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S-matrix element of two R-R and one NS states
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We explicitly calculate the disk-level S-matrix element of two closed string R-R and one open string NS
vertex operators in RNS formalism. We show that the amplitude satisfies various duality Ward identities. In
particular, when one of the R-R is zero form, the other one is two form, and the NS state is a gauge boson, the
amplitude transforms under an S-duality Ward identity to the amplitude of one dilaton, one B-field, and one
gauge boson, which has recently been calculated explicitly. We have also proposed a soft theorem for the
disk-level scattering amplitude of an ar bitrary number of hard closed strings and one soft open string at the
leading order of soft momentum, and we have shown that the above amplitude satisfies the soft theorem.
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I. INTRODUCTION

The perturbative spectrum of type Il closed superstrings in
flat spacetime consists of a tower of bosonic states in the
NS-NS and R-R sectors and their corresponding fermionic
states in the R-NS and NS-R sectors (see, e.g., [1]). The
nonperturbative spectrum of the type II superstring theory
includes dynamical D ,-brane objects [2]. The perturbative
excitations of the D ,-branes are given by the open string
spectrum, which consists of bosonic states in the NS sector
and their corresponding fermionic states in the R sector. In
perturbative theory, the leading interaction of excited
D,-branes with the closed string states is given by the
S-matrix elements of the corresponding closed and open
string vertex operators on the disk world sheet [3,4]. The type
[T theory has various dualities [5,6] that appear in the S-matrix
elements through the corresponding Ward identities [7,8].

A duality of type II theory is T-duality, which appears
when one considers the theory on a compact manifold. In
the simplest case that the compact manifold is a circle, the
closed string spectrum of type IIA theory on the circle with
radius p transforms under T-duality to the closed string
spectrum of type IIB on a circle with radius o /p. Moreover,
the D ,-brane along the circle in type IIA theory transforms
to a D,,_;-brane orthogonal to the dual circle in the type I1B
theory. The T-duality Ward identity indicates that the
disk-level S-matrix elements on the world volume of the
D,-brane in type IIA theory on a circle transform under
linear T-duality to the corresponding disk-level S-matrix
elements on the world volume of a D,_;-brane. The T-
duality Ward identity has been used in [9-11] to generate
various disk-level S-matrix elements.

The type IIB theory also enjoys S-duality, which indicates
that the spectrum of type IIB in flat spacetime transforms
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covariantly under SL(2, R) transformation. In particular, the
Dj3-brane is invariant under the SL(2, R) transformation, the
NS-NS antisymmetric B-field, and the R-R two-form trans-
forms as a doublet under the SL(2, R) transformation. The
S-duality Ward identity indicates that the disk-level S-matrix
elements on the world volume of the D;-brane in type IIB
transforms under linear SL(2,R) transformation to the
corresponding disk-level S-matrix elements on the world
volume of the D;-brane. This Ward identity may be used to
generate the complicated S-matrix elements of R-R vertex
operators that involve the spin operator [12] from the
corresponding S-matrix elements of NS-NS vertex opera-
tors, which are straightforward to calculate.

As an example of the S-matrix elements of the R-R
vertex operators, in this paper, we explicitly calculate the
disk-level S-matrix element of two R-R and one NS vertex
operators in RNS formalism. Such amplitude has recently
been predicted by the S-duality Ward identity [13]. We
observe that the explicit calculations produce exactly the
amplitude predicted by the S-duality. The S-duality Ward
identity indicates that apart from the overall dilaton factor
of a background dilaton, the disk-level S-matrix elements
must combine into S-dual multiplets which are invariant
under the linear SL(2, R) transformation [13]. This indi-
cates that the amplitudes involving two R-R and one NS
states, which cannot be written in the S-dual multiplet, must
be zero. We observe that the amplitudes that are predicted
by S-duality to be zero, e.g., the C(©)C() F-amplitude, are
in fact zero by explicit calculation.

A consistency check of the S-matrix elements in string
theory is that they must satisfy the soft graviton/photon
theorems [14—27] in which one graviton/photon is soft. In the
soft theorems [14-27], however, the external states are all
either closed string states or all open string states, which we
are not interested in for this paper. When one string state is
soft open string and all the other states are hard closed string
states, one can easily find the corresponding soft therm at the
leading order of the soft open string momentum.

© 2017 American Physical Society
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The Ward identity corresponding to the gauge boson
transformation indicates that the disk-level S-matrix element
of n closed strings and one open string gauge field must be in
the following form':

An+l :fab[An(k’phpl 'D7p2’p2 - D, ""pn)]ab’

where £ is the gauge field strength in momentum space and
(A,) ap] 18 the factor which does not involve the open string

gauge field polarization.2 In general, this factor is a compli-
cated function of the momentum of the gauge field k“.
However, using the fact that there is only one open string
state, one observes that there is no pole 1/k - k in the ampli-
tude. As aresult, when the gauge field is soft, i.e., k& — 0, one
finds that the above amplitude defines a soft theorem, which
involves the soft factor f* at the leading order, and the hard
factor [A,],,, which involves only polarizations and the
momenta of the n closed string states, i.e.,

Auir = fPLA(p1.p1 - D.opapa Do py)lape (1)

The trace of [A4,,],,,, is the disk-level scattering amplitude of n
closed strings, which is zero because [A4,,] ,, is antisymmetric.
The above relation exists at any order of , so one expects the
disk-level S-matrix elements to satisfy this theorem for the
soft gauge field.

