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1. Introduction

In the first revolution of string theory, it has been cleared that there are only five different anomaly free superstring
theories, i.e., type I, type IIA, type IIB, SO(32) and Eg x Eg Heterotic theories, which live in ten dimensional spacetime [1-3].
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In the second revolution, the study of string dualities reveals that some of the superstring theories have extended non-
perturbative objects like D,-branes and Op-planes [4,5]. It has been also found that the five superstring theories are
interconnected and are some faces of the eleven dimensional M-theory [6]. An important tool for exploring these theories and
their non-perturbative objects is the effective action. The effective actions of the superstring theories at low energy are given
by the corresponding supergravities [7,8] and the effective actions of D,-branes/O,-planes are given by Dirac-Born-Infeld
(DBI) and Wess-Zumino (WZ) actions [9,10]. Even though these effective actions are enough for exploring many aspects of
string theory, e.g., AdS/CFT duality [ 11], there are important situations that one needs to find the higher derivative corrections
to these effective actions e.g., to explore the string landscape [12].

For example, let us review the compactification of the 10-dimensional type IIB superstring theory to maximally symmetric
4-dimensional spacetime (see e.g., [13]). At low energy, the theory is described by the type IIB supergravity which is
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where the metric is in the Einstein frame, T = Cy + ie~?, the RR five-form field strength is F5 = dC4 — (C; AdB — B A d(,)/2,
which is constrained to satisfy the self-duality condition F5 = xqgFs at the level of the equations of motion [14], and
G3 = dC, — t dB. If the 10-dimensional spacetime is product of the 4-dimensional spacetime and a 6-dimensional internal
compact manifold and if there is no flux in the 6-dimensional manifold, i.e.,

dsty = nyudx’dx” + gun(y)dy" dy”
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one would find many 4-dimensional massless scalars. None of which, however, appears in our real world! This is called
moduli space problem.
To solve this problem, one may consider more general setting of warped compactification with flux,i.e.,
ds?, = eXVy,, dx'dx’ + e= Vg, (y)dy* dy”
F5 = (14 *10)da(y) A dx® A dx! A dx? A dx®
G3 = Gunp()dx™ A dx" A dxP

T =1(y) (3)

where A(y) is the warped factor. With the above ansatz, the supergravity equations of motion produce the following tadpole
equation:
8A
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where V? is the Laplacian in the internal manifold. Since all terms on the right hand side are positive, one finds G3 = F5 =
A = 0 upon integrating over the internal manifold. In other words, if one considers the effective action of the type IIB
superstring theory at the leading order of ’, then one would find that it is impossible to compact type IIB superstring theory
on a warped manifold or on a manifold with fluxes.

One may also consider internal manifolds with (p — 3)-cycles X' on which the non-perturbative objects D,-branes or
O,-planes are wrapped. The energy momentum tensor of the branes appears on the right hand side of the tadpole equation
(4).If one describes the D,-brane or O,-plane effectively by the DBl and WZ actions at the leading order of ’, then one would
find the WZ part produces zero energy momentum tensor, and the DBI part produces positive contribution to the right hand
side of the tadpole equation (4). As a result, the tadpole equation again does not allow to have internal manifolds in which
branes are wrapped on its cycles. In other words, the moduli space problem could not be solved with the effective actions at
the leading order of o'.

How the a’-corrections to the effective actions can solve the problem? One particular set of higher derivative correction
to the WZ part at order o> which has been found from anomaly cancellation mechanism [15-17], is the following:
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The energy-momentum tensor of this term produces a negative contribution to the right hand side of the tadpole equation
(4). If one includes only this «’?-correction to the effective actions of the branes, then the warped compactification to the
internal manifold with branes and fluxes are allowed. Moreover, if one includes one particular non-perturbative effect, then
all four-dimensional scalar fields are constrained by some potentials and the moduli space problem would be solved [18].
However, there are many discrete vacua for the potentials which produce the string landscape [12].

Higher derivative corrections to the supergravities are also important for finding the discrete vacua. Consider, for example,
the compactification of the 11-dimensional M-theory to the maximally symmetric 3-dimensional spacetime (see e.g., [13]).
At low energy, the M-theory is described by the 11-dimensional supergravity which is
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Consider the warped compactification into 8-dimensional internal manifold with flux, i.e.,
dst, = e "V, dxtdx” + e gy (y)dy" dy”
Fs = Founpgy)dx™ A dx" A dxP A dx9. (7)

The 4-form equation of motion gives the following tadpole equation:

VZA(Y) = —IFal. (8)

After integration over the internal manifold, one again finds F; = 0 and the warp factor A(y) is a constant. Therefore, there
would be no potential for the 3-dimensional scalars, i.e., there would be the moduli space problem, if one describes the
M-theory by the 2-derivative effective action (6). The moduli space problem in this case may be solved by including the
following 8-derivative correction to the 11-dimensional supergravity [19], i.e.,
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where the 8-form has been found from anomaly cancellation mechanism to be
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Xs = —— | —trRARARAR— —(RAR)|. (10)
(2m)* | 192 768

The above higher derivative term has contribution —%(Znep)GXS; to the right hand side of the tadpole equation (8). After
integration over the internal manifold, one finds
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where y is the Euler character of the internal manifold. Therefore, the 8-derivative term (9) makes the warped compact-
ification with flux to be possible. The fluxes and non-perturbative effects, on the other hand, produce potential for the 3-
dimensional scalar fields which solves the moduli space problem and produces an M-theory landscape.

The curvatures corrections (5) and (9) are found from anomaly cancellation mechanism [15-17,19]. However, as we will
review in Section 3, the metric transforms to B-field, to dilaton and to all RR forms under the sequences of the T-duality
and S-duality transformations, so there must be many other 4-derivative corrections to the brane action and many other
8-derivative corrections to the supergravities which cannot be found from anomaly cancellation mechanism and may have
effects in finding the true vacua. We are interested in these couplings.

There are different approaches for constructing the higher derivative effective actions in the string theory. One is the
non-linear sigma model which constrains the two-dimensional world-sheet theory in the presence of background fields to
be conformal invariant [20,21]. We are not interested in this approach in this review article. Another approach for finding
such higher derivative terms is the S-matrix approach [22,23] which we will review in the next section. This method is
appropriate for calculating the higher derivatives of metric because derivatives of metric appear covariantly in the curvature
which has two derivatives. As a result, to find the 8-derivative corrections to the supergravity, one needs to calculate the
sphere-level S-matrix element of four graviton vertex operators, and to find the 4-derivative corrections to the brane action,
one needs to calculate the disc-level or PR>-level S-matrix element of two graviton vertex operators. However, since there
is a conservation of momentum in the S-matrix elements, this calculation fixes neither the four-curvature couplings in the
supergravity which are total derivatives at four-graviton level, nor the two-curvature couplings in the brane action which
are world-volume total derivatives at two-graviton level. They may be fixed by other methods or by studying the higher-
point functions. Unlike the supergravity and the DBI/WZ actions which have neither genus nor non-perturbative correction,
their higher derivative corrections are not complete unless one includes their corresponding genus and non-perturbative
corrections. The genus corrections can be extracted from the corresponding loop-level S-matrix elements. The genus and
the non-perturbative corrections in type IIB theory may be found from requiring the tree-level couplings to be consistent
with S-duality [24,25].

The higher derivatives of other NSNS fields or RR fields appear in their corresponding field strengths. As a result, the
8-derivative corrections to the supergravities require the sphere-level S-matrix element of five, six, seven and eight vertex
operators, and the 4-derivative corrections to the brane action require the disc-level/PR?-level S-matrix element of three and
four vertex operators. Such calculations are technically very complicated. So one has to use other methods for finding such
tree-level higher derivative corrections. Supersymmetry, in which we are not interested in this review, may be able to find
all such couplings [7,26-28] including the moduli-dependence of the type IIB theory [28]. String duality may also be able to
find these couplings. We will review in Section 3 the duality method which enables one to find all couplings at each order
of o’ by requiring the tree-level gravity couplings to be consistent with T-duality and S-duality [29-37]. The idea that T- and
S-dualities put constraints in the effective string actions at the leading order of o’ appeared at the first time in [38,39].

An outline of the review is as follows: In Section 2, we briefly review the Polyakov prescription for constructing the
S-matrix elements in perturbative string theory. In Section 2.1, we explicitly calculate the sphere-level S-matrix element of
four closed string tachyons in bosonic string theory which reproduces the Virasoro-Shapiro amplitude. In Section 2.2, we
review the calculation of the sphere-level S-matrix element of four NSNS vertex operators in type Il superstring theory. We
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demonstrate how this amplitude at low energy produces 8-derivative corrections to the type Il supergravity involving the
Riemann curvature and the second covariant derivative of dilaton and B-field. In Section 2.3, we review the calculation of
the disc-level S-matrix element of two NSNS or RR vertex operators in type II superstring theory and show how the low
energy limit of this amplitude produces 4-derivative corrections to the DBI and WZ action involving the Riemann curvature
and the second covariant derivative of dilaton, B-field and RR-forms. In Section 2.4, we repeat the calculation of the previous
subsection for projective plane instead of disc.

In Section 3, we review the well-known dualities of the string theory. In Section 3.1, we briefly review the T-duality of the
spectrum of the bosonic string theory when compactified on a tours T", to extract the T-duality transformations of the scalar
fields that parametrize the tours. We then use the path-integral method to extend these transformations to the curved
spacetime with background fields to find the Buscher rules. The DBI action is invariant under the Buscher rules. We then
use the constraint that the WZ action must also be invariant under the T-duality transformation, to rederive the standard T-
duality transformation of the RR fields. Using the observation that the effective actions at the leading order of o’ are invariant
under the T-duality transformation, one expects that the covariant higher derivative corrections to the effective actions to
be also invariant under the T-duality transformations. However, the T-duality transformations are modified by the covariant
higher derivative corrections. Alternatively, the invariance of effective actions under the standard T-duality transformations
requires the higher derivative terms to be non-covariant. A non-covariant field redefinition may change the non-covariant
higher derivative couplings to the covariant couplings.

In Section 3.2, we review the S-duality and in particular the SL(2, R) transformations of the massless fields that appear
in the type II effective actions and show how the invariance of the effective actions under these transformations may fix
the genus and the non-perturbative corrections to the effective actions. We show how the S-duality may be used to find
new tree-level couplings by imposing the couplings found in Section 2 to be invariant under the SL(2, R) transformations.
In Section 4, we review the observation that the S-matrix elements must satisfy the duality Ward identity. We demonstrate
how these Ward identities may be used to generate new S-matrix element from a given S-matrix element, and review the
works that have been done in support of this observation.

In Section 5, we review the specific example of the O,-plane effective action in type Il superstring theory that the T-duality
constraint is used to find all NSNS 4-derivative corrections to this action. The higher derivative couplings are covariant and
the T-duality transformations are also the Buscher rules. In this case, we know from the supergravity corrections that the
T-duality does not receive higher derivative corrections at order o2, as a result the covariant action at order o’ is consistent
with the Buscher rule. In Section 6, we review the specific example of Op-plane/D,-brane effective action in the bosonic
string theory. The T-duality constraint is used to find the covariant O,-plane effective action completely at order «’. In this
case, however, the T-duality transformation is the Buscher rule plus its a’-correction. The above T-duality constraint has
been also used to find the covariant D,-brane effective action at order «’ for only massless closed string fields up to terms
that contains B-field potential. In this section, we also review the construction of a non-covariant D,-brane effective action
at order «’ which includes only massless open string fields to all orders. The T-duality transformation that has been used is
the standard T-duality transformation for the massless open string fields without the «’-corrections. In Section 7, we briefly
discuss the new calculations that may be done by the duality method that we have reviewed here.

2. S-matrix elements in perturbative string theory

In quantum field theory with specific spacetime action S[®@] = Sgee[®] + Sint[@], the partition function and n-point
functions have path integral representations (see e.g., [40]), i.e.,

Z = (0, +00|0, —00) = /Dcpe—sl"“l

(0, +00|@1(x1) - - - By(xa)|0. —00) = / DO (&1(x1) - - - Bala))e 17, (12)

If the action has gauge symmetry, then one must use the Faddeev-Popov gauge fixing mechanism to find finite result for the
partition function and for the n-point functions. In principle, the path integral may be evaluated for any coupling constant.
The result would be a function of the coupling constant which may then be power expanded to produce perturbative
contributions in which the coupling constant appears with positive powers, and non-perturbative contributions in which
the coupling constant appears with negative powers. The perturbative contributions can be found by expanding e~Sint to
produce the tree-level and m-loop-level Feynman diagrams and then evaluating the corresponding Feynman amplitudes
using the free theory propagators. At weak coupling, the tree-level contribution is larger than one-loop-level contribution,
one-loop-level is larger than two-loop-level, and so on. So the first few terms of the Feynman amplitudes are adequate for
evaluating the n-point functions. At strong couplings, however, (m+1)-loop-level contribution is larger than m-loop-level,
so one has to consider the contribution of all loops to evaluate the n-point functions. The non-perturbative contributions, on
the other hand, have no Feynman diagram representation. Sometimes some of these contributions can be found by finding
saddle points of the path integral, as in the study of instantons.

