ms Theore�cal

(a)

(b)

Fig. 9 Analysis of network and link latency. a Effect of network
latency on throughput. b Effect of Rth and latency on the throughput of
the proposed algorithm

Table 3 Results of throughput with latency for trapezoid testbed using
the proposed algorithm (capacity of the downstream proxy is almost
700cps)

Load (cps) 600 800 900 1400

D-link=0 600 655 650 645

D-link=50ms 600 650 620 620

D-link=100ms 600 610 605 590

1%Packet loss 570 630 630 625

5–15%, depending on the network latency. However, consid-
ering very low values for Rth (e.g., 0.1) results in increased
false alarms of overload (when the downstream server is
working in a normal condition). Therefore, as mentioned in
the article, a conservative value should be selected for Rth.

In addition, Table3 demonstrates throughput under differ-
ent conditions. The second row is related to lack of network
latency. Different input loads (600, 800, 900, and 1400cps)
are tested: one is a normal load (600cps), one is slightly
more than the downstream server capacity (800cps), next
is a fairly extreme overload (900 cps), and the last is an
extreme overload (1400cps). It is obvious that, in the absence
of any network latency, implementing the proposed algo-
rithm results in almost maximum throughput. Nonetheless,
throughput is decreased by increasing the network latency.

Such an important point is in agreement with our results in
Fig. 9. Additionally, the rate of packet loss is defined as 1%
and the throughput is decreased by 5%; this state is given in
the last row of the table and is because packet loss results in
message re-transmission and increases the latency of transac-
tion completion, which consequently decreases the window
size. Therefore, the proposed algorithm is tested in different
conditions including network latency and non-zero rate of
packet loss and shows high throughput.

6.8 Fairness analysis

Weuse theEdge-Core topology,which is illustrated in Fig. 6b
to study the performance of our proposed overload con-
trol algorithm when used by multiple upstream proxies. In
testbed, two upstream edge proxies are considered, and each
forwarding calls from a group of UAs to a single core proxy
causing it overload. We also investigate the fairness of our
overload control algorithm through monitoring the through-
put perceived by each upstream edge proxy during overload.

In order to provide fairness during overload, we require
that the capacity of the overloaded downstream proxy be
equally split between all upstream (edge) proxies. Note that
with proposed mechanism, the downstream server does not
need to know about the number of upstream servers con-
nected to it and also does not generate any explicit feedback.
Our argument is that due to the use of an AIMD flow control
regime, our proposed mechanism should be fair.

Indeed, Fig. 10a verifies this claim. In this figure, caller
groups generate call requests of rate 650cps each starting
100s after the previous group. Network latency is set at zero.
It could be seen clearly from the figure that all upstream
servers get roughly the same throughput, which obviously
decreases as more caller groups start sending requests. Note
that the total throughput of the core proxy is maxed out at
its capacity (i.e., 700cps). From 0th to 100th s, only one
upstream proxy is sending at 650cps so it gets the entire
capacity. From100th to 200th s, there are two operating prox-
ies and each receiving roughly equal throughput of 352 and
348cps. At 200th s, the second proxy stops sending requests
and the other regains the extra capacity.

Table 4 also shows average throughput of each caller group
within different intervals and calculates Jain’s fairness index
for each of them. When all values are equal to each other,
value of fairness index is unity. By the emergence of more
variations between the values, this index tends to zero.

Next, we consider an MIMD (Multiplicative Increase
MultiplicativeDecrease) regime forwindow adaptation. This
is simply resulted by increasing/decreasing the window size
by a constant each time a call is established within/exceeding
an acceptable delay bound. Indeed, a similar approach is pro-
posed in [27]. Figure10b demonstrations the throughput for
such an MIMD regime when the increment and decrement

123

Author's personal copy

320 A. Montazerolghaem, M. H. Y. Moghaddam

0
100
200
300
400
500
600
700
800

0 30 60 90 120 150 180 210 240 270 300

Th
ro

ug
hp

ut
 (c

ps
)

Time(second)

Total throughput-Proposed Caller group 0

Caller group 1 Total throughput-Theore�cal

0
100
200
300
400
500
600
700
800

Th
ro

ug
hp

ut
 (c

ps
)

Time(second)