There is a similar theorem when the open string state is a
transverse scalar field. To find such a theorem at the leading
order of the scalar momentum, we consider the observation
that the closed string fields in effective world-volume
action must be the Taylor expansion of the transverse
scalar fields [28], i.e., C(®') = C + ®'9,C + - - -, where C
is a closed string field. Using the coupling ®9,C, one can
easily write the S-matrix element of n closed strings and
one transverse scalar field at the leading order of £ and at
the leading order of o to be

A1 =C(p14pa+ -+ pa)iAn, (2)

where ' is the polarization of the scalar fields and A, is the
scattering amplitude of n closed string states at low energy.
The above relation must be valid for any order of . As a
result, the disk-level S-matrix element of one transverse
scalar and n closed string states must satisfy the above soft
theorem. We will show that the scattering amplitude of two
R-R and one NS states satisfies the above soft theorems.
An outline of the paper is as follows: We begin Sec. Il by
explicitly calculating the disk-level scattering amplitude of
two R-R and one NS vertex operators in RNS formalism.

lUsing conservation of momentum along the D-brane, i.e.,
2k+p1+p1-D+pr+pr-D+---+p,+p,-D=0, one
may write p, - D in terms of other momenta.

Our index convention is that the greek letters (¢, v, ...) are the
indices of the space-time coordinates; the latin letters (a, d, c, ...)
are the world-volume indices; and the letters (i, j, k, ...) are the
normal bundle indices.
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We use the (—1/2,—1/2)-picture for the R-R vertex
operators. In this picture, the field strengths of the R-R
fields appear in the vertex operators; as a result, the
amplitude satisfies the R-R gauge symmetry Ward identity
from the onset. We show that the final amplitude satisfies
the open string gauge symmetry Ward identity as well. In
Sec. III, we show that the amplitude satisfies the S-duality
Ward identity. In particular, the amplitude of one R-R zero-
form, one R-R two-form, and one NS gauge field trans-
forms under the S-duality Ward identity to the amplitude of
one NS-NS dilaton, one B-field, and one NS gauge field
that has recently been calculated explicitly. In this section,
we also show that the amplitudes that are predicted by the
S-duality Ward identity to be zero are in fact zero. In
Sec. IV, we explicitly write the D ,-brane amplitudes that
are nonzero for p = 0, 1, 2, 3. In Sec. V, we show that these
amplitudes satisfy the T-duality Ward identity. In Sec. VI,
we show that the amplitudes that we have found in Sec. IV
satisfy the soft scalar theorem (2). In Sec. VII, we show that
the amplitudes satisfy the soft-photon theorem and find the
kinematic factors in [A;],,.

II. EXPLICIT CALCULATION
OF THE AMPLITUDE

The tree-level scattering amplitude of two R-R closed
string and one NS open string states on the world volume of
a D,-brane is given by the correlation function of their
corresponding vertex operators on the disk (see, e.g., [8]).
Since the background charge of the world sheet with the
topology of a disk is O, = 2, one has to choose the vertex
operators in the appropriate pictures to produce the com-
pensating charge Q4 = —2. The scattering amplitude may
then be given by the following correlation function:
Aler, pis €2, P23 830 k3)

—1/2,-1/2 -1/2.-1/2 0
~ <V5?R/ / >(€1,P1)V§eR/ / )(82,P2)Vz(vs)*(é“3yk3)>’
(3)

where the vertex operators, after using the doubling trick
[3], are

Vge_Rl/l_lm:(P—Fl(n)Mp)AB/dzll

:e_¢<zl)/2SA(Z1)eipl'X

;e-¢(21)/253(21)eip1~0-x:
—1/2,-1/2
Vig!?7 = (P Dy M) [ &2,

: g—¢(22)/2SC(22)eiP2‘X

. g—¢(52)/2SD(22)eiPz~D'X .

V;g;:(@)ﬂ/d@:(8Xﬂ+2ik3.wwﬂ>62ik3x’ (4)
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where z3 is along the real axis and z;, z, are in upper-half
z-plane. The index u is the world volume index a when the
NS state is a gauge boson and is the transverse index i when
the NS state is the transverse scalar fields. The indices
A, B, ... are the Dirac spinor indices and P_ = % (1 —y)is
the chiral projection operator so our calculations are always
done with the full 32 x 32 Dirac matrices of the ten
dimensions. The R-R polarization appears in I'(,) and
the world-volume Levi-Civita tensor appears in M, i.e

Loy = EF#»--#”VM cyt

+1

M ap 5
T AR (5)

where F( is the linearized field strength of the R-R
potential C"~"). The matrix D,, is a diagonal matrix which
is the world-volume flat metric when the indices are the
world-volume indices, and is minus the flat metric of the
transverse space when the indices are the transverse
indices. We have used the integral form for all vertex
operators; as a result, the integrand of the amplitude must
be invariant under the conformal transformation of the
upper-half plane, which is the SL(2, R) transformation.
Using the standard upper-half z-plane propagators
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one can easily calculate the ghost ¢ and X* correlators in
(3). To calculate the correlation functions between the spin
operators and the world-sheet field y*, we use the follow-
ing operator product expansion:

()"
2221

:Sa(zy) iyt (zp) = — :Sg(z1): (7)

where z;; = z; — z; and I* is  (y*y* — y*y*), to reduce the
correlators to the following known correlation function
[12]:

(:S4(21):85(22):Sc(23):Sp(z4) 1) = Lugcp,  (8)
where

Z1422% (}’ )AB(yﬂ)CD 212224(}’”)/41)(7,4)30 (9)
2(112212214223224234)

Lypcp

This calculation produces the following 14 terms,

14

Aler, pis €2, P23 {3, k3) N/d211d222d23KZA,»,

i=1

(10)

Ay, in the integrand are the following:

(Xt (x)X*(y)) = —n" log(x — y)
(P(x)p(y)) = —log(x — y), (©)  where 4, ...,
|
A = i(P—Fl(n)Mp)AB(Y”)AB(P—F%m)Mp)CD(yﬂ)CD(C3)Xp2 'D;(
212211222431432
A= i(P_Ty(yM ,)*8 (7,) pe(P_TouyM ,) P (1" ) ap (&3 Y P2 - D,
212212431432412
Ay = _i(P—Fl(n)Mp)AB(FbX)AE(yM)EB(lQ) (‘:3) (P Fz )M )CD(Yy)CD
212211%22431212
A, = _i(P—Fl(n)Mp)AB(}’”)AB(kS) (53) (P Fz mM )CD(Fb){)CE(yM)ED
212211%22432212
As = — i(P—Fl(n)Mp)AB(FbX)BE(}M)AE(]@)b(gB);((P—FZ(m)Mp)CD(yﬂ)CD
212211%222431432
Ag = — i(P—Fl(n)M )AB(J’”)AB(P Fz p) (7/4)CD(C3)XPI)(
212223231431212
A = — i(P—Fl(n)Mp)AB(yM)BC(P—FZ(m)Mp)CD(yﬂ)AD(C3>Xp2)(
212212232431212
(P M) P () ap (P_DouyM )P (k3),(7,) ce(T%) p* (83),
ST 2122112224332%12
A = i((P_Ty (M , )28 (1) o E (") pp (k3) 4 (E3) , (P_Do(uyM ,) P (v,) e

212212%231%12%12
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B i(P—Fl(n)Mp)AB(Fax)CE(yﬂ)AD(]%) (53) (P Fz ) )CDO/#)BE
0 21221243221241 2
Ay = i(P—Fl(n)Mp)AB(Fa}() E(Y”)Ab(k%) (53) (P Fz )Mp)CD(yM)EC
212212431412412
Ap = izy7(P- Fl(n ) (yu)BC(P Fz ) (7”)AD(C3)XPI;(
212212431431212212
A, = i(P_Ty(yM )" (T) " (r") ap(k3)a(€3),(P_Ta(uyM ,) P (,) pe
212413%33412%12
Ay = iZTz(P—Fl(n )AB(Y”)AB(P Fz (m) ) (}/ﬂ)CD<C3)Xp2)(’ (11)
2122171422432231212
|
and the overall kinematic factor K is by, = Tr(P_ Ly My, UamM pyﬂ) (17)

p1-D-p 2 2p;.D. 4p,.ky ,P2-D-p 4py .k
K= PP o PP 2 5 P00 215 40 hs 2 D2 .
(12)

One can easily verify that each integrand is invariant under

SL(2,R) transformation.
For subsequent discussions, we rewrite the amplitude as

Aley, pri€a, p2i 830 ks

14
)~ Zai%’» (13)
i=1

where ¢;’s are integrals of some function of z;’s and
momenta, €.g.,

K
q = /dzzlesz@ —_— (14)
212211%22%31%232

and a;’s are the remaining terms in A;’s, e.g.,

ap :i(P—Fl(n)Mp)AB(yﬂ)AB(P—FZ(m)Mp)CD(},ﬂ)CD(gT&)XPZ
-D,. (15)

Contracting the Dirac indices, one finds each of a,, a7, aq,
ayg, apy, dpa, apz produces one trace over the gamma
matrices, 1.e.,

ay = ibz(@)ﬁ’z 'D)(’
ap, = iby($3Y pyy

ajp = ag(1l < 2)

a; = ib2(53))(l72;(,
ag = ing(k3>a(€3)x’
a;z = —ib5(ks3),(83),
aj = ap(l < 2), (16)

where b,, by, b5 are the following one-trace terms:

bg)( = Tr(P_l"l(n)M,,Yﬂrz(m)MpY”Fax) (18)

b13 = TI'(P Fl( )MpyﬂFz(m)MpF‘Wy"). (19)

One also finds that each of a;, as, a4, as, ag, ag, ap
produces two traces over the gamma matrices, i.e.,

ay = ibi({3)pa- D, ag = ibi({3) piys
ay, = iby(L3) pa, az = ibgl(kﬁh(@)p
ay=ay(12) a5 =—ib¥(ks),((3),.
ag = bs(1 < 2),

where by, bz, bs are the following two-trace terms:

by = Tr(P_Ty)Mpy*)Te(P_LauyM 7,)
b = Tr(P_Ty(y M,y T% ) Tr(P_Ty,) M ,7,)
b = Tr(P_Ty(y M, Ty Te(P_Ty(yM,y,).  (20)

Each trace in by, b?‘ , b?( has one factor of M ,, whereas in
by, by", b each trace has two factors of M ,. This makes
the calculation of the traces in b,, by?, b1 difficult for a
general D ,-brane. Using the GAMMA package [29], we have
found the following relations,

by = ¢, — b,
b = ¢ — b
bi§ = ci5 — b5, (21)

where ¢,, ¢g?, c{¥ are the following one-trace terms,
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¢y = Tr(P_Ty(,yD, 7, M,CT'MTS  Cr*)
Cgl = Tr(P—Fl(n)D,uyyuMpC_lM;r‘g(m) C},MFW()
¢ = Te(P_TyD, y,M,C MJTS  CToxp). (22)

The first relation in (21) has been found in [30] by using
the Kawai-Lewellen-Tye relation that maps the amplitude
of four open string fermions to the amplitude of two
closed string R-R bosons. This relation has been found by
using two different amplitudes for four fermions that are
produced by different ways of fixing the SL(2,R) sym-
metry of the disk amplitude. Now using the relation
M,C™'MTC =1 [3], one finds the traces in ¢y, ¢g’, ¢4
have in fact no factor of M,

%m m+1)

G = Tr(P—Fl( )D;t vaZ )( )
69 - TI'(P Fl( )Dﬂ quZ (m) yﬂl—w()( 1)%” (m+1)
(=

et = Tr(P_T 1D, 7, Do T4y ) (=121, (23)
So ¢,, ¢g¥, ¢4 are independent of the dimension of the
D,-brane. One has to perform the traces in (20) and (23)
to find the amplitude (13) in terms of momenta and
polarizations of the external states.