In string theory, the perturbative contributions to the partition function have been formulated as path integral by
Polyakov [41-43,13], e.g,, in the bosonic oriented closed string theory it is given as

Z = (0, +00[0, —00) ~ [ DhysDX" e SthupX"-] (13)
B
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where dots in the world-sheet action represent background fields. The asymptotic value of the dilaton represents the closed
string coupling constant, i.e., g, = e%. In the partition function, S is the world-sheet action of free closed string. The path
integral over the world-sheet metric h,g means sum over all two-dimensional Riemann surfaces which are analog of the
Feynman diagrams. However, S is invariant under world-sheet diffeomorphism and Weyl transformations which makes the
partition function to be infinite. To find the finite physical result for the partition function, one should fix these symmetries
by summing over Riemann surfaces which are not related to each other by diffeomorphism and Weyl transformations. In
the conformal gauge, i.e., hyp = eV Nap, the Faddeev-Popov gauge fixing mechanism produces the ghosts b, c. Dropping the
volume of the diffeomorphism group, the finite partition function then becomes

Z= / DbDcDy DX SIP-c:¥ X", (14)

The path integral over the world-sheet fields b, c now gives the sum over topologies of the Riemann surfaces, i.e., each
topology has a specific contribution to b, c. The path integral over the world-sheet field i, on the other hand, integrates over
all conformally inequivalent Riemann surfaces at each topology, i.e., integrate over the moduli space Mj,, of the Riemann
surface with genus ny. The domain of this integral depends on topology of the Riemann surfaces, e.g., for sphere v = 0
because all spheres are conformally equivalent. The dimension of this integral is zero for sphere, is two for torus and is
2(3ny, — 3) for Riemann surfaces with genus n;. The partition function, then can be written as

o0
2=y [z, (15)

np=0 h

where the asymptotic value of the dilaton in Z,, is zero, i.e., the world-sheet action in the presence of constant dilaton ¢
which is Sgit = ¢ox(My,) = ¢o(2 — 2ny,) has been extracted from Z,, . For the free theory whose world-sheet is a cylinder
from —oo to +oo there is no coupling constant.

The S-matrix elements of N states in the bosonic oriented closed string theory are then given as

A(1,2,...,N) ~ gsN/Dchuwnx'*(v1v2.-.vn)efslbvfﬁvhx“v---]

= ngznrz“]/ (ViVa--- W) (16)

np=0 My,

where V’s are the conformal invariant vertex operators corresponding to the particle states, e.g, the vertex operator
corresponding to the ground state |0, p > with momentum p* is

C2)E(Z)ePX or / 26X, (17)

The particle states and their corresponding vertex operators must satisfy the Virasoro constraints, e.g., they give the on-shell
relation p> = —m? = 2 for the above vertex operator. We will not fix the numerical normalization of the vertex operators.
They appear as an overall numerical factor in the amplitude (16). One may fix the overall numerical factor of the scattering
amplitude by comparing the amplitude at low energy with the corresponding amplitude constructed from the standard low
energy effective actions.

Both forms of the vertex operators (17) may appear in the scattering amplitude. The dimension of the moduli space of
the Riemann surfaces with genus n, and N punctures My, y is 2(3n, — 3 + N). So for Riemann surfaces with n, > 1, one has
to use the integral form of the vertex operators because the dimension of M,, is 2(3n, — 3) and each vertex operator has a
two dimensional integral. For sphere, the dimension of M,, is zero whereas the dimension of M, y is 2(N — 3). So one has
to use three vertex operators with ghost and the other operators in the integral form. Similarly, for the tours, the dimension
of My, is two whereas the dimension of M;,, y is 2(N), so one has to use one vertex operator with ghost and all others in the
integral form. Alternatively, one may use only the integral form of the vertex operators, then the integrand of the amplitude
should be invariant under a group with 6 parameters for the sphere, i.e., SL(2, C), and a group with two parameters for the
tours. These symmetries should be fixed by fixing the position of three vertex operators in sphere and the position of one
vertex operator in the tours. After taking into account the proper Jacobian factor which is in fact the contribution of the ghost
if one would use the vertex operator with ghost, the volume of these groups should be removed from the amplitude. We
will use this latter approach for calculation of the scattering amplitudes.

If one includes non-perturbative D,-brane or O,-plane objects with p < 25 in the bosonic string theory, then the
scattering amplitude of N closed string with n, Dp-branes and n. O,-planes is given by (16) in which the two-dimensional
surfaces have n, boundaries and n, cross-caps, i.e.,

oo

A1,2,... N, my, ne) ~ ng”“”b*”f‘“”f (V1Va - V). (18)

np=0 Mnhmb,nc

For the D,-brane, one should also consider open string vertex operators at the boundaries of the two-dimensional surfaces
which represent perturbative excitations of the D,-brane. The dimension of D,-brane is specified by imposing Newman or
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Dirichlet boundary condition on the world-sheet fields. Unitarity requires the open string coupling constant to be related to
the closed string coupling constant as g2 = g;. The above amplitude represents also the scattering amplitude in superstring
theories. For the superstrings, however, one should use the appropriate vertex operators. Using the Wick theorem, one can
calculate the correlation functions in (18) by using the appropriate world-sheet propagators.

One may also consider the scattering amplitude of closed string vertex operators on the world-volume of D,-brane in
the presence of constant background B-field. This can be included into the amplitude (18) by imposing mixed boundary
conditions on the world-volume directions along which the B-field is non-zero [44,45]. For the open string states, however,
the world-volume of D,-brane in the presence of constant B-field remains ordinary commutative space in the Pauli-Villars
regularization which is used in the non-linear sigma-model approach to the effective action, whereas it becomes non-
commutative space in the point-splitting regularization which is used in the S-matrix approach to the effective action [46],
i.e., the open string vertex operators in the presence of B-field correspond to the non-commutative fields. As a result, there
are two different open string gauge fields. One corresponds to ordinary gauge symmetry and the other one corresponds to
non-commutative gauge symmetry. The differential equation which maps these two variables, has been found by Seiberg
and Witten by requiring the ordinary DBI action in the presence of constant B-field to be mapped to non-commutative DBI
action [46].

2.1. Sphere-level amplitude of four tachyons in bosonic theory

In this section we are going to calculate the tree-level scattering amplitude of four tachyons in the bosonic string theory
to show how one can explicitly derive the Virasoro-Shapiro amplitude [47,48]. The scattering amplitude (18) for four closed
string tachyon vertex operators (17) at sphere level is

A(1,2,3,4) ~ g2 (ViVaV3Va). (19)

To perform the correlators, one needs the propagators of the world-sheet fields X*(t, o) on the sphere. Since the amplitude
is invariant under conformal transformation, one may perform conformal transformation to map the sphere to the complex
plane. The propagator of X* on the complex plane is’

(XH(2)X"(w)) = —n""log(z — w)
X*@)X"(w)) = —n*" log(z — )
XH@)X (w)) = 0 (20)

where X*(z) + X*(z) = X"(z, Z). Since there is no propagator between the holomorphic and the antiholomorphic part of
X", the amplitude separates into holomorphic and antiholomorphic parts, i.e.,

4 4
A~ g2 / Pz,82,d%25d%2, <l—[ eip,—-xui)> <1—[ eipi»X(f,-)> . (21)
i=1 i=1
Using the following identity between the exponential of arbitrary operators a(z), b(w):
- ebw) . — . pa(2)+b(w) . olalz)b(w)) (22)
where : O: means normal order of the operator O, one finds

A~g f P21 223824 | | 12 — z1P716%(p1 + p2 + p3 + pa). (23)

i<j

As we have already pointed out, the integrand must be invariant under the 6-parameter group SL(2, C) because we have
used the integral form of the vertex operators in (19). The SL(2, C) transformation is

az+b _ _ a*z + b*
z—>7 = + ;z—>z/=7_+ (24)
cz+d c*z + d*
where the complex parameters a, b, ¢, d satisfy ad — bc = 1. Under this transformation, one finds
2, @z |zi — 2|

& |zl — 7> =

= 4 25
b czi + d|?|czj + d|? (25)

zZ = ———
Yozt d)?

Using the on-shell condition pi2 = 2, one observes that the integrand is invariant under the SL(2, C) transformation, so the
amplitude becomes infinite. To avoid this infinity, one must fix the SL(2, C) symmetry. The infinitesimal form of the SL(2, C)
transformation is

6z = a1+ oz + Ol322 (26)

1 Our conventions set &’ = 2.
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where a1, a7, a3 are the three complex parameters of the group. One should use these three parameters to fix the position
of three vertex operators at arbitrary points, i.e.,

3(z1. 22,
f Pz,d2,d%2; = det[L“”)] / PPy das. (27)

Ao, 0, 03

Using (26), one finds the Jacobian factor to be |(z; — 23 )(zo — z3)(z1 — z3)|?. The integral over the parameters gives the volume
of SL(2, C) group which should be removed from the amplitude. Choosing z; = 0, z, = 1, z3 = 00, z4 = z, the amplitude
then becomes

A~ g22/d2|z|2p1~p4|1 — z|%P2P4 (28)

where we have also omitted for simplicity the Dirac delta-function on the momenta. Using definition of the gamma function,
ie, I'a) = fooo dxx*~'e™, one can write

2« 1 OO o—1 —x\zl2
|Z| = — dxx“" e
0

I'(a)
2 1 * 1 1-z)?
11—z% = —/ dx xP=1e=¥1-21°, (29)
I(B) Jo
This turns the z-integration in (28) into a Gaussian that can be explicitly carried out, i.e.,
2
A~ &s /oo dxdyx—p1<p4—1y—pz'p4—l/dZZe—X\ZIZ—yll—Z\Z' (30)
I(=p1 - pa)'(—p2 - pa) Jo

The Gaussian integral becomes

Xy

/dz,ze”"z'z’y“’z‘2 = T o, (31)
xX+y

Using the change of variables as x = n/m, y = n/(1 — m), one finds
ngz 1 o] B B
A~ S / dm(1 — m)P2PamPrPa / dnn—(P2:Pa+p1-Pa+2) o= (32)
I'(=p1 - pa)'(=p2 - pa) Jo 0
The last integral can be written in terms of the gamma function. Using the definition of the beta function, B(e, 8) =
fo1 dx(1 — x)*~'x~1, one finds the following final result:

r(—t/2 — ) (=s/2 — DI(—u/2 — 1)
T(u/2 +2)(s/2 +2)[(t/2 + 2)

where we have also written the result in terms of the Mandelstam variables t = —(p; + p2)?, s = —(p; + ps)?* and
u = —(p1 + p3)?. This is the Virasoro-Shapiro amplitude [47,48].

This amplitude has manifested symmetry amongst t-, s- and u-channels. From the poles of the gamma functions, one
finds that the amplitude has simple poles at s, t,u = —2, 0, 2, 4, .. .. Since the poles of the tree-level scattering amplitudes
correspond to the propagation of on-shell intermediate particles, one realizes that the mass of the intermediate particles are
m? = —2,0, 2,4, ... Thefirst one corresponds to the closed string tachyon, the second one corresponds to the graviton and
all others correspond to infinite tower of massive closed string states.

A~ ng? (33)

2.2. Sphere-level amplitude of four gravitons in type Il theory

In this section, we are going to review the calculation of the scattering amplitude of four gravitons at sphere-level and
discuss how higher derivative couplings of gravitons in type Il superstring theory can be found from the scattering amplitude.

In superstring theory, the world-sheets carry background charge of the superghost field ¢ (see e.g., [49]). The sphere in
type II theory carries independent background charge for holomorphic and for antiholomorphic part of ¢, i.e., Qy = (2, 2).
These charges must be compensated by the vertex operators in the scattering amplitude. In fact, in superstring theory, a
given physical state can carry different superghost charges. As a result, there are different vertex operators corresponding
to a given physical state. One must choose the vertex operators in a scattering amplitude such that they compensate the
background charge of ¢. The scattering amplitude (18) for four superstring graviton vertex operators at sphere-level is

A(1,2,3,4) ~ g2(v>Ov ROyt Dy b (34)

where the superscripts represent the superghost charges. The graviton vertex operator in pictures (0, 0) and (—1, —1) is
given as (see e.g., [49])

Voo =g, / Bz - (0X" +ip - Yy )ePX 1 (BXY +ip - Y )ePX

vl = e,u,/dzz ce Pyt X ;e dy el X (35)
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The vertex operators satisfy the Virasoro constraint provided that the momentum and the polarization tensor satisfy the
on-shell relations p? = 0 = p*e,v. The propagators for the X and ¢ are the same as (20), and the propagators for ¢* are

nt’
(Y2’ (w)) = —
zZ—w
- - r]””
W@y (w) = ———
Z—w
(Y 2)y"(w)) = 0. (36)
Since there is no propagator between holomorphic and antiholomorphic, one may write g,, = E,léu and separates

the amplitude to holomorphic and antiholomorphic parts. Then using the above propagators, one can perform different
correlators in (34) and show that the integrand is invariant under SL(2, R) x SL(2, R) transformations. Fixing this symmetry,
one can write the result in terms of the gamma functions as in the previous section. The result is [50]

I(—t/2)(—s/2)["(—u/2)
A~ gKK T2+ D2+ D2+ 1) (ZP') (37)

where the kinematic factor K is

K = —p; - psps - pa&1 - 6283 - &4 — D1 - D2[61 - Daks - D2ba - Ea + & - D3k - Prr - £3
+ &1 pafs Dabr &3+ & pads i€ &4 +{1,2,3,4> 1,3,2,4)+{1,2,3,4 > 1,4,3,2}. (38)

Similarly for K, using the identity I"(x)I"(1 — x) = 7 /sin(;rx), the amplitude may be written in terms of the product of two
disc-level scattering amplitude of four gauge bosons, one corresponds to the holomorphic part and the other one corresponds
to the antiholomorphic part, i.e.,

sin(—mt/2) r'(—t/2)["(—s/2) - I'(—t/2) u/2)
A~ 12) (g 2Y 4 gsk# Zp
T I'(14+u/2) I'(1+4s/2)
where the first parenthesis is the disc-level scattering amplitude of four gauge bosons in t, s-channel, and the second one
in t, u-channel [50]. Such relation which is known as Kawai-Lewellen-Tye (KLT) relation [51], is expected to be held for all
other closed string amplitudes.