Total throughput-Proposed Caller group 0

Caller group 1 Total throughput-Theore�cal

0 30 60 90 120 150 180 210 240 270 300

(a) (b)

Fig. 10 Analysis of fairness. a Fairness analysis of proposed method. b Studying fairness under MIMD regime

Table 4 Fairness of our proposed mechanism

Time 0–100 100–200 200–300

Throughput 657 359 659

Jain’s fairness index 1 0.9998 1

Table 5 Comparing fairness index

Time 0–100 100–200 200–300

Jain’s fairness index (MIMD) 1 0.6784 1

Jain’s fairness index (AIMD) 1 0.9998 1

rates are set to 0.1 and 0.5, respectively (as proposed in [27]).
MIMD regime when two proxies are in sending mode treats
very discriminatory. When two proxies transmit requests,
fairness index of MIMD method is very low and equal to
0.6784 (see Table5).

7 Conclusion and future work

The studies accomplished in this paper show that SIP pro-
tocol is inefficient in facing with overload. Therefore, when
call request rate increases, the delay of call establishment
increases suddenly, proxy’s throughput falls, and conse-
quently retransmission rates and unsuccessful calls increase.

In this paper, window-based overload control method is
developed, implemented, and tested on a real platform. Also,
the efficiency of SIP proxy in case of overload is studied
by using such a distributed overload control method, which
is developed on Asterisk. The proposed algorithm does not
need any explicit feedback and uses number of confirmation
messages to detect overload. Also the proposed method can
change the maximum window size dynamically. Studying
the charts of throughput, delay, and retransmission rate of
INVITE and BYEmessages shows that the algorithm main-
tains the throughput at up and be fair. Also, the proposed
algorithmhas a self-clocking nature because of using implicit

feedback. The benefit of self-clocking nature is increased sta-
bility. In addition, the proposed method is simpler than other
distributed methods which have been introduced for solving
server to server overload problem in terms of implementation
and application. Since, it does not cause any interference in
the operation of downstream proxy. Even downstream proxy
does not require to monitor its resources and detect its immi-
nent overload condition or reject extra calls. Furthermore, no
extra feedback exchanges between the adjacent proxies. The
proposed approach is a proactive method, because it tries to
identify and prevent overload before proxy queue is filled;
messages are overflowed, and thus proxy resources are satu-
rated.

As future work, we intend to study more advanced win-
dow update strategies and checkmore sophisticated overload
detection functions. We also plan to implement our mecha-
nism using the Kamailio proxy and the extended Edge-Core
topology. Moreover, an optimization model for achieve opti-
malWmax, and sensitivity analysis of the SIP proxies are also
underway.

References

1. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peter-
son, J., Sparks, R., et al. (2002). Sip: session initiation protocol (rfc
3261). Rep: Tech.

2. Jiang, H., Iyengar, A., Nahum, E., Segmuller, W., Tantawi, A. N.,
&Wright, C. P. (2012). Design, implementation, and performance
of a load balancer for sip server clusters. IEEE/ACM Transactions
on Networking (TON), 20(4), 1190–1202.

3. Ohta, M. (2006). Overload protection in a sip signaling network. In
International Conference on Internet Surveillance and Protection
(ICISP&# 146; 06) (pp. 11–11), IEEE.

4. Shen, C., & Schulzrinne, H. (2010). On tcp-based sip server
overload control. In Principles, Systems and Applications of IP
Telecommunications (pp. 71–83), ACM.

5. Hong, Y., Huang, C., & Yan, J. (2010) Mitigating sip overload
using a control-theoretic approach. In Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE (pp. 1–5), IEEE.

6. Ohta, M. (2008). Performance comparisons of transport proto-
cols for session initiation protocol signaling. InTelecommunication

123

Author's personal copy

Design, implementation and performance evaluation of a proactive overload control mechanism… 321

networking workshop on QoS in multiservice IP networks, 2008.
IT-NEWS 2008. 4th International (pp. 148–153), IEEE.

7. Abaev, P., Pechinkin, A., & Razumchik, R. (2012). On analytical
model for optimal sip server hop-by-hop overload control. In 2012
4th International Congress on ultra modern telecommunications
and control systems andworkshops (ICUMT) (pp. 286–291), IEEE.

8. Hong, Y., Huang, C., & Yan, J. (2011). Modeling and simulation of
sip tandemserverwithfinite buffer.ACMTransactions onModeling
and Computer Simulation (TOMACS), 21(2), 11.