Before performing the traces, we show that the amplitude
(13) satisfies the Ward identity corresponding to the gauge
boson. To this end, we have to replace the gauge boson
polarization tensor {§ with its momentum k4§ and show that
the result vanishes. Using the antisymmetric property of the
function I'*?, one easily observes that a3, ay, as, ag, aq, a;,
a1, a3 become zero after replacing {4§ with ik§. Using the
on-shell relation p; - k3 = —p, - k3, one finds the remain-
ing terms to be

A~ —ibyp; - k3[-q, + g6
+ibypy - k3[—q,

- Q14]

— 47+ q12). (24)

Since by, b, are not zero generally, we should prove that the
integrals in each bracket are zero, i.e.,

M, =-q91+ 96— q14
_ /K(211Z32132 + 231235212 + 231232213)
<1221142243143223143241 2
X d*z,d?zpdx; = 0

My=-q,—q7+q12

_ /K(Z1IZ32232 + 23123321 + 231232213)
212212731%32231233212212
X d*zd%z,dx; = 0.

(25)
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Using the fact that the integrands are invariant under the
SL(2, R) transformation, one may map the integrands to the
unit disk by the following transformations:

(26)

To fix the SL(2, R) symmetry, we use the Faddeev-Popov
gauge-fixing mechanism to fix z; =7; =0 and x3 = 1.
The Jacobian of this transformation is 2i. Writing z, = re’?
and 7, = re™, one finds

2r 4 Pi-p2(] — p2)P2-D-pa—1
Ml_/ rdr/ do Smg) B U
(r? = 2rcos(0) + 1)?Prhs+l

_ / rdr/zﬂ d94 sin ,9) >P1~P2(1 —r )pz-D-pz .
(r* = 2rcos(0) + 1)21-ktl

(27)

The 6 integration then gives zero result. So the amplitude
(13) satisfies the Ward identity corresponding to the gauge
boson transformation, as expected.

A. Performing the traces

We now calculate the traces in (20) and (23). Defining

by b,
the one-trace terms df, dy *, d5 ™ as

d’f(n) = TI'(P_F(,I)MP]/”)
&5 (n) = Tr(P_T'y ()M ,y*T)
di% (n) = Tr(P_Ty, M T2 pt), (28)
the two-trace terms in (20) can be written as
by = dj(n)dy,(m), b = &y (n)dy, (m),
b = d (n)d,,(m). (29)

The explicit calculation of the traces in d*, d4™, di* gives
the following result:
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16
1, [5,S0Fn - nS, oFinh] £ (1 — 1, F > %F)
n!

16
dgbl(n) = _(_1)2n(n D _{5np 2Fuoal Ay 3800 ap-snby + 5 [ apay .

di(n) =

X oA, 2bu
s £90 P

—nF Hgaoaias...by | F, . gdo--apx g _ bgay...ap_oxu
0---Up—1

dp...dp ap...dp-2
- F,

aiy...a,b bay...a,_
.a, e 5”] 5n.p+2n[(n - l)glaoal...ap,lF 0 dp-iht

(fl ) Eay. g o R €ay...a
—(

1-

Fa()nﬂp)(&bll
P

n-— b pao--apiyn 4 sao‘”apF”O“'“ﬂbéW]} + (n—>n',F > %F)

)ao .,

16

mby _ ag...a,_s3ub, ag...d,_ob,
dS (I’l) - 7{5np 2Fa0a1 Ay ;g 0 p=3HX +5 [ aoal...ap_zxg 0+ Ap=20H

_( l)én(n—
yeaoalaz...b;( —F

ag...d,_ 1y Sb b paqg...a,_
_nFao...a/,,o ao...ap,le N £40--Ap=22t

+ Fopq, €0 =08, ,0[(n = 1
—(n-

—(n—

ag...ap_y

ag...a,_1b
)gaoal”.ap_]XF 0 p—10H

ag...a,_b, ag...d b
I)an...a,,_IMF 0 pm12X +an...apF 0 ApZ 571

D)€ayay "0 = e, o O]} 4 (n = 0/ F = %F), (30)
where ' = 10 — n and F is the R-R field strength. When we replace them in (29), one of the R-R field strengths is F'; and
the other one is F,. Replacing the above one-trace terms in (29), one ﬁnds bl, b3 , b3 2 in terms of momenta and
polarizations of the external states. With the replacement of the resulting b, b3 , b{ in (19) one then finds a,, as, a4, as,
Ae, dg, di4.

The explicit calculation of the one-trace terms c,, ch , c?g gives the following result:

cy = i—?én,m [Te(D)F\" . FY) — 20D F ., FO° "]+ (n— ', F| — %F))
cg' = 11? Omas2[Tr(D)FY 7™ F me)”]% 2D R = 2D RS = 2D Y ]
e omTHDIFY, L P < THD)F R, <D F P £ 2D, Y,
+2(n—1)D* (Fll’mh ” At prUe ””FIZ’/% » )+ (n—>n',F - «F))
= f Bupnia[ TH(D)FY " FY —2DWR M pE L dDMPYEY oD YRR
+(nl_—6l),5mn [Tr(D)FY, P> —Te(D)F{> " Fb  42DMF,,, . Fi> i —opr, Fietph
+2(n=1)DH (F} . F& b — prato gl )+ (n =0l Fy = %Fy). (31)

Replacing the above results for ca, e, Y and by, B, b
in (21), one finds b,, b9 ,b and hence one finds a,, a;,
ag, djg, Aqy, A1z, 13 UpON replacing them in (16). Having
performed the traces in (13), one now has the amplitude
(13) in terms of momenta and polarization of the external
states. To check our results, in the next section, we study the
S-duality Ward identity of the amplitude.