In the amplitude (37), @’ = 2. Using the fact that the amplitude should be dimensionless, one can restore the o’ factors.
Up to the overall numerical factor, the amplitude can be written as

gla® _  I(—t/2)[(=s/2)[(~u/2)
A 22, KK T(u/24+Dr(s/2+DrE/2+1) (ZIL) (39)

where 2c%) = g2(2nv/o/)® /27 = 2k?g2, and the Mandelstam variable t becomes t = —a/(p1 + p,)?/2. Similarly for all
other Mandelstam variables. From the poles of the gamma functions in (39), one finds that the amplitude has simple poles
ats,t,u =0, 2,4, ...which correspond to the masses of the intermediate closed string states m?> = 0, 2, 4, .. .. String field
theory (see e.g.,, [52]) which contains iteration of graviton with all of the massive states should produce the amplitude (37)
and any other amplitude (18) which the perturbative string theory produces.

One may expand the gamma functions in (39) around ¢’ — 0, i.e.,

s 8 10
2K101<1<< ) )s (Zp,) (40)

where dots represent terms with higher orders of the Mandelstam variables, i.e., higher order of «’. The amplitude has now
simple poles at s, t, u = 0 and contact terms with infinite number of momenta. There should be an action which contains
gravitons with infinite number of higher derivatives which produces the amplitude (40) and produces «’-expansion of any
other amplitude in perturbative string theory.

To find the relation between this action and the string field theory action, let us denote the (finite number of ) massless
fields collectively as @q, and the (infinite number of ) heavy fields collectively as @4. The appropriate string field theory
should describe the string theory by a classical action S[®g, @y ] governing these fields and their couplings. One may integrate
out all massive fields to find a Wilsonian effective action Seg[®g] in terms of only massless fields. The effect of massive fields
appear as infinite number of higher derivatives on the massless fields in the effective action, i.e.,

e—seff[¢o] :/D(DHE_S[¢O’¢H]. (41)

A~

While the n-point function (12) with the string field theory S[®g, ®y] should reproduce the amplitude (37), the n-point
function (12) with the Wilsonian effective action Seg[ @g] should reproduce the amplitude (40).
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The effective action has the following expansion:

Serrl®ol = ) "Sa[Po]. (42)

n=0

The first term of the expansion, i.e., So[®o], is known for all string theories, e.g, in type IIB it is given by (1). Unlike the leading
order action which has neither genus nor non-perturbative contributions, the actions at higher orders have both genus and
non-perturbative corrections. If would be extremely hard to find the effective action completely. Even the action at the next
to the leading order in which we are interested is not completely known.

The sphere-level scattering amplitude of any other four massless closed string vertex operators in type Il supergravity
has the same structure as (37). The kinematic factor KK, however, depends on external states. So all such amplitudes have
the same expansion as (40). The first term in (40) which is at the zeroth order of ¢/, is reproduced by So[®(] [53-55] and the
second term which is at order o3, should produce four-field couplings at eight-derivative level.

The kinematic factor K in (38) has four derivatives. If one considers &’s as the polarization tensors of open string gauge
bosons, then K produces four gauge field strength couplings as tgF* where the tensor tg is antisymmetric within a pair of
indices and is symmetric under exchange of the pair of indices [50], i.e., for four arbitrary antisymmetric matrices M, ..., M4
it is given as

1
§t8M1M2M3M4 =— [Tr(M1M2M3M4) + Tr(M'M3M2M*) + Tr(M1M3M4M2)]
1
+32 [Tr(Mle)Tr(M3M4) + Tr(M'MTr(M?M*) + Tr(M1M4)Tr(M2M3)]. (43)

In terms of this tensor, the second term in (40) produces tgtgR* for four-Riemann curvature couplings [56]. There is another
four-Riemann curvature coupling, i.e., esegR* which is total derivative at four-metric level so its presence in the effective
action could not be confirmed by four-gravitons amplitude. The coefficient of this term has been found from the non-linear
o-model approach [57,58] to be 1/4 with respect to the first term. It has been recently confirmed this term is consistent
with the sphere-level S-matrix element of five graviton vertex operators [59].

The B-field and dilaton couplings at four-field level have been added to tgtgR* by extending the Riemann curvature in the
Einstein frame to the generalized Riemann curvature at the linear order [60],” i.e.,

Ruvaﬁ — le&ﬁ _ n[u[a¢,\)]ﬁ] + e*d’/zle[Ot,ﬁ] (44)

where the bracket notation is H,,,/*#! = 1(H,,,*# — H,,,#*), and comma denotes the partial derivative. Using the relation

between the Einstein frame metric and the string frame metric G, = e~%/ Zij, one observes that the dilaton term in above

equation is cancelled in transforming the linearized Riemann curvature from the Einstein frame to the string frame [61],
ie.,

Ruvep = €’ Ruvap (45)
where on the right hand side the metric is in the string frame. In above equation, R, is the following expression

R,uvaﬂ = Rp.uaﬁ +pr[a;/3] (46)

where we have also extended the ordinary derivative to the covariant derivative, and the linearized Riemann curvature to
the covariant Riemann curvature. The action involving Riemann curvature, VH and VV¢ at the sphere level then becomes

3 1
St D r6(3) fleX€72¢V -G (tgng4 + ZEgégR‘i) (47)
LK

where y = % and the metric is in the string frame. The above action, however, does not include couplings involving H
and V¢. It does not include RR fields either. In principle, all these couplings may be found by extracting the corresponding
sphere-level S-matrix elements. For example, the couplings involving only H at eight-derivative level have structure H®.
These couplings may be found by analysing the sphere-level S-matrix element of eight vertex operators. However, it is
extremely difficult to calculate such S-matrix element and to extract its eight-momentum contact terms. Even worse, the
action has genus and non-perturbative corrections. The latter cannot be found from the perturbative S-matrix elements (18).
So we have to use another technique to find such couplings. One expects the consistency of the couplings found in (47) with
dualities may fix all other couplings.

2 Note that the normalizations of the dilation and B-field here are +/2 and 2 times the normalization of the dilaton and B-field in [60], respectively.
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2.3. Disc-level amplitude of two closed strings and its o’*>-couplings

In this section, we are going to review the calculation of the scattering amplitude of two massless closed strings at disc-
level in type Il superstring theory and discuss how higher derivative couplings in the DBI and WZ actions can be found from
the scattering amplitudes.

In type II theory the background charge of disc is Q4 = 2. The S-matrix element (18) for two gravitons at disc-level which
represents the scattering amplitude of one graviton off a Dp-brane, is

A(1,2) ~ g(v®Ovihh) (48)

where the graviton vertex operators are given in (35). The vertex operators for Kalb—-Ramond B-field and for dilaton are the
same as (35) in which the polarization tensor is antisymmetric for B-field and is ., ~ 0., +p,. €, +p. £, where the auxiliary
vector ¢, satisfies £ - p = 1, for dilation. The dimension of D-brane is specified by imposing Newman or Dirichlet boundary
condition on world sheet fields X*, y*. Because of the boundary conditions, the holomorphic and antiholomorphic parts
of fields on disc are not independent. The propagators between holomorphic fields and between antiholomorphic fields are
the same as the sphere propagators, however, the propagators between holomorphic and antiholomorphic fields depend on
boundary conditions on fields. Using conformal transformation to map disc to the upper-half plane, one finds the standard
propagators (20) and (36) between holomorphic fields and between antiholomorphic fields, and the following propagators
between holomorphic and antiholomorphic fields:

(X*"(z)X"(w)) = —D""log(z — w)

o Dy
W2y’ (w) = ———
zZ—w
(p(2)p(w)) = —log(z — ) (49)
where matrix DY = 5"’ for the directions that the Newman boundary condition is imposed and D"’ = —»*’ for the
directions that the Dirichlet boundary condition is imposed, i.e., for D,-braneitis D,,” = diag(1, 1,...,1, -1, —-1,..., —1).
———
p+1
One may use the doubling trick [62]
X*z) > D"\ X"(2), ¥*z)—> D" ¥'(2), $(2) > ¢(2) (50)

to remove the matrix D*¥ from the propagators (49). The above replacement makes the antiholomorphic fields in the vertex
operator (35) to be in terms of holomorphic fields, the momentum in the antiholomorphic part to be p-D and the overall
polarization tensor to be (¢-D),,.

The dimension of the moduli space of disc with two punctures is one, so the integrand in (48) must be invariant under
a group with three real parameter. In fact, using the above propagators, one can perform different correlators in (48) and
show that the integrand is invariant under SL(2, R) transformations. Fixing this symmetry, by setting z; = iand z, — iy, i.e.,

1
/dzzmzzz —>/ dy(1 —y?) (51)
0

one can write the result in terms of the gamma functions as in the previous sections. The result is [62]

r(=t/2)r(=2¢%)
A~ a?g T, K(1,2)——"—— 5P (py.V v 52
o g Ty K( )F(l—t/2—2q2) (p1-V +p2-V) (52)
where t = —a/(p; + p2)?/2 is the momentum transfer to the D,-brane, and q*> = —a'(p1-V)?/2 is the momentum flowing

parallel to the world-volume of the D,-brane. In above amplitude, we have also restored the ' dependence by using the
fact that the amplitude should be dimensionless. In the amplitude T, = W is the D,-brane tension in the string

frame and the matrix V*"is V,,’ = diag(1,1,...,1,0,0, ..., 0). Note that for the convention o’ = 2, oc’zgssz =g, uptoa
————

p+1
numerical factor. The kinematic factor K(1, 2) is

K(1,2) = 2¢%a; + %(12 (53)
and the explicit form of a;, a, is [62]
ar = Tr(e1-D)py-&2-p1 — P1-€2-D-£1-p2 — p1-€2-61 -D-p1 — py-€5-£1-D-py
- %(pré‘]T-Sz'Pl +p1-2-€1p2) + %prD-p]Tr(ereﬁ) + {1 «—> 2}

a, = Tr(e1-D)(p1-€2-D-py — p2-D-&2-D-p1)
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T 1
+ p1-D-&1-D-&3-D-ps — pa-D-€3-61-D-p1 + 5P -D-pTr(e1-D-&2-D)

1 1
- §P1'D'P1Tr(81'€£) - ETF(& -D)Tr(e2-D)(p1-D-p1 + p1-p2) + {1 <« 2]- (54)

The disc-level scattering amplitude of any other two massless closed string vertex operators in type Il supergravity has the
same structure as (52). The kinematic factor K(1, 2), however, depends on external states. We refer the interested readers
to [62] for the explicit form of the kinematic factor for all other states. A constant background B-field can be added to the
scattering amplitude (52) by extending the diagonal matrices D*” and V*" to non-diagonal matrices which include the
background B-field [45].

From the poles of the gamma functions in (52), one finds that the amplitude has simple poles at t = 0,2,4,...
in the t-channel which correspond to the masses of the intermediate closed string states m> = 0,2,4,..., and at
> = 0,1/2,1,3/2, ... in the g>-channel which correspond to the masses of the intermediate open string states mgpen =
0,1/2,1,3/2,.... The world-volume string field theory which contains iteration of graviton with all of the massive open
and closed states should produce the amplitude (52).

One may expand the gamma functions in (52) around o’ — 0, i.e.,

12,2 1 ? +1
A~ LKA~ =+ )8 PV RV (55)
where dots represent terms with higher orders o’. The amplitude has now simple poles at ¢, t = 0 and contact terms with
infinite number of momenta. The simple poles are reproduced by the DBI action and the supergravity. The higher derivative
extension of the DBI action should produce the contact terms of the amplitude (55).
The amplitude (55) at order «’? has only contact term, i.e.,

2
s
A@?) ~ == gl Ty K(1, 28 (p1-V + pa V). (56)

It must be reproduced by some covariant couplings at order o> which include the two massless NS-NS fields. That is, one
has to write all such couplings with unknown coefficients, and then transform their corresponding two-field couplings to
the momentum space and use the on-shell conditions. The result should be the same as (56). This constrains the unknown
coefficients.

In this way, the higher derivative corrections at order «’? involving Riemann curvature, the second fundamental form,
VH and VV¢ have been found in [25,29,32] to be

m2a?T = _ .
s o _Tp / d"tx €7¢\/TG|:(RT)abcd(RT)ade — 2RayR™ — (R Japij(Rn )™
_ o1 1 o1 ,
+ 2RyRY + 5VUHZ,C,-V“H"“ — 6vaH,-jkv“HU" - 3V,-HabCV1H“bC] (57)

where G is determinant of the pull-back metric, Eab = 0,X"9,X"G,,, and the curvatures (Ry)apcq and (Ry )i are related to
the projections of the bulk Riemann curvatures into world-volume and transverse spaces, and to the second fundamental
form via the Gauss-Codazzi equations, i.e.,

(RT)abcd = Rabcd + aij(-Q aci-Q bdj -2 adi-Q bcj)
(RN )abU = Rabij + ECd(-Q aci-Q bd'i - acj-Q bdi)~ (58)

The curvatures Rq, and 7@,3- are related to the Riemann curvatures, the second fundamental form and to the second derivative
of dilaton via the following relations:

7%ab = Rcacb + SU(QCUQ abj -8 cai-Qij) + Vavb(ﬁ

7_2,']‘ = Rcicj + 8ik5]'l.Qakaabl + ViVj¢. (59)
The world-volume indices in (59) and (57) are raised by the inverse of the pull-back metric, and the transverse indices in (57)
areraised by 87. Note thatif A,,, B, are two spacetime vectors, one can write A,B* = AaBbG“b = A,B, 8. X" 8pX "G = A,B,G"
where the projection operator G*¥ is the first fundamental form, and A;B' = A;B;j8¥ = AMBVCng“j“SU = A.B, 1" where ;i"
is an orthonormal frame for the normal bundle and L*" is a projection operator that projects spacetime tensors to the
normal space. The two projections satisfy G*¥ + 1L*" = G"". So one can write world-volume couplings either in terms of
world-volume and transverse indices, or in terms of spacetimes indices in which the metric G*” and the first fundamental
form are used to contract the indices.