9. Mishra, G., Dharmaraja, S., & Kar, S. (2016). Reducing session
establishment delay using timed out packets in sip signaling net-
work. International Journal of Communication Systems, 29(2),
262–276.

10. Montazerolghaem, A., Shekofteh, S., Yaghmaee, M. H., &
Naghibzadeh, M. (2015). A load scheduler for sip proxy servers:
Design, implementation and evaluation of a history weighted win-
dow approach. International Journal of Communication Systems.
30(3), e2980. doi:10.1002/dac.2980.

11. Garroppo, R. G., Giordano, S., Niccolini, S., & Spagna, S. (2011).
Aprediction-basedoverload control algorithm for sip servers. IEEE
Transactions on Network and Service Management, 8(1), 39–51.

12. De Cicco, L., Cofano, G., &Mascolo, S. (2015). Local sip overload
control: Controller design and optimization by extremum seeking.
IEEE Transactions on Control of Network Systems, 2(3), 267–277.

13. Hilt, V., & Widjaja, I. (2008). Controlling overload in networks of
sip servers. In IEEE international conference on network protocols,
2008. ICNP 2008 (pp. 83–93), IEEE.

14. Noel, E. C., & Johnson, C. R. (2007). Initial simulation results
that analyze sip based voip networks under overload. InManaging
traffic performance in converged networks (pp. 54–64). Springer.
doi:10.1007/978-3-540-72990-7_9.

15. Montagna, S., & Pignolo, M. (2008). Performance evaluation of
load control techniques in sip signaling servers. In Third interna-
tional conference on systems, 2008. ICONS 08 (pp. 51–56), IEEE.

16. Ohta,M. (2009). Overload control in a sip signaling network. Inter-
national Journal of Electrical and Electronics Engineering, 3(2),
87–92.

17. Liao, J., Wang, J., Li, T., Wang, J., Wang, J., & Zhu, X. (2012). A
distributed end-to-end overload control mechanism for networks
of sip servers. Computer Networks, 56(12), 2847–2868.

18. Wang, J., Liao, J., Li, T.,Wang, J.,Wang, J.,&Qi,Q. (2014). Probe-
based end-to-end overload control for networks of sip servers.
Journal of Network and Computer Applications, 41, 114–125.

19. Hilt, V., Noel, E., Shen, C., & Abdelal, A. (2011). Design con-
siderations for session initiation protocol (sip) overload control
(rfc6357). Rep: Tech.

20. Shen, C., Schulzrinne, H., & Nahum, E. (2008). Session initiation
protocol (sip) server overload control: Design and evaluation. In
Principles, systems and applications of IP telecommunications.
Services and security for next generation networks (pp. 149–173).
Springer. doi:10.1007/978-3-540-89054-6_8.

21. Sun, J., Yu,H.,&Zheng,W. (2008). Flowmanagementwith service
differentiation for sip application servers. In The third ChinaGrid
annual conference (chinagrid 2008) (pp. 272–277), IEEE.

22. Jahanbakhsh, M., Azhari, S. V., & Nemati, H. (2017). Lyapunov
stability of sip systems and its application to overload control.Com-
puter Communications, 103, 1–17. doi:10.1016/j.comcom.2017.
01.014.

23. Yavas, D. Y., Hokelek, I., & Gunsel, B. (2016). Modeling of
priority-based request scheduling mechanism for finite buffer sip
servers. In Proceedings of the 11th international conference on
Queueing theory and network applications (p. 6), ACM.

24. Montazerolghaem, A., Moghaddam, M. H. Y., & Tashtarian, F.
(2015). Overload control in sip networks: A heuristic approach
based on mathematical optimization. In Global Communications
Conference (GLOBECOM), 2015 IEEE (pp. 1–6), IEEE.

25. Montazerolghaem, A., Yaghmaee, M. H., Leon-Garcia, A.,
Naghibzadeh, M., & Tashtarian, F. (2016). A load-balanced call
admission controller for ims cloud computing. IEEE Transactions
on Network and Service Management, 13(4), 806–822.

26. Khazaei, M., & Mozayani, N. (2016). A dynamic distributed over-
load control mechanism in sip networks with holonic multi-agent
systems. Telecommunication Systems, 63(3), 437–455.