III. S-DUALITY WARD IDENTITY

The D ,-brane S-matrix element in the previous section is
valid for any p. It is known that the D5-brane is invariant
under S-duality transformation, so the S-matrix elements of

|
the D3-brane should satisfy the Ward identity correspond-
ing to the SL(2,R) transformation, which is a linear
transformation on quantum fluctuations and a nonlinear
transformation on the background fields [13]. The B-field
and RR two-form transform as a doublet, i.e.,

b= <c?2>> - (A_])T<c?2>>;

A= (p ") € SL(2,R). (32)

r s

The gauge boson field strength F,;, and its magnetic dual
(xF),p = €apeaF@/2 also transform as a doublet, i.e.,
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7= <e—¢o f(jf()?o(*f)) - (A_1>T<e‘¢°f(jfgo<*f >>’

where ¢, and C, are the background dilaton and R-R
scalar, respectively. The transformation of the background
dilaton and R-R scalar is [31-33]

My = AMAT, (33)
where the matrix M, is
2
My = e ( gl C°> (34)
C 1

where 7, = Cy + ie~?. Quantum fluctuations of the dila-
ton and the R-R scalar appear in 6 M, i.e.,

SM— (—(e—¢o—Cge¢o)5¢+2c0e¢o(sc c0e¢o5¢+e¢05C)

Coe?dp+ehsC e s
(35)

It also transforms as

SM — ASMAT. (36)

The transverse scalar fields, the graviton in the Einstein
frame, and the R-R four-form are invariant under the
S-duality.

Using the above transformations, one should be able to
construct a set of S-matrix elements in terms of the product
of the above SL(2,R) tensors such that they make an
invariant under the SL(2, R) transformations. For example,
(xF)T6MB is invariant under the linear SL(2, R) trans-
formations. It has the following six elements [13]:

(xF)T6MB = e~ P8¢ fB + 5¢p(x f)C? + Codp(xf)B
+ 8C(xf)B — M Cy6CfB — e?5CFCP).

PHYSICAL REVIEW D 96, 066018 (2017)

As aresult, the S-matrix of the above six terms should have
the same structure. For flat spacetime with no R-R back-
ground field, the above S-dual multiplet simplifies to

(xF)SMB = e5¢f B + 5 (xf) C?)

+ 8C(xf)B — etosCfC®.  (38)

By explicit calculation, it has been shown in [13] that the
S-matrix elements of the first three terms in the above
multiplet have identical structure. We shall show that the
S-matrix element of the last term also has the same
structure. On the other hand, if an S-matrix element could
not be combined with some other S-matrix element to be
written in terms of an SL(2,R) invariant, that S-matrix
element should be zero. In the following subsections, we
fix p = 3 and examine the S-duality Ward identity of the
amplitude (13) for various R-R fields.

A. COCF

When n = 1 and m = 3, the trace parts of a,, a,, a4, ag,
a;, ag, apy, and ayy are zero. The nonzero terms yield

ay = 128C0 p, V. F\) pab

as = —128C0 p, V. F{) pab

ag = —64CO0 p, V. F) fab 4 3000 p, N F) pab
ay = 32C0 p, V.F pab

ay = 64CO p, V.FY pab 3000 p, N F) pab
ay; =32C0p, v F) pab, (39)

where 9 = i(k§¢4 — kb¢4) is the gauge boson field
strength in momentum space, F ,‘jL is the R-R two-form

field strength, and C( is the polarization of the R-R scalar.
The matrix V is the world-volume metric and N is the

transverse space metric, ie., 1, =V, +N,,D, =
(37) V,w — N, Replacing them in (13), one finds
|
Acocorp ~ / Az dP2ydz3e 302 COKfb | p) N.FY) adl +p.V.FY)
212213221431412212
(P22 + 223 + 2in) + (23 + 21)2) (223 = 225) + 2320 + 21 (203 + z23>)] (40)
212213223%21231212223%32%12 ,

where we have also transformed the amplitude to the Einstein frame. This amplitude should have the same structure as the

amplitude of the first three terms in (38).

The amplitude of one dilaton, one B-field, and one gauge boson in the Einstein frame has been calculated in [13] to be

B . p1.-D.p
At/)BFN/d2Zld2Z2dZS¢le 3(/)"/zf‘h<111 [1 2 Pl-Hba]
p1-P2 (P1-p2)

p2-D.p,
P1-P2

—12 |:4p] 'V'Hba +

p
(2pl'Hba - pl'N-Hha) + .

pi-kspy.D.p;

Lp.V.H,, +

kyp,.D.
MPI'H[)(J])’ (41)
(P1-p2)
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where ¢, is the polarization of the dilaton, H is the B-field strength, and

K
12 -
<31221431%12%23

These integrals satisfy the following two relations:

K

Ihw=—7—7T"" (42)