The second fundamental form is defined as the covariant derivative of the tangent vectors d,X*, i.e., 24" = V,0,X" (see

e.g., the appendix in [25]). Using the relation V,(A,B*) = (V,Ap)B* + A,3,X"V,B*, one finds

Qub” = aaabxu - fabcacxﬂ + Fab” (60)
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where ;¢ is the world-volume connection constructed from the pull-back metric and I,* is pull-back of the spacetime
connection. Using the fact that V,G,. = 0 and V,G,, = 3.X”V,G,, = 0, one observes that the projection of the second
fundamental form to the world-volume is zero. The projection of this tensor to the normal space which appears in (58) and
(59)is

-Qabi = Qab“{jvcuv(sij' (61)

Note that the vectors {i“ do not appear in the action, i.e., Sij.Qab".chj = L, R2a" 24" where L, = GWG/gVJ_"‘/f‘. To relate the
second fundamental form to the open string transverse scalars, one has to write the above covariant coupling in the static
gauge in which X? = ¢ and the other components are the transverse scalar fields, i.e, X' = x'. In this gauge, V,9,X¢ = 0
and

J—;w -QabMchv = J—inabichj (62)
where Kg! is

Kap' = 3adpx' — Tao“dcx' + Tw' + T 1’ + Ty 8ax” + L' 8ax’9p x* (63)
and Iy, Faji, iji are different components of the spacetime connection. In finding the couplings of one massless closed and
two open strings [25], one considers only the first term in Kg;'. All other terms should be reproduced by the contact terms
of the higher S-matrix elements.

Analysing the o’?-order terms in amplitude (56) for one RR and one NSNS vertex operators, the higher derivative

corrections to the WZ action at order % involving one RR and one NSNS fields have been found in [63] to be

-a

2,2
ws _N o TP p+1,, _ag-q 1 (p+4) apyijk
2 24 /d K 3!(p+1)!v"f'ao pikV H

) 1 L
Hp+2) (p+2)
7![5 a 'J‘p;l ”p( N)aoau + Im J i‘fO"'apRU]
1 . .
+ m[va}ﬁ ap ¥ Hagoay — V Fahty-ap(V*Hiaay — V'Hiag )]) (64)
where 7P is the linearized RR field strength, i.e., FP) = dCP”. The above couplings include 7V, ..., 7% where 7% =

x10F D, FO = 510 F ), FD = 50 73), 7O = 5074 and F3) = %1,F5). Here also the world-volume indices are raised by
the inverse of the pull-back metric, the transverse indices are raised by 8%, and the tensors with the lower indices are the
projections of the bulk tensors into world-volume and transverse spaces.

Analysing the o’?-order terms in amplitude (56) for two RR vertex operators, the higher derivative corrections to the
D,-brane action at order o% involving two RR fields have been found in [32] to be’

27,
s o T i) / P xe? /-G (Z [p 4V, F.VOED _ ppr v, Fm g

n=1

4
; 1
ORVRVE=0) ny. g
+ 48,V FW.V-VEFW 4 ang,, , 5V, FW, V. VA F ]+ n§71 0= n)![

4810V, OV FI07 4 4(10 — n)510n,p+zvu~7"“0n)i'V'Vﬂ}—(mn)i}
1 ~ ~
+ 5 [(p — 4)V,FO.VIF®) — 5Dk, V,FO) . VIFBEY
+ 485,V F®).v . VHF®) 4 2035,,,+2VMF<5>,--v.v“F@"]) (65)

where 710" — w0 7™ forn = 1,2, 3,4, and F® = F5 4 %0 75). Our notation is such that A - B = A, B* and
A-V.B=Agy.B"".
The nonlinear RR field strength however is

F — = 4 g A -3 (66)

which is invariant under gauge transformation §C = dA + H A A where C = Z oC™and A = ZZ 0A™M. So the RR
gauge symmetry requires one to replace the linearized RR field strength 7™ in (64) and (65) by the nonlinear f1e1d strength

3 Note that, there is a typo in a; in equation above (12) in [32] as an extra 1o operator. Since in a; there is one projection operator P_, there should be
only one %o in a;.
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F™_ This then produces many new couplings. The above D-brane actions at order o', however, do not include all closed
string couplings at this order, e.g., the action does not include H* or F* couplings. The action has also open string couplings.
In principle, all these couplings may be found by extracting the corresponding disc-level S-matrix elements. For example,
the couplings involving H* may be found by analysing the disc-level S-matrix element of four vertex operators. However,
it is very hard to calculate such S-matrix element and to extract its four-momentum contact terms. See [64-68] for the
calculations of the disc-level S-matrix element of one specific RR and two NSNS vertex operators from which some of the
couplings of one RR and two NSNS fields at order «’? have been extracted. The disc-level S-matrix element of one arbitrary
RR and two NSNS vertex operators have been calculated in [69]. See [67,70-72] for the S-matrix element of two massless
closed and one open strings and also [70,73-75] for the calculations of disc-level S-matrix element of one RR and three open
string states. One may use an extension of the KLT relation, to write the disc-level S-matrix elements of closed and open
string vertex operators in terms of disc-level S-matrix elements of only open string vertex operators [62,76,77].

2.4. PR*-level amplitude of two closed strings and its o*>-couplings

To introduce Op-planes in type II theory, one may consider the Z, group defined by the transformations 0 — —o and
X! — —XI. The first one reverses the orientation of string and the second one is a reflection in spacetime. The orientation
reversal interchanges the right-moving and the left-moving modes. The type II theory has this global symmetry. If one
gauges this symmetry, then the states in the gauge invariant theory must be invariant under this Z, transformations. For
example, graviton which has no index along the i-directions, survives because graviton is symmetric between right-moving
and left-moving modes. Similarly, a Kalb-Ramond field with one index along the i-directions, survives because Kalb-Ramond
is antisymmetric under interchanging the right-moving and left-moving modes. The extra minus sign resulted from the
spacetime reflection then makes the Kalb-Ramond field to be invariant under the Z, transformations. The Kalb-Ramond
state with no index along i-directions and graviton with one index along the i-directions are projected out. In the gauge
invariant theory, there is an object, i.e., Op-plane, orthogonal to the i-directions which causes the above projections. The
O,-plane is at the fixed point of the spacetime reflection, i.e,, it is not dynamical objects. As a result, there is no open string
excitations for O,-planes. However, they carry mass and charges so closed string fields can couple to the world-volume of
0,-planes.

In this section, we are going to review the calculation of the scattering amplitude of two massless closed strings at
projective-plane level in type Il superstring theory and discuss how higher derivative couplings appear in the world-volume
theory of Op-planes. In type Il theory the background charge of the projective plane is Qg = 2. The S-matrix element (18) for
two gravitons at PR?-level which represents the scattering amplitude of one graviton off an O,-plane, is

A1,2) ~ gy(V®OvihTh), (67)

The graviton vertex operator in the presence of O,-plane has the following structure [78]:

V(p,e) = /dZZ[V(p,pD, e-D,z,Z)+V(p, p-D, s-D,E,Z)} (68)

where the vertex operator V(p,p-D, ¢-D, z, z) is the graviton vertex operator after using the doubling trick (50). The
dimension of O,-plane is specified by imposing the cross-cap condition on world sheet fields X*, /. Because of the cross-
cap, the holomorphic and antiholomorphic parts of fields on PR? are not independent. The propagators between holomorphic
fields and between antiholomorphic fields are the same as the sphere propagators, however, the propagators between
holomorphic and antiholomorphic fields, after using the doubling trick, are

X*(2)X () = —n™" log(1 + zw)

N
(Y2t (w)) = T+ 20
(p(2)p(w)) = —log(1 + zw). (69)

Unlike the disc calculation, here one cannot map the amplitude to the upper-half plane, because the RP? has no boundary
whereas the upper-half plane has boundary.

Replacing the vertex operator (68) into (67), and using the above propagators, one finds the integrand is invariant under
the following transformations:

az+b _ dz —c
— N — ——
cz+d bz —a

;ad—chb =1 (70)

which is consistent with the fact that the dimension of the moduli space of PR*> with two punctures is one. Fixing this
symmetry by setting zy = 0 and |z,| =1, i.e,

1
/ d?z1d*z, — / dr? (71)
0
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one can write again the result in terms of gamma functions. The result is [78]
I(=t/2)I"(—u/2)

A~ ag?’T/K(1,2
e LK ) T

8P (p1-V 4+ p2-V) (72)
where T; is the tension of Op-plane, t = —o/(p1 + p2)?/2 and u = —a’'(p; + p2-D)?/2. Using the fact that (p, - D)* is
transformation of momentum p} under the Z, transformation, one observes that the two channels here are closed string
channels. The kinematic factor K(1, 2) is exactly the same as for the D,-branes case. The PR?-level scattering amplitude of
any other two massless closed string vertex operators in type Il supergravity has the same structure as (72). The kinematic
factor K(1, 2), however, depends on external states. In all cases the kinematic factors are the same as the corresponding
factor for disc amplitude [78].
One may expand the gamma functions in (72) around ¢’ — 0, i.e.,

7.[2

4
A~ o"gTK(1,2) (_m e ")““(prv +p2V) (73)
where dots represent terms with higher orders «’. The amplitude has simple poles at u,t = 0 and contact terms with
infinite number of momenta. The simple poles are reproduced by the DBI action and the supergravity. The higher derivative
extension of the DBI action should produce the contact terms of the amplitude (73). The amplitude (73) at order «’> has only
contact term, i.e.,

2
Ale?) ~ —%"‘”gfﬂé K(1,2)8P* (p1-V + py-V). (74)

Since the kinematic factors for Op-planes are exactly those for D,-branes, the two closed string couplings at order o'? are
exactly given by (57), (64) and (65) in which the second fundamental form is set to zero, i.e., geodesic embedding. In fact the
gravity part of the second fundamental form (63) has one index along the i-directions, as a result, it is projected out under the
Z, transformation. There are many couplings of massless closed string fields at order "> which do not appearin (57), (64) and
(65). These couplings have also genus and non-perturbative corrections. The latter cannot be found from the perturbative
S-matrix elements (18). So we have to use another technique to find such couplings. One expects the consistency of the
couplings in (57), (64) and (65) with dualities may fix all other couplings.

3. String dualities

In this section, we are going to briefly review the T-duality and S-duality in string theory which lead to the conclusion
that the five super string theories in 10-dimensional spacetime are not fundamental, but are different limits of the M-theory.
One may use these dualities to constrain the effective actions of the superstring theories and their non-perturbative objects
at the higher order of ’. We begin with the T-duality. See [79,80] for review articles on T-duality.

3.1. T-duality

If one compares the spectrum of the bosonic string theory on R?% x 5 where the circle has radius p, and on R x SO
where the circle has radius «’/p, one would find the spectra in the two cases are identical, i.e., the infinite tower of the
winding modes in one case correspond to the infinite tower of the Kaluza-Klein modes in the other case, and vice versa. This
indicates that the bosonic string theory is invariant under T-duality when it is compactified on a circle. Similarly, the type
IIA superstring theory and the heterotic Hyq(32) theory on a circle with radius p are T-dual of the type IIB and the heterotic
Hgg < 0N a circle with radius o’/ p, respectively.

If one extends the circle to tours T", then one would find that the spectrum of the bosonic string theory is invariant under
the T-duality group O(n, n, Z). In fact, the mass spectrum of the free bosonic theory on T" with metric G; and B-field Bj; is
(seee.g, [13])

M? = 4(Ng + N, — 2 iyt (W
- R+ No )+2(W Kl)g,'j K (75)
\J

where Wi, K; are winding and Kaluza-Klein numbers, Ng, Nj are the right-moving and left-moving number operators, which
satisfy the level-matching condition Ny — N; = W'K;, and G;; and its inverse are

B cl;.] ~Gy'Byj 1 (Gij—BiGy'By 13,»,<(;,;jl
g,j = 1 1 ) gij = -1 -1 - (76)
BiGy;'  Gyj — BiGy'By —Gy'By G;

The spectrum and the level-matching condition are invariant under the following transformations:

ik ,
W= K ok W
Ki— W ; (77)
g_l—>g Bij—>B,‘j+N,‘j
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where Nj is an antisymmetric matrix of integers. The first one is called inverse transformation and the second one is called
shift transformation.
Now consider the orthogonal group O(n, n, Z) whose elements satisfy the relation

0 1, 0 1,
AT<1n O)A=<1n 0'> (78)

Under this group, the winding and the KK numbers transform as doublet, i.e.,

()~ o() =

and the generalized metric G transforms as

g — 0g0o". (80)

The spectrum and the level-matching condition are invariant under these transformations. The two specific O(n, n, Z)
matrices

(0 1\ ., (1, O
(2 ) ae(l 9)

correspond to the inverse and to the shift transformations, respectively. They generate an arbitrary O(n, n, Z) matrix.