27. Noel, E. & Johnson, C. R. (2009). Novel overload controls for
sip networks. In Teletraffic Congress, 2009. ITC 21 2009. 21st
International (pp. 1–8), IEEE.

28. Low, S. H., Paganini, F., & Doyle, J. C. (2002). Internet congestion
control. IEEE Control Systems, 22(1), 28–43.

29. Chiu, D.-M., & Jain, R. (1989). Analysis of the increase and
decrease algorithms for congestion avoidance in computer net-
works. Computer Networks and ISDN systems, 17(1), 1–14.

30. http://www.asterisk.org/.
31. Qin, D. (2011). Research on the performance of asterisk-based

media gateway. In 2011 Fourth international symposium on knowl-
edge acquisition and modeling (KAM) (pp. 347–349), IEEE.

32. Malas, D., & Morton, A. (2011). Basic telephony sip end-to-end
performance metrics (rfc6076). Rep: Tech.

33. http://www.linuxfoundation.org/collaborate/workgroups/network
ing/netem. Tech. Rep.

Ahmadreza Montazerolghaem
received the B.Sc. degree in
Information Technology from
the computer department, Sad-
jad University of Technology
and M.Sc. degree in computer
engineering from the computer
department, Ferdowsi Univer-
sity of Mashhad (FUM), Iran,
in 2010 and 2013, respectively.
Currently, he is a Ph.D. can-
didate in computer engineering
at computer department, FUM.
He is an IEEE Student member
and a member of IP-PBX type

approval lab in FUM.He is also amember ofNational Elites Foundation
(Society of prominent students of the country). His research interests
are in Software Defined Networking, Network Function Virtualization,
Voice over IP, and Optimization.

M. H. Yaghmaee Moghaddam
received his B.S. degree in com-
munication engineering from
Sharif University of Technology,
Tehran, Iran in 1993, and M.S.
degree in communication engi-
neering from Tehran Polytechnic
(Amirkabir) University of Tech-
nology in 1995. He received
his Ph.D. degree in communi-
cation engineering from Tehran
Polytechnic (Amirkabir) Univer-
sity of Technology in 2000. He
has been a computer network
engineer with several network-

ing projects in Iran Telecommunication Research Center (ITRC) since
1992. November 1998 to July1999, he was with Network Technology
Group (NTG), C&C Media research labs., NEC corporation, Tokyo,
Japan, as visiting research scholar. September 2007 to August 2008, he

123

Author's personal copy

http://dx.doi.org/10.1002/dac.2980
http://dx.doi.org/10.1007/978-3-540-72990-7_9
http://dx.doi.org/10.1007/978-3-540-89054-6_8
http://dx.doi.org/10.1016/j.comcom.2017.01.014
http://dx.doi.org/10.1016/j.comcom.2017.01.014
http://www.asterisk.org/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

322 A. Montazerolghaem, M. H. Y. Moghaddam

waswith theLaneDepartment ofComputer Science andElectricalEngi-
neering, West Virginia University, Morgantown, USA as the visiting
associate professor. July 2015 to September 2016, he was with the elec-
trical and computer engineering department of theUniversity of Toronto
(UoT) as the visiting professor. Currently, he is a full professor at the
Computer Engineering Department, Ferdowsi University of Mashhad

(FUM). His research interests are in Smart Grid, Computer and Com-
munication Networks, Quality of Services (QoS), Software Defined
Networking (SDN) and Network Function Virtualization (NFV). He is
an IEEE Senior member and head of the IP-PBX type approval lab in
the Ferdowsi University of Mashhad. He is the author of some books
on Smart Grid, TCP/IP and Smart City in Persian language.

123

Author's personal copy

	Design, implementation and performance evaluation of a proactive overload control mechanism for networks of SIP servers
	Abstract
	1 Introduction
	2 SIP overload problem
	3 Related work
	4 Proposed overload control method
	5 Network topologies, configurations and practical considerations
	6 Evaluation of efficiency
	6.1 Methodology of tests and metrics
	6.2 Throughput
	6.3 Average delay of call establishment
	6.4 Retransmission rate
	6.5 Window size variations
	6.6 Effect of Tn
	6.7 Effect of network and link latency
	6.8 Fairness analysis

	7 Conclusion and future work
	References