232211221%12%232

4lrk3.py + (21, + I3)py.p> + (I, = I11) py.D.py =0,
2I3ks.py + (=21 + I3)py.ps — (I + 111)p1.D.py = 0, (43)

where

K K

Il == 13 == -
<12431231423412 <12432211%31%12

<12231221431%22

2K K K
+

<124312214231433  <31432211221412

To compare the amplitude (41) with (40), we solve the above two relations to find

p1-D.p; :(212+13)X213—(—211+13)X412 Pi-ks :(—211+13)(12—111)+(212 +15) (I, + 1yy) (45)
P1-P2 —(Iy + 1) x 4L, — (I, = 111) X 215 P1-P2 —(Ip + 1) x4l = (I, = 111) X 213
Now using the on-shell relation
p2-D.py = p1.D.py + 4p;.ks (46)

to write p,.D.p, in (41) in terms of p;.D.p; and p;.k3, and then using the relations in (45), one can simplify the amplitude

(41) as

Aypr ~ / d* 21 dPzydzy e fP [ py V. Hy (I} — 1, + I3) + p1.N.Hp (I} + 1))

Using (42) and (44), one finds exactly the structure in (40).
The extra factor of ¢?% in the last term in (38) compared to
the first term is that in the study of the S-duality the R-R
fields should be rescaled as C — e?C.

B. cOcOF

Since the R-R scalar transforms as (36) and the gauge
boson field strength transforms as a doublet, it is impossible
to construct an SL(2, R) invariant combination from two
0M’s and one gauge boson. As a result, the amplitude of
two R-R scalars and one gauge boson must be zero. Using
the identity (25), one finds that the contribution of A;, A,,
Ag, A7, Ay, and Ay to (10) is zero. The trace d is zero, so

by, bY, b are zero. So the contributions of A, A3, Ay, Ag,
Ag, and A, are zero. Moreover, using the identity (25), one
finds that the contributions of A,, A5, Ay, to (10) are also
zero. The traces in the remaining four terms produce
P¢p5faps which is zero using momentum conservation
p5 = —(p{ + k) and the on-shell relation k§f,, = 0.

C. CQcF

One cannot construct an SL(2, R) invariant from three
doublets, so the amplitude of two R-R two-forms and one
gauge boson must be zero. Using the identity (25), one
finds zero contribution from A, A,, Ag, A7, A1y, and Ay.
The nonzero terms are

[
a 3 3) cd
A3 = 128f bF<1 )aCng )b q3
a 3 3) cd
A4 = —128f bF(l )ach(Z )/7 N
a 3 3) cd
AS = 128f bF<l )aCng )b qs

a 3 3) cd
Ag = —128f bF(1 )ach(Z )b q3

3 3) ¢
A9 = 64ftle§ )acyFé )b ﬂQ9
3 3
AIO = _64fahF§ )acMFg )bC”qIO

3 3
Ay =6arrY  FY Yy,
Az = —64fbFy)  F) 47
13 fF, acyl’2 b 13- (47)

The amplitude (13) simplifies to

A~128f0FY S My 4 64 FY L FS ML,

1 acu
(48)

where
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M;=q3—q4s+qs—
_ /K[23223IZ3§ — 231 (232(231 — 233) + 231233)]
212211%23%31232%31233%12

X dZZ1dZszX3

My=q9—q10+ q11 — 413
_ /K[Z3213IZ32 - Z31(Z32(131 - Z32) 1Z3i)}
212212%231%32231432212%312
X d?z,d?zdx;. (49)

Using the same step that we have done for M; and M,
integrals, one finds

M3/ e
o= i [

2 sin(6
(r* = 2rcos(0) + 1)21-k+1
2)1’1-1’2(1 _ r2)p2.D.p2

2)171-1)2(1 _ r2)p2.D.p2—1

2 sin(6
r(r* — 2rcos(9) + 1)2Prkatl
(50)

5) cd
A fabFl acdeﬂFg )bc e”q3 A4 =
5) cd
Ag = fabF1 aLdeﬂFg )hC eﬂCIS

= _fab[ 1 apw/mF< i + 2Dlel )aypaé

5) uvpo
A = __fab[ 1 a,uypo-F( L +2DMDF<1 )(lﬂp()'5

7fab[ 1 a;wng( e + 2DWIF(I )aﬂpaé

Replacing them in (13), one finds

A~ fabF F<5) Cde/‘M3

1 acdeu

ab (5) mvpo
f [ 1 a/u/paFZ b

5
+ ZDWFE )a#pmSFé )byw My,

where M5, M, are given in (49). Since they are zero, i.e.,

(51), the above amplitude is zero, as expected from the S-

duality Ward identity.

E. COC?®®
The amplitude of one R-R scalar, one R-R two-form, and
one transverse scalar must be zero because C(©) transforms
as a modular, C® transforms as a doublet, and @ trans-

forms as a scalar under S-duality transformations. The only
nonzero A;’s are the following:

5) cd
fabFl acdeng )bc Eﬂq4 A
ab (5) mvpo v ()
f [ 1 apw/m-F + 2D*F

5 )
Fé )byp ]ql()

5 )
Fé )byp Jq11

o
Fg )bvm Jq13-

PHYSICAL REVIEW D 96, 066018 (2017)

The 0 integration again gives zero result. Therefore, as the
gauge symmetry Ward identity predicts the constraint (25)
between the ¢;’s, the above S-duality Ward identity
produces the following constraints:

—q5=0
—q13=0.

q3 — 44+ gs

49— q10 T 4911 (51)
One may use the above constraints and the constraints in
(25) to simplify the amplitude (13).