When there is no winding and KK numbers, one may still consider the inverse transformationin (77) to relate the massless
fields, i.e., the metric and the B-field, on the tours to their corresponding fields in the dual tours. One can write the inverse
transformation on the generalized metric, i.e, G — G~ ! as the following transformation:

Q— Q! (82)
where Q; = G + Bj;.
The above transformation should be extended to curved spacetime with background fields. Such transformations have

been found by Buscher [81,82]. To rederive them in the path-integral formalism [83], consider sphere-level path-integral
(15) in the bosonic string theory that includes the general background fields Gy (X*, X"), Bun(X*, X'), and ¢(X*, X'), i.e.,

z::/Dﬂ%i“%@W“W#MW“) (83)

The dilaton action is one order of «’ higher than the action for metric and B-field, i.e., the dilaton is one-loop action
in the world-sheet theory. Now suppose the world-sheet action is invariant under global translation in Xi-directions,
ie, X' — X'+ Al This happens when the compact space is torus and the background fields are independent of Xi-directions,
ie, Quv = Qun(X*)and ¢ = ¢(X*). This symmetry may be gauged by changing the ordinary derivatives in Xi-directions
to the covariant derivatives, ie., 3,X' = D,X' = 9,X' + A, and then the measure of path-integral may be constrained
by the delta function A[%e"‘ﬂﬁi n that imposes the gauge field strength to be zero, i.e., the gauge field is pure gauge on the
world-sheet with trivial topology. Introducing new fields X', one can write the delta function in path-integral form as

1 . ~ _1 2.5 afpi
A [Ee“ﬁF;ﬂ] ~ fDXne 2 [ X Ry (84)
The gauge symmetry then makes Z to be infinite. To have finite Z, one may fix the symmetry by fixing X' = 0 and dropping
the volume of the gauge group. The path-integral then becomes
7 /DADADX/M e—fd2z(QMBZX“BiX”+Q4-J-AiAi+(Qui3X“—Bii)Ai+(Qiu5X"+5)~(")Ai+R(2)¢>).

Integrating out the gauge fields, one would find dual theory in terms of dual coordinates XM = (X*, X 1. Now using the
following integral

N
/ 1_[ dz,dZ, e*(ZkalZ#ﬂkaerka) ~ 1
k=1

eak(f1 Jkibi 85
det(c) (85)

one can perform the path-integral classically over the gauge fields to find the following result:
_ (42 ! yw/Ma_y/N | p(2) 7
7 - /DX/M o/ z(QMNdZX XN 1R ¢) (86)
where Qy, is

Q:w = Qﬂ‘) - Qﬂi(Qil)iijv
Q. = —Qu(Q7Yi
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Q, = (@,
’ -1
Q=0 - (87)

The dilaton remains intact under the above classical calculations. Quantum mechanically, however, the Jacobin that comes

from integrating out the gauge fields, produces corrections to the above transformations. At one loop-level, there is no
correction to Q,,y, however, the dilaton shifts as [81,82]

1
¢' = ¢ — 5 Indet(Qy). (88)

The transformations (87) and (88) are extension of the transformation (82) to the curved spacetime with background
fields. The path-integral approach can easily be extended to the superstring theories, which results the same T-duality
transformations (87) and (88). The path-integral approach has been used in [83] to study the T-duality transformations
for the cases that the compact space has non-abelian isometries.

If the original theory (83) is conformal invariant, then the dual theory (86) with (87) and (88) would be conformal
invariant at one-loop level. One may impose the conformal invariance at higher-loop levels to find derivative corrections
to (87) and (88). On the other hand, the conformal invariance of (83) requires vanishing of the world-sheet beta functions
which would produce the equations of motion in spacetime. In other words, the invariance of 8 = 0 under T-duality
transformations is equivalent to the invariance of the spacetime equations of motion under T-duality. This invariance may
in turn be implemented in the spacetime effective actions that produce the equations of motion.* One may impose this
constraint on the effective actions not only to find the derivative corrections to the transformations (87) and (88), but also
to find constraints on the higher derivative terms of the effective actions.

The T-duality transformations of the non-perturbative objects D,-branes/O,-planes depend on whether they are along
or orthogonal to the X'-directions along which the T-duality is imposed. If a D,-brane/O,-plane is along the X'-directions,
it transforms to D,_,-brane/0,_,-plane orthogonal to the Xi-directions in the T-dual theory, and vice versa. For D,-brane,
the T-duality changes the Newman boundary conditions along the X i_directions to the Dirichlet boundary conditions in the
T-dual theory which in turn changes the gauge fields along the X'-directions to the transverse scalar fields in the T-dual
theory, i.e.,

A — Xi. (89)

The T-duality relates the brane tensions as V("T, = T,_, where V(" is the volume of torus T". Their world-volume effective
actions should satisfy the corresponding duality. That is, the T-duality of the effective action of a D,-brane/O,-plane along
the X'-directions should be equivalent to the world-volume effective action of D,_,-brane/O,_,-plane orthogonal to the
Xi-directions.

The effective action of Dp-brane at the leading order of '’ in type Il superstring theory is given by the DBl and WZ actions.
The DBI action, in the absence of the massless open string fields, for D,-brane along T" and D,_,-brane orthogonal to T" is

S =T, / d"*'xe™?\/—det(Qu) ; $,° = —Tp-n / " lxem? /— det(Q,;) (90)

where a, b are the world volume indices of the D,-brane, and a, b are the world volume indices of the D,_n-brane. Now if

the fields in S®' are independent of the tours coordinates X', then one uses dimensional reduction along the tours T" and
then uses the T-duality, i.e.,

S = —Tp / dP " xe=? [~ det(Q),). (91)

Using the relations (87) and (88), one finds the above action is in fact the DBI action (90) for D,_,-brane.

The T-duality transformations on the RR fields in type II superstring theories have been found in [87] by requiring the
solutions of type IIA supergravity to be transformed under the T-duality to the solutions of type IIB supergravity. These
transformations may be rederived by using the fact that the D,-brane effective action should be transformed to the D,_,-
brane effective action. The WZ action, in the absence of the massless open string fields, for D,-brane along T" and D,_,-brane
orthogonal to T" is

gw=_5/' Jc;ﬁg=_34/ eC (92)
Mp+1 Mp—n+1

where C = Y"5_,C™ and one should consider p + 1-forms in S} and p — n + 1-forms in $}'4. Now if the fields in S*Z are

independent of the tours coordinates X', then one uses dimensional reduction along the tours T" and then uses the T-duality,
ie,

SWE= T, / e, (93)
Mp—n+1

4 |t has been observed in [84,85] that the renormalization group flows, i.e., the beta functions, at one-loop level are also invariant under the Buscher
rules, and at two-loop level are invariant under the Buscher rules plus their corrections at order &’ which have been found in [86].
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Now if one uses the following transformation:

¥ c) = (f0) (94)

a1y --Gp—nq1iria--in a1d-ap—nt1
where iy, ..., i, are indices along the T", then the action (93) would be the WZ action for D,_,-brane. If one considers a
D, brane orthogonal to the tours T", then after T-duality the WZ action transforms to the corresponding term in D,-brane

action along T" provided that
Cae) = (efC)

One may use the T-duality transformation (87) for B-field on (94) and (95) to find the T-duality transformation for the RR
potentials. When there is only one killing direction y, the transformation is [87]

(n—1)

ay0p--8p—nt1 1y -8p_py1itizin - (95)

_ Gty Glaly
CM ey = Cd = (n — 1)“‘% (96)
vy
ClrulyBlaGiaw
/(n) (n+1) (n—1) wvlyPle
Cuivap = Cuovapy T NC e Bpy +0(n — 1) — .

ny

Using the transformations (94) and (95), one may extend the T-duality transformation (96) to the cases that there is more
than one killing direction. The compatibility of the DBI action, in the presence of the abelian massless open string fields,
with T-duality have been observed in [88]. The T-duality invariance of the WZ action, in the presence of nonabelian massless
open string fields, has been used in [88] to find the Myers term. They have been confirmed with explicit S-matrix calculations
in [73].

The Dp,-brane/O,-plane effective actions at the leading order of « are then manifestly invariant under the T-duality
transformations (87), (88),(89)and (96).° There is also a manifestly T-duality invariant action for type Il supergravities which
is in terms of C = Zﬁ:OC(") [89]. This indicates that not only the effective actions at the leading order of «’ are invariant
under the T-duality transformations, but also the presence of brane does not change the form of the transformation rules.
One expects the effective actions at the higher order of &’ to be also invariant under the T-duality.

The transformation rules (87), (88), (89) and (96), however, may receive higher derivative corrections. Suppose the T-
duality operator has an «’ expansion

(o]
T =Y ()T, (97)

n=0

where T is given by (87), (88),(89) and (96 ). The invariance of the effective actions (42) under the T-duality transformation,
ie.,

T
Seff —> Seff (98)

then means the action at the leading order of &’ to be invariant under the leading term of the T-operator, i.e.,

7(0)
SO —> 50 . (99)

At order o/, the action has two terms, i.e., S = Sg + «’S;. The invariance then means

700
51 — S] + 8S .

(1)
Sp —— —5S. (100)

At order (o')?, the action has three terms, i.e., S = So + «’S; + («’)?S, and again the invariance means that

7(0)
Sy — S+ 6851465,

(1)
S] —_—> —851,
T(2)
So — —8S>. (101)

Similarly for the action at higher orders of «'.

By studying the effective actions of the bosonic and heterotic string theories at order «’, it has been shown in [90] that
the transformations (87), (88) do receive higher derivative corrections at order o', i.e, T()) = 0. It has been observed in [91]
that the same T-duality transformations are required to show that the D,-brane action at order «’ in the bosonic theory is
invariant under T-duality. We will review this calculation in Section 6.

5 In our convention, the transverse scalar fields of D,-brane, ', have the same dimension as X*. The T-duality transformation (89) then indicates that
in our convention the gauge field, A,, has also the same dimension. As a result, the DBI action in the presence of gauge field is at order o”°.
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In above approach, it has been assumed the effective action (42) to be invariant under the general coordinate and the
B-field gauge transformations. The invariance under the T-duality then requires the T-duality transformations to receive
a’-corrections. One may release the general covariance and the invariance under the B-field gauge transformation in the
effective action (42), but requires it to be invariant under T(®-transformations, i.e.,

7(0)

Seft —> Seft- (102)
The above constraint has been used in [92] to find non-covariant corrections at order o’ to the D,-brane effective action in the
bosonic string theory. We will review this calculation in Section 6. A systematic approach for constructing the non-covariant
effective actions, however, is the Double Field Theory (DFT) [93,94] in which the generalized metric G; (76) is used and the
actions are required to be explicitly invariant under O(D, D, R) transformations where D is the dimension of spacetime. The
modification of this theory to Double «’-geometry in which the generalized Lie derivative receives «’-corrections, requires
and determines the higher derivative couplings [95,96].

Another non-covariant approach for constructing the o’-corrections in manifestly O(n, n, R) invariant form is to reduce
the theory on T" and observe that the scalar fields, i.e., the scalar fields that appear in the generalized metric g, satisfy the
relation (78) and G;; is symmetric matrix [97]. This metric has an o’-expansion, i.e.,

G=Gy+a'G+a?G+--- (103)

where Gy is the one in (76), G constructed from the second partial derivatives of scalars (Gj, Bjj), G» constructed from the
fourth partial derivatives of the scalars (Gj;, B;j) and so on. Constraining G to be symmetric and satisfy (78), one may find
G1, Ga, .. .. This constraint on the scalar fields may fix the form of unreduced action [97]. We are not interested in this
approach and in the DFT approach in this review article.

We are interested in the simple case that the theory is compactified on a circle with the killing coordinate y and radius
p. In this case, the Buscher rules (87) and (88) become

e2¢ 1

= — ; G/ = —
ny Y ny

/
e

Guvay — BMYBVY
ny
Buycvy — Guvay

B
Gy = 22 Guu = G =
ny

G
B —_ T : B;w:BHV_ (104)

ny G G
VY vy
where u, v denote any direction other than y. In above transformation the metric is in the string frame. One may be
interested in studying the S-matrix elements under the above T-duality transformations. In the S-matrix elements, the vertex
operators correspond to small perturbations of fields around the flat background. Assuming that the massless fields are small
perturbations around the background, i.e.,
2

1+hy); ¢ =0+ @ (105)

G;w = Nw +h;w; ny = ;(

then the nonlinear transformations (104) and (96) take the following linear form for the perturbations:

, 1
P =0 — Ehyyv h;/y = _hyy’ h;ty = Buy/myy. B,:l.y = huy/"yyv h;w = hu, B;w =B
iy = col, o, =) (106)

JTRBYER) JTR) vy

where 7y, = p?/a’. The above linear transformations are used in Section 4 for studying T-duality Ward identity. One may
also use them, in some cases, to study the invariance of a subset of the couplings in the effective actions at a given order of
«’ under linear T-duality.

To study the invariance of the full effective action under T-duality, however, one must use the nonlinear transformations
(104) and (96). In that case, it is convenient to use the following dimensional reduction on the 10-dimensional metric and
Kalb-Ramond field:

1 1

® @

Gun = Buv —|—¢e Eubv € gﬂ ) Buy = Duv + Eb“gv B Ebvgu by (107)
¢’ e b, 0

where g,,,, by, are the metric and the B-field, and g,, b, are two vectors in the 9-dimensional base space. Inverse of the
10-dimensional metric is

v i
GMN — g 8 108

(—g“ e +g.g” (108)
where g"” is inverse of the 9-dimensional metric which raises the index of the vectors. In this parametrization, the 9-
dimensional dilaton is ¢ = ¢ — ¢ /4. The T-duality transformations (104) in this parametrization simplify to the following
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linear transformations:

/

¢'=-¢ , 8 =b,, b, =g,. (109)

The 9-dimensional base space fields g4, by and ¢ remain invariant under the T-duality. The T-duality of the RR fields (96)
becomes

/(n) _ (n-1) (n—1)

Cﬂmvay = Cﬂ.“va - (Tl - 1)C[M4.4v|yga] (110)
/(n) (n+1) (n—1) (n—1)

Cﬂmmﬁ = CHN.mﬂy + nc[l,,“mbﬂ] +n(n — l)C[umwybagﬂ]

which remains nonlinear.

In the covariant approach, the transformations (109) and (110) in general receive o’ corrections. However, as we have
seen in the previous section, the higher derivative corrections to the type Il supergravities start at order «’>. That means
the o’ corrections to the above T-duality transformations in type Il superstring theory start at order . On the other hand,
the first corrections to the D,-brane/O,-plane effective action start at order «'2. So one can use the T-duality transformation
(109) and (110) to study the brane actions at order 2. We expect the compatibility of the brane couplings in (57), (64)
and (65) with the above T-duality transformations and S-duality transformations that we are going to review in the next
subsection, enables one to finds all couplings at order o',

3.2. S-duality

The careful studies of the 10-dimensional supergravities which are the low-energy effective actions of the superstring
theories, and the 11-dimensional supergravity which is the low energy effective action of M-theory, reveal that there is a
Z, transformation that relates type I supergravity at couplings gs to the Hso(sz)-supergravity at coupling g~ 1 the type IIA
at couplings gs to the dimensional reduction of the 11-dimensional supergravity on a circle with radius g, the Hg, -
supergravity at couplings g, to the dimensional reduction of the 11-dimensional supergravity on a line with length g,
and the type IIB at couplings g; to the type IIB at couplings gs‘l. The last transformation is in fact promoted to the SL(2, R)
transformation. The Z, symmetries are expected to be the symmetries of the corresponding superstring theories/M-theory,
and the SL(2, Z) subgroup of SL(2, R), is expected to be the symmetry of type IIB superstring theory. Since the weak coupling
constant transforms to the strong coupling constant in these duality transformations, they are called S-duality. We are
interested only in the S-duality of the type IIB superstring theory. See e.g., [6] for a review article on the S-duality.

Under the SL(2, R) transformations, the graviton in the Einstein frame, i.e, G,, = e %/?G,, and the RR four-form are
invariant. The B-field and the RR two-form transform as doublets [98-100]:

B = (c?”) S (A7) (C‘é)) (111)

where the matrix A = g 2) € SL(2, R). The transformation of the dilaton and the RR scalar C appears in the transformation
of the SL(2, R) matrix M

M=e? ('TC|21C> (112)

where t = C 4 ie~®. This matrix transforms as [98]
M — AMAT, (113)

For the special case that C = 0, and for the particular SL(2, R) matrix V' = (31 (1)) one finds the weak-strong transformation
e ? — e?.
The manifestly SL(2, R)-invariant form of the type IIB supergravity (1) is

1 1 _ 1 1
Sig D P dmx«/—G[R + ZTr(VHMV”M h— EH[MMH” - 4|F(5)|2]

1
— 5 / CayH'NH (114)
where # = dB and the five-form field strength is Fs) = dC) + 38" N'#. A similar expression is expected for corrections at
all higher order of o'

One may expect the o’-corrections to involve only M, 7, F®), C® and metric which transform as tensors under the
SL(2, R). However, unlike the two derivative actions, the higher derivative actions have both genus and non-perturbative
contributions as well. So the action should involve some SL(2, Z) tensors representing these contributions. Such tensor for
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a’3-corrections in which we are interested, have been found in [24]. Consider the gravity couplings in (47). In the Einstein
frame and for constant dilaton, they are

3 1
Su D 41 )/dwxe’“’/z\/—c <t8t8R4+Ze8e8R4). (115)

3.27k2
The dilaton factor indicates that the above action is not invariant under the SL(2, R) transformation so there are some

missing terms. This is consistent with the fact that the above action does not include the genus and the non-perturbative
contributions. The SL(2, Z) invariant form of the action (115) has been conjectured in [24] to be

Sug D 378 d XE(3/2) T, TV — <t8th + 46368R ) (116)
where E3/0)(7, T) is the SL(2, Z) invariant non-holomorphic Eisenstein series. For general s, the SL(2, Z) invariant function
Ei)(t, T)is defined as

Eg(r.2)= Y _n__ (117)

2s
(0.0 M+ 17|
where t; + it; = t. It satisfies the following eigenvalue equation:

129, 9:Es) = s(s — 1)E) (118)

which has two solutions e=*? and e~(1=5} corresponding to two particular orders of perturbation theory, and infinite number
of non-perturbative solutions. E3 /2)(1, 7) has the following weak-expansion [24]:

m .
Eap(t. 526305 + 46@)r, 7 + 8757 Y || ki@ imnjry et (119)
m#0,n>1

where K; is the Bessel function. The above expansion shows that there are no perturbative corrections beyond the tree level
and one-loop level, but there are an infinite number of D-instanton corrections. By explicit calculation, it has been shown
in [101] that there is no two-loop correction to the action (116). The modular invariant function E3/) should appear for all
NSNS and RR couplings at order 3. Apart from this overall factor, all couplings should be combined appropriately to be
written in SL(2, R) invariant form as in type IIB supergravity (114).

Since the RR four-form is invariant under the SL(2, R) transformations, the effective action of Os-plane should be invariant
under the S-duality. The effective action at the leading order of &’ in the Einstein frame is

So; D —Té/d“x,/—det(aab)—Té/a (120)

where the tilde-sign means pull-back operator, e.g., Gab = 9,X" X" G,,,. In the static gauge, i.e, X* = o* , X' = 0, one finds
Gab = Gg and Cabcd = Capcg- This action is obviously invariant under the S-duality.

There is similar symmetry for Ds-brane action at the leading order. However, the D-brane effective action contains the
gauge field A, and the transverse scalar fields ' in the static gauge, ie, X? = 0% X! = x!. The gauge symmetry requires
also the gauge field strength and the Kalb—-Ramond potential appear in the effective action as B + F. The transverse scalars
appear in the action through the pull-back operator and through the dependence of the closed string fields on the transverse
coordinates [102]. The action at the leading order of &’ is

= ~ ~ ~ ~ 1~

5[)3 D —T; / d4X\/— det(Gab + Bgp + Fab) —T; / |:C4 + (B + F)Cz + E(B =+ F)2C0i| . (121)

The transverse scalar fields are invariant under the S-duality, and the gauge field transforms as [98]
_ *F 15T *F

F= ()~ (%) 122

where the antisymmetric tensor (G )gp, is defined in terms of the Lagrangian as
2 dL
G = ———". 123
( F)ab Ts 9Fab ( )

Obviously, because of the presence of B-field in the DBI part, the action (121) is not invariant under the S-duality. However,
the equations of motion are invariant under the S-duality [98,100].° If one ignores the couplings which include B + F, then
the action (121) is invariant under the S-duality. One expects the higher derivative couplings in the Os-plane theory and the

6 One may consider the string excitation of the D3-brane to be a (p, q)-string. In that case, one considers two gauge fields that transform as doublet
under the SL(2, R) transformation. Then one can write SL(2, R)-covariant action which includes both gauge fields [ 103]. We are, however, interested in the
case that only F-string propagates on the world-volume of D-branes.
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higher derivative couplings in the D3-brane theory, except the couplings involving B + F to be invariant under the S-duality.
The higher derivative couplings involving B + F, on the other hand, are expected to be invariant at the equations of motion
level.

The S-duality requires, among other things, that the tree-level couplings to be extended to include the higher genus
couplings. Using the KLT relations, and the fact that the eight-derivative couplings in the bulk action (116) include E(3,y which
has only one-loop corrections, one expects the world-volume four derivative couplings to have also corrections only at one-
loop level. In other word, the world-volume action should include the Eisenstein series E;y which has only tree and one-loop
contributions at the weak-coupling expansion. For s = 1, however, the series (119) diverges logarithmically. The regularized
function which is proportional to the modular invariant function log(z,|7()[*), has the following weak-expansion [25,104]:

i P m1/2 ,
Eu(r.?) = {@)t = ZIn(@)+ 7y Y || Kia(2rimalr)e, (124)
m#0,n#0

The first term is tree-level contribution and the second term is one-loop contribution. The modular invariant function E
should appear for almost all NS, NSNS and RR couplings at order 2. Apart from this overall factor, the couplings should be
combined appropriately to be written in SL(2, R) invariant form.

The Eisenstein series E(;), however, should not appear for the world-volume couplings at order o’? which have been
found from the anomaly cancellation mechanism because they have no genus contribution at all. These couplings should
involve a modular function which has only one perturbative contribution and infinite number of D-instanton contributions.
The curvature squared corrections to the WZ action (5) which have been found from the anomaly cancellation mechanism,
have one RR scalar field C which is not invariant under the global SL(2, Z). This term has been extended to the anomalous
modular function log(n(t)/n(7)) in [25,105] which produces C and infinite number of D-instanton contributions at the weak
expansion. The t-dependent anomalous transformation for the case of Ds-brane in trivial normal bundle, cancels the -
dependent anomalous transformation of the Jacobian of the massless modes of the D3-brane, and a r-independent modular
anomaly remains [25].

Apart from the anomalous couplings (5), all other world-volume couplings at order o> should have the overall factor
of 7% in the Einstein frame which must be extended to Ey). Even the couplings that are related to (5) by the T-duality
transformation have the overall factor of e# [32]. That means the couplings which are related by the T-duality to the
anomalous couplings are not anomalous. So such couplings cannot be found by the anomaly cancellation mechanism.

We expect the consistency of the bulk couplings (47) and the brane couplings (5), (57) with the duality transformations
enable one to find all spacetime couplings at order > and all the world-volume couplings at order «'. The duality
transformations can also appear in the S-matrix elements as the duality Ward identities which may be used to generate
the S-matrix elements. In the next section we review the duality Ward identities.

4. Duality ward identities as generating functions

All S-matrix elements of any gauge theory satisfy Ward identity which is invariance of the S-matrix elements under
linear gauge transformations on the quantum fluctuations and the full nonlinear transformations on the background fields.
Similar Ward identities exist for almost all S-matrix elements under the global duality transformations. The S-matrix
elements corresponding to the anomalous couplings, however, do not satisfy the duality Ward identities. Since the duality
transformations are global, the momenta in the S-matrix elements are invariant under the duality transformations. The
background fields in the S-matrix element should transform according to the duality transformations in the previous
sections, and the polarization tensors should transform according to the linearized form of the duality transformations,
e.g., (106). The linear dualities may transform one field to some other fields, as a result, they may transform one S-matrix
element to some other S-matrix elements. This means the duality Ward identities may generate some S-matrix element
from a given S-matrix element.

To clarify it, suppose, using the prescription (18), one calculates an S-matrix element at tree-level in the flat spacetime
with constant dilaton background ¢ and finds the following result’:

Aee ~ Ki(&i, pidA(S, tou, ) + Koo pidfals, tou, o)+ - (125)

where K1, K>, ... are some kinematic factors, and f1, f>, . .. are some functions of the Mandelstam variables that represent
the poles of the amplitude. The flat metric in the Mandelstam variables and in the kinematic factors is the string frame metric.

If one is going to study this amplitude under the S-duality Ward identity, the amplitude should be written in the Einstein
frame, i.e.,

Atree ~ Kl(gﬁ Di, ¢0) 1(57 tu,..., ¢0) + I(Z(;is Di, ¢0) 2(57 tu,..., ¢0) + - (126)

7 We have normalized the vertex operators in the amplitude (18) with the factor of g; for each closed string vertex operator, and with /g for each open
string vertex operator. However, if one is going to correspond the vertex operators to the supergraviton fields, e.g., B, C®, then the normalization factors
make inconsistency because g is not invariant under the duality transformations. So in order to study the amplitude (18) under the duality, one should
either assume the g; corresponding to the vertex operators is inert, or one should normalize the vertex operators without g; and /g; factors, i.e., drop these
factors from the amplitude (18). We will use this latter assumption.
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where ¢ results from transforming the metric to e?/25,,,. To extend the amplitude to satisfy the S-duality Ward identity,
one should first include the constant background RR scalar Cy into the amplitude because the background dilaton transforms
to Cp under the S-duality. This constant field should be added to the factors fi, f5, . .. in such a way to make them invariant
under the SL(2, Z) transformations. The constant field C; and some other supergraviton fields should be also added to the
kinematic factors to make them invariant under the linear SL(2, R) transformations, i.e.,

AS ~ I<‘f(§17 i, Di, ¢05 Co)ff(S, t,u,..., ¢07 CO) + Kzs(gu i, Pi, ¢07 CO)fZS(S7 t, u,..., ¢07 CO) + -

where ¢; are the polarization tensor of the other supergraviton fields. The new amplitude A’ is assumed to satisfy the S-duality
Ward identity, e.g., it contains the appropriate loop-level amplitudes and non-perturbative effects. Now one may set Cp in
f1,fa2, ... to zero to find tree-level amplitude, i.e.,

Alree ~ Ki(&i, &1, Pis do, Colfi(s, t,u, ..., do) + K5(&i, &, Piy o, Colfals, £, Uy ., o) + - -

The above amplitude is now the sum of the amplitude (126) and some other tree-level amplitudes in the Einstein frame
which the S-duality Ward identity generates them.