D. cCYCcWf

The R-R four-form is invariant under the S-duality and f
transforms as a doublet, so the amplitude of two R-R four-
forms and one gauge field cannot be combined with any
S-matrix element to be invariant under the SL(2,R)
transformation. As a result, this amplitude must be zero
for a Ds-brane. The explicit calculations produce the
following nonzero terms for A;’s:

5) cd
fahFl aLdeﬂF<2 )bc “qs

(5 5
1 aﬂpmsF 2 )bppg 199

(52)
Ay = —128iFFFG) L k¢igy
Ay = 64iFHFG) kgigy,
A= —128iF(D¥ (3>;mikaz:iQ1l
Ay = 64iFHFG) kagig,s. (53)
The amplitude (13) then becomes
A~ 64iFDFFG) kM, (54)

where

Ms=-2q9+q10—2q911 + 413
_ / Klz31230231 — 2231230233 + 231231233 — 2230251233
<12212431432431232212212

X d221d222d)C3.

(55)

Transforming it to the unit disk and fixing the position of
one closed string state and the open string states, one finds
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e f v |

Again the 6 integration gives zero result. So the above
S-duality Ward identity produces the following constraint,

451n Z)Pl-pz(l _ ,,2)192.1).1172
r - 2rcos(6) + 1)2p1.k3+1 .

(56)

=249 + q10 — 2911 + 913 =0, (57)

which is verified explicitly.

F. cOc¥

Since C© transforms as a modular and C®* and ®
transform as scalars under the S-duality transformation, the
S-duality Ward identity predicts that the amplitude of one
R-R scalar, one R-R four-form, and one transverse scalar
must be zero. In this case, all trace parts of the amplitude
are in fact zero.

G. COCcW®
The S-duality Ward identity also predicts that the
amplitude of one R-R scalar, one R-R two-form, and
one transverse scalar is zero. C and ® transform as a

scalar but C® transform as a doublet under S-duality
transformation. The nonzero A;’s are the following:

Ay = —?F Mbedp Sb)cdika‘:i%

b~ poneap) o

As = —?F( )deFadelkaCl

Ag = —@F(S)MFgcdikaCi%

Ag = ik [32FOm FS) 4 96FOMIED). g

Ao = = 2R BEORES) FIIES) g
N = ik B2FO ) 96FOMIED) g,

Ap = —%kGCiBZF ”UﬂF(I/,)l)al +96FC bWFg;ﬂ)]az]qB

(58)

Using the constraints (51) and (57), one finds that the
amplitude simplifies to

128
A~ 5 iF®bed ) gagipg (59)

abcedi

where

PHYSICAL REVIEW D 96, 066018 (2017)

My=q3+q4s+ g5+ qg

_/_

X d2Z1d2 2d)€3

=)

which is zero upon integrating over the @ variable. So the
Ward identity predicts another constraint, i.e.,

K231 (232(237 + 233) + 237233) + 232231233)

212211%222231%32231232212

4s1n
r(r? = 2rcos(6) 4 1)2P1-kstl

2)P1~P2 (1 — r2)P2~D-P2—]

9’

(60)

43 +q4+qs +q3 =0, (61)

which is verified by the explicit calculation.

We have seen that the amplitudes that are constrained by
the S-duality Ward identity to be zero are in fact zero by
explicit calculations. However, there are other amplitudes
in the D5-brane that the Ward identity does not predict to be
zero. They are either invariant under the SL(2, R) trans-
formations or they are related to the other amplitudes that
involve NS-NS closed string states. In the next section we
are going to write the explicit form of these amplitudes and
the amplitudes for p # 3.

IV. NONZERO AMPLITUDES

The Ward identities predict the six constraints (25), (51),
(57), and (61) between the integrals that appear in (13).
Examining the integrals, we have also found the following
four relations between them:

g1+4qs—qs =0
4s—qs—q1s =0
96 + 295 =0

q12 +2¢1; =0. (62)

Using these ten constraints, one can express all integrals in
(13) in terms of the following four integrals:

i 2;zd 72 P]J’z—l(] r2)ﬂz.D.pz—1
= 2 0
0= q6—>/ r r/ (r _2r008(6)+1)2p1.k3

r m-ﬂz—l (1 _r2)pz-D<pz

2r
O =q14— 611—’/ 2”d”/ do (r —2rcos(6’)+1)2”"k3“

2 PP~ L(1 =#2)P2-D-p2
Q3_q12—>/ 2rdr/ d@ ( r)

2rcos(6’) +1)2rks
2r
Os=q7— q2—>/ 2rdr/ d@

)P1-p2 1(1—r )ﬂszz+1
2 —2rcos(0)+1)2Prhstl’

The 6-integral can be evaluated using the following

formula [34]:
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2z cos(n@) I'(b+n) b, n+b
do =27x" ———=,F X2, 63
A (1 + x* —2xcos(6))? e nCb) 2w * (63)

where |x| < 1. The r-integral can be evaluated using the following formula [34]:

1 a;, a l+a, a, a ]
dxx®(1 = x)°, F (x| =,F :1{B(1+a,1+b).
[lavea e[ ] =) S s )

Then the Q,;’s become

P1-P2:2p1-k3,2py ks
Q1 =2zB(p1.p>, Pz-D~P2)3F2[ ;1

p1-p2+pa.D.py 1’
-pl.p2,2p1.k3+1,2p1.k3+1_1}

L pip2t+p2Dpr+1.1

[ P1-P2.2p1ks, 2pi ks }

Lp1-p2+ p2Dpy+ 1,17

'pl.p2,2p1.k3+1,2p1.k3+1.1}

L p1p2tp2Dpy+2.1

Q> = 2zB(py.p2, p2-D-pr + 1);F,
Q3 = 22B(p1.p2, p2-D-py + 1);F2

Q4 =2zB(p,.py, p2.D.py + 2)5F, (64)