As an example, consider the disc-level S-matrix element of one dilaton, one Kalb-Ramond and one gauge boson vertex
operators on the world-volume of D,-brane. The result for D3-brane in the Einstein frame is [71]

Arree ~ T3p1e POFPH, pof * (127)

where ¢, is polarization of dilaton, H is the field strength of the polarization of the Kalb-Ramond field and F is the field
strength of the polarization of the gauge boson. In the above amplitude f* is

= et (I]][pl-D-plp] Vi p1.k3p1.D.p u]

pip2 (p1-p2)? !
.D. k3 p2.D.
—L |:4P1.V“ + PP (2p) — p1.N*) + p‘3p22pzp/1»:|>
p1-p2 (P1-p2)

where I, I;; are the functions of the Mandelstam variables representing the poles of the amplitude [71]. The function f*
at the leading order of o’ which corresponds to the supergravity and the D-brane action at the leading order of «’, has no
dilaton factor [71]. The SL(2, R)-extension of the amplitude (127) is

Airee ~ T3(*]:’)Tab5M1Hltbafu (128)

where 7 is the linearized form of F in (122), i.e., G = e?F — Cy(*F), # = dB and M is the variation of M around the
background constant fields ¢q, Co, i.e.,

(—(ed’o — C2e?)py 4 2Coe?C;  Coe®py + e C1>

SMy =
] Coe™ g1 +e™C; e™ ¢,

(129)

where C; is polarization of the RR scalar field. It transforms under the SL(2, R) the same as matrix M transforms in (113).
The SL(2, R) invariant expression (+7;)" § M has the following six components [71]%:

(+F) SMH = e ¢ FH + ¢1(+F)F®) + Cogpi (+F)H
+ C1(+F)H — e CoC,FH — e®C;FF®) (130)

where F® is the field strength of the polarization of the RR two-form. Therefore, the amplitude (128) represents six different
S-matrix elements at the disc-level. It has been shown in [71] that the explicit calculation confirms the amplitudes involving
¢1(xF)F® and C;(+F)H. The amplitude involving e?0 C; FF® is also consistent with explicit calculation [106]. The SL(2, R)-
extension of the disc-level S-matrix element of one graviton, one B-field and one gauge boson on the world-volume of
Ds-brane has been studied in [71], and the SL(2, R)-form of one closed and three non-abelian open strings has been studied
in[107,108]. One may also use the S-duality Ward identity to find the S-matrix elements on the world-volume of NSs-brane
and Fq-string [ 108] in type IIB theory.

The anomalous coupling (5) on the world-volume of D3-brane is not invariant under the S-duality even in the presence of
background field Cy. As a result, the S-matrix element of one RR scalar and two graviton vertex operators does not satisfy the
S-duality Ward identity. In the bulk, however, there is no anomalous coupling. So all S-matrix elements should have SL(2, R)-
extension. For example, the SL(2, R)-extension of the sphere-level S-matrix element of two gravitons and two Kalb-Ramond
vertex operators at eight-momentum level in spacetime (47) can be written as

AS

tree

~ e300/ 2t ts RR(DH)' MoDH (131)

8 Thereis a type in the exponential factors in the last two terms in eq.(30) in [71]. The dilaton factor must be e®.
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where DHgped = Habic.q1- This contains four different amplitudes, i.e.,

DH" MoDH = e %0(1 4 *?C2)DHDH + €%° DFDF — %0 Co(DHDF + DFDH). (132)

The S-matrix element of two gravitons and two RR two-forms in (131) is confirmed by explicit calculation [54].

If one is going to study an amplitude under the T-duality Ward identity, one should consider the amplitude in the string
frame (125). The factors f1, f>, . . . are invariant under the T-duality because there is no dilaton in them in the string frame.
Assuming the killing direction is y, one should first use dimensional reduction which separates the indices of the polarization
tensors in the kinematic factors toy and u # y, i.e.,

Atree ~ I<1(Cju7 §1y7 pf") 1(55 t,u,.. ) + KZ( iﬂv Clyv pll/«) 2(57 t,u,.. ) + -
Then one should transform them under the linear T-duality transformations (106), i.e.,

Alee ~ Ki(¢", &7 DA, touy )+ K 6P DI s, tu, )
This generates the dimensional reduction of a new amplitude for the T-dual fields. In this case, unlike the S-duality Ward
identity, the reduced amplitude does not fully fix the form of the amplitude because there may be couplings which vanish
after the dimensional reduction. However, imposing other constraints as well like the gauge symmetry Ward identity or
S-duality Ward identity may fix the form of the new amplitude.

Consider, for example, the S-matrix element of two gravitons and two RR two-form vertex operators in spacetime
coordinates at order «? in the string frame,

Atree ~ tgtsRRDF®DF®)

~ l}ﬂ
-16 TS|
+ Fhs[p,q]Frs[p,q]thmanrmn - 2Fhs[q,m]Frs[p,q]thmanrnp - 2Fhs[p,q]l:‘rs[q.111]Rl1kmanrnp

1
[p.q]Rﬁkmn + ZFrs[m,n]Frs[p,q]thmnthpq

1
+ Fhs[p,qJFrs[m,nJthmanrpq + Fkr[m,n]Frs[p,qJthmnRhqu + 5Fkr[p,qJFhs[p,qJthmnRrsmn

1
+ thk[m,nJFrs[p,qJthqursmn + 4Fkr[n,pJFhs[p,qJthmnRrsmq + Fkr[m.nJFhs[p.qJthmnRrqu

- Fkr[n,pJFhs[q,mJthmnRrqu- (133)

Then use the dimensional reduction and consider the terms that the y-index appears in the RR fields. Under linear T-duality
(106) the y-index drops. So it produces the amplitude of two gravitons and two RR one-forms at order o3, i.e.,

1 1
Airee ~ Zszq,erzlkmn + 5an,stq,sthmnthpq + qu,thq.rthmannkr

+ 2Fhs,qFrs.thkmannkr + Fkr.ths,thkmannrs + 2qu.erq,thkmanpkr
+ 2qu,thq,rthmanpkr + 2Fhs,pFrs,mthmanpkr + 2Fhs,mFrs.pRI'zkman}:ﬂkr
- 4Fkr,ths,thkmanqrs + an,erq,thkmanqkr - an,kaq.sthmanqhs~ (134)

They are reproduced by explicit S-matrix calculation [54]. Similarly one can find the S-matrix element of two gravitons and
two arbitrary RR potentials [34] . Using T-duality and S-duality Ward identities, all four-point S-matrix elements of NSNS
and RR vertex operators have been found and confirmed by explicit calculations [34,54,55].

The disc-level S-matrix element of two closed string vertex operators at four-momentum level in spacetime is given by
the couplings (57), (64) and (65). It has been shown in [29,32,63] that these couplings satisfy the duality Ward identities,
i.e., the couplings of two RR two-form and the couplings of two Kalb-Ramond can be written as [32]

1 " 1 . 1 ;
Airee ~ EH;ljjk,aMHUkiya + gHgbc,iMHabc’l - EHZJ-Ci,aMHbCLa (135)

which satisfies the S-duality Ward identity. The S-matrix element of one RR (p — 3)-form , one NSNS and one NS vertex
operators on the world volume of D,-brane has been calculated in [67,71]. The T-duality Ward identity on this amplitude
has been used in [109] to generate the S-matrix elements for the RR (p — 1)-form, (p + 1)-form and RR (p + 3)-form. These
S-matrix elements are confirmed by explicit calculations in [72]. The S-matrix element of one RR (p — 3)-form and two NSNS
vertex operators has been calculated in [66,67]. The T-duality Ward identity on this amplitude has been used in [109] to
generate the S-matrix elements for arbitrary RR form. They should be consistent with the corresponding S-matrix elements
from explicit calculations [69].

Having found the S-matrix elements either explicitly or by using the duality Ward identities which is complicated for
higher n-point functions, one may then study them at low energy to find the massless poles and the contact terms. They
should be reproduced by effective actions. The massless poles of the disc-level S-matrix element of two closed strings and
the massless poles of the sphere-level S-matrix element of four closed strings at low energy are at the leading order of o’
and the contact terms of these amplitudes are the higher order of «’. This makes it easy to find the contact terms at order
o’? in the disc-level and the contact terms at order o’ in the sphere-level. In general, however, there are massless poles and
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contact terms at the same order of ’ so one has to carefully reproduce the massless poles by the effective field theory before
interpreting the contact terms as new couplings of the effective theory because the difference between the massless poles
of S-matrix element and the massless poles of the field theory may be some contact terms. This makes it difficult to extract
new couplings at a given order of o’ from the contact terms of the corresponding S-matrix elements. So one may impose the
T-duality and S-duality constraints directly on the effective actions. In this case, however, one has to use the full nonlinear
duality transformations, e.g., (104) or (113), on the fields in the effective action. In the next section, we use the T-duality
constraint on the effective action of Op-plane to find all NSNS couplings at order o'? including the couplings with structure
H*[36,37]. These couplings should be reproduced by the PR?-level S-matrix element of four B-field vertex operators which
is a very hard calculation.

5. T-duality constraint on O-plane action at order «'?

We have seen that the T-duality transformations in type II superstring theories receive no «’-correction at order o for
the massless NSNS and RR fields. So one should be able to find a world-volume covariant action for these fields at order o2
which is consistent with the standard T-duality transformations (104) and (96). This may not be the case if one includes the
massless NS fields at this order because the transformation (89) may receive «’-corrections. To simplify the calculations, we
consider only the world-volume NSNS couplings. On the other hand, the B-field appears in the world-volume theory either
as field strength H or as potential in the combination F + B. The latter form, however, is not «’-dependent. So any order of
this field may appear in the world-volume action at order «’2. We expect the T-duality constraint would fix the presence of
these terms. To simplify further, we consider the NSNS couplings on the world volume of O,-plane which has no (F 4-B)-term
at all.

We have seen in Section 2.4 that two NSNS couplings at order «’? on the world-volume of O,-plane are given by the
couplings (57) in which the second fundamental form is zero. At this order there are also couplings with structure RH?,
RV, V2P(Ve ), (Vé)*, H*(V$)?, H*V?¢ and H*, There are two metrics for contracting the spacetime indices of these
bulk tensors. One is the first fundamental form, i.e., G*' = 9,X"3,X"G® which projects bulk indices to the world-volume.
The second one is L*" = G*¥ —G*¥ which projects the bulk indices to the transverse space. One can contract the bulk indices
with (G*V, L*), with (G*¥, L*") or with (G"*¥, G*V). We use the last pair for contracting the indices. Using the package “x-
Act”[110], one can write all such contractions with unknown coefficients. We assume the coefficients for the NSNS couplings
to be independent of the dimension of O,-plane, as the couplings in (57).

The O,-plane couplings should be invariant under the Z, transformations ¢ — —o and X' — —X". This projects out
V ... VB with even number of world-volumes indices, V - - - V¢ and V - - - VR with odd number of world-volumes indices.
So after writing all the contractions, one should separate the spacetime indices to world volume and transverse indices. Then
the coefficients should be constraint such that in the couplings there would be none of the above terms.

To find the T-duality constraint on the coefficients, one needs the reduction of the couplings. The dimensional reduction
of G*¥ in the parametrization (107) is given in (108). The dimensional reduction of G*”, however, depends on weather
the O,-plane is along or orthogonal to the circle. When O,-plane is along the circle, one finds in the static gauge where
X% = ¢% X! =0, the pull-back of metric and the first fundamental form become [37]

~ - Po-g- Lo - ab e
G = (St 088 g g _ (&7 g (136)
¢'8; e - e’ +gag’

where @, b are the world-volumes indices which do not include the world-volume direction y.When O,_-plane is orthogonal
to the circle, one finds that the reduction of the pull-back of metric and the first fundamental form are [37]

= (& O\ . =uw _ gaB 0
cam (B O) o= (8 0 -

Using the above reductions, one observes that the reduction of O,-plane action at order o’® when it is along the circle is

fdp+1xe’¢ —GCap — /d”xe"”*("/zw/—detgat-,. (138)

On the other hand, the reduction of O,_-plane action at order o’® when it is orthogonal to the circle is

/d"“xe’d’ —Cap — | dPxe ®/—detg;. (139)

Obviously the transformation of (138) under the T-duality rule (109) is identical to (139). The same thing should happen for
all &’ couplings. That is, the T-duality of the reduction of the world-volume action of Op-plane when it is along the circle
which we call it S*7, should be equal to the reduction of the world-volume action of O,_;-plane when it is orthogonal to the
circle which we call it S'. Therefore, the T-duality constraint is

/d"xe’¢,/— detg; (" — ') = 0. (140)
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In imposing the above constraint, one should drop the terms that are total derivatives and then set the coefficients of
independent terms to be zero. This together with the Z, projection fixes the unknown coefficients to be [36,37]
! % / dp+1xe_¢/j5[H”biHacinc - gH“beabeij + %Hiijfj'R,(,
— H™H Rapea + H™ HRapjic — %H““Habe,-"’wk, + %H“b"Habe“’.-Hcdj
+ %HabiHachbdecdi — %HubiHaCijckHijk + 214HUkHilmHjlnHkmni| (141)

where R is the same as R in (59) in which the second fundamental form is zero. These couplings together with the couplings
in (57) give all NSNS couplings on the world-volume of O,-plane at order «’?. Since these couplings are invariant under the
standard Buscher rules (87), using the generalized metric G in (76), one may be able to rewrite them in manifestly O(D, D, R)
invariant form as in the DFT formalism.

We have found the above couplings which have no RR field, by requiring the couplings (57) to be consistent with full
T-duality transformations. One may use the consistency of the couplings (64) with the T-duality transformations to find all
couplings at order o> which include one RR field. These couplings may also include the standard WZ term at order 2, i.e., (5).
Similarly one may use the consistency of the couplings (65) with the T-duality to find all couplings at order o> which include
two RR fields. Some of these couplings may be related to (141) by the SL(2, R) transformation. The S-duality transformation
of (141) produces also couplings which have four RR two-forms. The subsequent T-duality transformations may fix all RR
couplings at order o2

6. T-duality constraint on D-brane action at order o’

The effective action of D-brane in bosonic string theory includes various world volume couplings of open string tachyon,
transverse scalar fields, gauge field, closed string tachyon, graviton, dilaton and B-field. Due to the presence of the tachyons,
the bosonic string theory and its D-branes are all unstable. Assuming the tachyons are frozen at the top of their potentials,
i.e, the tachyon fields are zero, the effective action of the D,-brane at the leading order of «’ is given by the DBI action which
is invariant under the T-duality transformation (104) and (89). The first higher derivative correction to this action in the
bosonic string theory is at order «’. As a result, the first higher derivative corrections to the T-duality transformations (109)
and (89) are at order «'. Such corrections for the closed string fields (109) have been found in [90]. They are

¢ —> —p—d'Ay [Z(Vso)2 + eV, VI + e“’W,wW“":| ,
g — b, — oA |:2WWV“(,0 + e‘/’H,Mv“] ,
b, —> g, — d'Ag [szv%p - e¢HWWV*] ,
T , 0 1 2 1 2
Huvk — Huv}» — 12« )\() V[M(W‘) V)\]P) + EV[MVWA]PV [ + EW[MUVM)OV @Y,
1 1 _
+ Zevaxvlﬂ‘)H)»]PX — Ze ¢WpXW[MVHA]pX (142)

and the metric g, and ¢ remain invariant. In above transformations, H is the field strength of the two form by, ie, Hy =
dubyy + by + 9,byy, V. is the field strength of g, ie, V,, = 9,8 — 9,8, and W, is the field strength of b,
ie, W,, = d,b, — 0,b,. The constant X, is -1/4 for the bosonic string theory, is -1/8 for the heterotic string theory and
is zero for the superstring theory. Using these corrections, one may be able to find a covariant action for D,-brane/O,-plane
which includes only the massless closed string fields.

The covariant D,-brane action at order «’ should involve R, £2, V¢, H and also B-field potential where both indices are
the world-volume indices. Since B-field is dimensionless, any order of By, may appear in the D-brane action at order «’. To
simplify the calculation, we consider only second order of fields. Writing all such couplings involving spacetime curvature,
the second fundamental form, dilaton and the B-field at order «’ and constraining the couplings to be consistent with the
T-duality transformations (142), at the second order of fields, one finds the following result [91]:

/T [ .
! —% / d”“xe"’\/—G[R +21,,(2, 25" — Q24" 2%7) + 2.1, 2,°48"p + 3, 00" P
1~, 1 1 1
_ §H2 _ gLMUHiv + gJ_aﬂJ_MHaMHﬁVA + MJ—aﬂLMUJ—MHaMHﬂm] (143)

where H? = G*'G**G*°H,qpHypo and R = G*"G*R,,.4. This action is consistent with the disc-level S-matrix element of
two massless closed string vertex operators in the bosonic string theory [91,111]. Each term in the above action should be
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multiplied by a function of B-field potential. See [112], for a non-covariant form for such functions in the gravity part which
have been found from the disc-level S-matrix element of two graviton vertex operators in the presence of constant B-field
in the bosonic string theory. One may find covariant functions by requiring the above couplings to be invariant under full
non-linear T-duality transformations (142). Such functions for the O,-plane, however, are trivial as the Z, transformation
projects out the couplings in which B-field has even number of world-volume indices. This projection on the above action
produces the following action:

24

which includes all couplings at order «” and should be invariant under full T-duality transformation (142).

The o’ corrections to the T-duality transformation of the open string fields (89) have not been found yet. One may consider
a covariant action for massless open string fields at order o’ which includes all contractions of the second fundamental form
Kéb (63), the gauge field strength F,, and its covariant derivative D F;, with the pull-back metric. The second fundamental
form couplings have been already found from the covariant action in terms of the massless closed string fields (143). In our
convention that the gauge field strength F,;, and the brane velocity 3, x are dimensionless, the covariant action has four-field,
six-field, and higher order couplings at order «’. At four-field level, imposing the covariant action to be consistent with the
T-duality transformation (89), one finds a bunch of couplings which are not consistent with the S-matrix element of four
open string vertex operators in the bosonic string theory [92]. This is what one expects because the T-duality transformation
(89) should receive «’-correction in the covariant approach to the T-duality. One may add some «’-correction to (89) and
constrain the T-duality invariant couplings to be consistent with the S-matrix elements. In this way one may find the o'~
corrections to the leading T-duality transformation (89) as well as the effective action of four massless open string fields at
order . Similar calculation may lead one to find the six-field, the eight-field and all higher order couplings.

Alternatively, one may use the non-covariant approach and consider all contractions of Fay, 9.Fsc, 32 x' and 8,9, x ! at order
o’ with flat metric and constrain the non-covariant action to be consistent with the T-duality transformation (89), with the
second fundamental form couplings in (143), and with the four-point S-matrix elements. In this way, even though the action
is not covariant, however, one is able to find the couplings to all orders of F and 9 . Ignoring the T-duality invariant couplings
which are total derivative terms and excluding the T-duality invariant couplings which have dF, one finds [92]

S > —T, / d" o/~ det(ngp + Fab)[1 + a’(c’“bc/de/Uwabiwcdj — GG L wgpiwegi

1 /] / / 2 d
B 5 GGheGcd Vabe Wdef — G™G*cY (e Ipdef + 5 GTovor Vabe Wdef

o'T/ ~[. 1 . 1 y
SP S —T" / d”“xe“”\/—G[R + 000%¢ — gHab,-H“”' + H,-ij”"] (144)

- gc/”fc’d‘—’@a"wbcdwaei + GO O wogwpdi + gc’bf@”f@fdwaqwbdi

+ gG“d@”i@bjwmwbdj — gG’Cd@ai@bjwabiwcdj + gJ_'ij@”C@bdwabiwcdj

+ 261G O g whei — 26 GO N pacwei — %G/afc/“@bd Vbac Oei

- 2@“1'@1"‘@“9%“%,-) + O(a/z):| (145)

where Yape = 0aFpc, Wabi = 940p Xi 1= v — G"™ . and

G — aaxuabva/ab : O — 8axuabxv(9ab. (]46)

The symmetric matrix G'** and the antisymmetric matrix ©® are

1 1 ab 1 1 ab
G =—pyp—) ;0%=|——F—) . (147)
n+F n—F n+F n—F

In fact it has been observed in [92] that the matrices G'*", ®*¥, 1'*" transform among themselves under the T-duality
transformation (89). When the gauge field strength is zero, ©*" is zero and the matrices G'** and L'*" reduce to the
projection metrics G*¥ and L*¥, respectively.

One may use the extension F — B + F in the couplings (145) to find the couplings between massless open string fields
and the B-field. The B-field, however, must be along the world-volume directions. Moreover, since the total derivative terms
and the terms that involve the Bianchi identity, dF = 0, have been ignored in (145), the above replacement cannot correctly
produce the couplings involving dB = H. In fact, if one uses the above replacement and considers the couplings which have
two B-fields, the result would be a’TpHabcH"bC /6 up to a total derivative term. The coefficient of this term is not the one in
(143) which is consistent with the S-matrix element.

However, the extension F — B + F in the couplings (145) produces the correct couplings of massless open string fields
in the presence of constant B-field. One may also use the SW map [46] to transform the couplings to the non-commutative
variables. When there is only massless open string fields, one expects that, as in the DBI part [46], the commutative fields
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transform to non-commutative fields, the symmetric part of matrix 1/(n + B) appears as open string metric for contracting
the world-volume indices and the antisymmetric part of this matrix appears in the parameter of the non-commutative
star product. So in the presence of constant B-field, the non-commutative form of the couplings is the same as (145) in
which the open string fields are non-commutative fields, the multiplication rule is x-product, and the world-volume indices
are contracted with the open string metric. If the couplings (145) are reproduced by S-matrix element in flat space, then
their corresponding non-commutative couplings are reproduced by the S-matrix elements in the presence of constant B-
field. When there are both massless open and closed strings, however, the transformation of world-volume couplings from
commutative fields to non-commutative fields is not so easy. One is required to introduce new multiplication rules, i.e., ;-
product [113,114]. The couplings involving only massless closed string fields are invariant under the SW map.

The Riemann curvature R, VH and V V¢ couplings at order o’ in the world-volume of D-branes in the superstring theory
are given in (57). These couplings are invariant under linear T-duality transformations (106) and are covariant, i.e., the metric
contracting the indices, are either the spacetime metric or the first fundamental form. So one cannot extend these covariant
couplings to include F,;, and 9, x| by extending the first fundamental form to G'** in which the spacetime metric must be flat.
However, if one considers only two NSNS couplings, then the metric for contracting the indices is flat metric. In that case,
one may extend the first fundamental form to (146) to include F, and 8, x " . In fact, these matrices have been used in [115] to
construct a non-covariant form of the couplings of two NSNS fields at order «’? in the presence of constant field strength Fy,
and constant velocity 9, ! by requiring the couplings to be invariant under the linear T-duality transformations (106) and
(89). Using the extension F — B+ F, then the couplings have been considered for zero Fy, 9, x'. It has been shown in [115]
that the two NSNS couplings are fully consistent with the «’?-order contact terms of the disc-level S-matrix element of two
NSNS vertex operators in the presence of constant B-field in the superstring theory [45].

7. Discussion

In this article, we have reviewed the duality method for finding higher derivative corrections to the supergravities
and to the DBI/WZ action. We have seen that to impose the T-duality constraint on the effective actions there are two
approaches. One approach is the covariant approach in which the T-duality invariant action would be covariant but the
T-duality transformations are the Buscher rules plus their higher derivative corrections. In the non-covariant approach, the
T-duality invariant action would be non-covariant but the T-duality transformations are the standard Buscher rules. The two
T-duality invariant actions should be related by some non-covariant field redefinitions.

In the covariant approach, we have seen that the T-duality constraint can fix the O,-plane action in the bosonic string
theory at order «/, i.e,, action (144), and can fix the NSNS couplings of O,-plane action in the type II superstring theory
at order «'?, i.e., actions (57) and (141). The T-duality transformations that have been used in the bosonic string theory
are the standard Buscher rules plus their derivative corrections at order «/, i.e., equation (142), whereas, the T-duality
transformations that have been used in the superstring theory are only the Buscher rules. This stems from the fact that
the first higher derivative corrections to the supergravity are at 8-derivative level. So the higher derivative corrections to the
Buscher rules in the covariant approach in the superstring theory start at order o’>. Since the T-duality transformations that
have been used in the O,-plane action are the same as the T-duality transformations that have been found from the bulk
actions, the above calculations indicate also that the form of T-duality transformations for bulk actions and for brane actions
is identical.

In the non-covariant approach, we have seen that the T-duality constraint can fix the D,-brane couplings of massless open
string fields at order o’ which includes all orders of F and the D,-brane velocity that in our convention are dimensionless,
i.e., action (145). The T-duality transformation that has been used is the standard transformation (89) without «’-corrections.
Since the metric in contracting the indices in the action (145) is nap, n; and the derivatives in this action are also partial
derivatives, the action is not covariant. In a covariant action, the indices would be contracted with the pull-back metric
and the derivatives are also covariant derivatives constructed from the pull-back metric. It would be interesting to find
such covariant action at order «’. This may be done by finding appropriate non-covariant field redefinitions to convert the
non-covariant action (145) to the covariant form, or one may find «’-corrections to the T-duality transformation (89) and
then find an action at order o’ which would be invariant under such T-duality transformations.

In the covariant approach, the T-duality transformations at the second order of fields are also used to constrain the
massless closed string couplings at order o’ on the world-volume of Dy-brane in the bosonic string theory. This fixes all
covariant couplings up to the terms that have B-field potential, i.e., action (143). It would be interesting to use the full non-
linear T-duality transformations to find the contribution of the B-field potential into the covariant action (143) as well. Then
the extension B — B + F may be used to find all gauge field couplings at order «’ in a covariant action. On the other hand,
the covariant form of the transverse scalar fields at order ¢’ is known from the second fundamental forms in (143). Making
these two covariant couplings to be consistent with T-duality may fix the o’-correction to the T-duality transformation (89).

Unlike the T-duality transformations of the massless closed string fields in the superstring theory which receive no
corrections at orders o’ and ', the T-duality transformations for the massless open string fields should receive corrections
at order o’ as in the bosonic case. Since we do not know the o’ corrections to the transformation (89), one may use the non-
covariant approach to find the couplings of the massless open string fields at order «’> on the world-volume of D,-brane in
the superstring theory, i.e., analogue of the couplings (145) at order «'2. To perform this calculation, one should consider all
possible contractions of 9F, 99F, 39y, 899 with matrices ®, G, L’ at order > with unknown coefficients, and then find
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the coefficients by constraining them to be invariant under the T-duality transformation (89). Such couplings at the level of
four fields have been found in [116].

The T-duality transformations for the massless closed string fields have no corrections at orders «’ and «’* in the
superstring theory, as a result, the D,-brane world-volume couplings of massless closed string fields at order o', which
are invariant under the Buscher rules, must be covariant. Such effective action must include the couplings (141) as well as
some couplings in which V - .- VB have even number of transverse indices, and V--- V¢, V --- VR have odd number of
transverse indices. The difficult part of the calculation is that there may be arbitrary number of B-fields in each term. So one
may consider the simple case that there are only four fields to find the terms that have only dB = H. The higher order terms,
however, would involve the B-field potential. Such terms then would produce covariant couplings for gauge field F upon
replacing B — B+ F. The consistency of such couplings and the covariant transverse scalar couplings in (57) with T-duality,
may shed light on the o’?-corrections to the T-duality transformation (89).

The o’-corrections to the Buscher rules (142) have been found in [90] by requiring the known curvature squared
corrections to the Einstein gravity [117] to be invariant under the T-duality. One may impose the invariance of the effective
action at each order of &’ under T-duality to find the couplings as well as the covariant corrections to the Buscher rules. We
have done this calculation in the bosonic and in the heterotic string theories for the bulk couplings at orders «’ and o> and
for the simple case that the metric is diagonal and B-field is zero. We have found positive answer [ 118]. Such calculations for
non-zero B-field at orders > and o> would produce all H-couplings that are not known from other approaches in finding
the higher derivative couplings in the string theory.
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