Using the package [35], one may expand the integrals at low energy, i.e.,

1 1 71'2 4([)2.](3)2
0, = + +—<—P1-P2 +—F——pP2Dpr| +---
pi-P2 p2-D.ps 6 p2-D.psy
1 1 7T2 4([)1.](3)2
0, = + +—<—P1-P2 +——F——-pnDp |+
pi-P2 pi-D.p 6 pi1-D.p;
1 7> 1 i
05 = +—p2.D.py+--- 04 = +—=—p1.D.pr+---,
pi-p2 6 pi-p2 6

where we have also used the on-shell relation (46). One may use the above expansions to find four-derivative couplings of
two R-R and one NS states, which we are not interested in for this paper. By studying the above low energy expansions, we
have observed that the integrals Q,, Q, interchange under the changing of the R-R labels, i.e., Q(p;, p2) <> O2(ps, p1)-
Similarly, Q3(p1, p2) < Qa(p2, P1)-

Since the results of the traces in (30) depend on p, it is convenient to write the nonzero amplitudes for explicit p. In the
next subsections, we write the amplitudes for p =0, 1, 2, 3.

A.p=0
When p = 0, the nonzero amplitudes are
256 . 16
Aciicve ~ 7 [P1-NLQ1 = 3) + pa-N.L(Q2 = Q)Y FS 453 p1-NLQs + pa.NLQy (-8F Y FYY,,

— 4D FP o FY ) 4+ [64(40) =205 — Q)F UFY) 4+ 64(40, — 05 = 20,)Fy  Fy ke,

6
D1 N. CQS + P2 N. CQ4]< )ﬂl/a&Fg uves SDﬁ )pua5Fg )/11/05)

Acicwe ~ 7y [

4) jki ) Jjkl

Q3 1 i F(2)a]kl+ Q4F1 ajleé i kagl (65)

The amplitudes are symmetric under interchanging the particle labels 1,2, as expected.
There is no nonzero amplitude when the open string is the gauge field, which is consistent with the gauge transformation
Ward identity because the world-volume indices can take only one value. As a result, f*° is zero.
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B.p=1

When p = 1, the nonzero amplitudes are

256
Acocog NT[M N.L(01=03)+p2-NL(0; Q4)] aFg )a

16
* 1v[p1NCQz+pzNCQ4]( —6 1 Fy), =204, F VP FY) 1164401 205 - Q)R FS

+64(40,— Q3—2Q4) an Nkoli

Acorcoe ~225,6 [p1.N.L(Q1—Q3)+pa.N. C(Qz—Q4)] lath )tab
13?[P1NCQ%+P2N§Q4]( ()WPF Y /7_6D/1 ()WyF?)/l )
+[64(401 =203 = Q) F{V U FY) ) +64(40, = 03 =204) FY S P]KeC,

~[320sFV R EY) 4320, F) S M keg,

Acwcwo N_;_?[Pl N.LQ3+ py.N.LOS(6F WPU&FgS)#Uﬂms—"_ IODlpF Voo )maa)

5) ) Jkl (5 32 5) bjkl (5 ari_ |8 5) jkim (5 8 5) jkim (5 ari
- §Q3F§ o) Fé)ahjkl+_Q4F(l L F;)hijkl]k &= [§Q4F§ ) ES )ujkzm+§Q3F(1 ) ES )ijklm k¢
Ac(O)C(Z). ~_32l(4Q1 _2Q3 Q4) 1F2 labfab
16i b
Acocws ~7 OF | l]sz w (66)
The first three amplitudes in which the degrees of the R-R fields are identical are symmetric under the interchange of the

particle labels 1,2. The last two amplitudes, in which the degrees of the R-R fields are not identical, are not symmetric.
When the particle labels are changed, the amplitudes become

Acorcop ~=32i(40, — 204 — 03)FY) FY Acwcey ~ @ Q4F; zijgs i (67)
C.p=2
For the case that p = 2, the nonzero amplitudes are
Acircne N%F [P1-N.£L(Q) — Q3) + p2-NL(O, - Q4)]F§2) abF(22)ab
20D NEOs + paNLQ(AFD WY, — 4Dt Y )
+[64(401 =205 = Q)F PFY) , +1 & 20k = 3205 F UFY 4+ 320, F ) B ke
Acorcoe N% [P1-N.L(Q) — Q3) + p2.NL(Q, - Q4)]F§4) iabCFg4)iabc
h % [P1-N.{Q3 + py.N. CQ4]( ”W(SFE )/41/65 +2D4F ¢ )/M&Fg‘)xwa)

; ik bjk ;
[32(4Q1 -20; - Q4)F<14) bCiJFé >abcj +1 < 2]k = [32Q3F(14> bij th)abjk + 32Q4F(14>a ! <24)bijk]kagl

g 32 ikl ari
[ Q3 a] g)ijkl+_Q4F§4)i] Fg4)ajk1]k ¢

Actrcerp ~ —321(4Q1 — 205 — Q) F@ GF®  f® +16iQsFP TF®) . fab. (68)

Here also the first two amplitudes are symmetric under an interchange of the particle labels 1,2, as expected.
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D.p
Finally, for p = 3 the amplitudes are

PHYSICAL REVIEW D 96, 066018 (2017)

=3

Acocoe Nl_?[l?l N.LQ3 + pr.N.LOsJ (-2 F! )”Fgl),, - 2DlpF§1)ngl)z)
— 6405 F\ PV + 640, F\V F Jkagi
Acorcop ~ 235—,6 [P1-N.£(Q1 = 03) + p2-NL(O, - Q4)]F§3) abCFg?’)abc
P2 IPINLQs + PN QY (2R W), — 6D o ES) )
+[32(40, —20; - Q4) lch(z) pe + 1 20k
256 (5) iabed (5)
Acwycwg ~ 1 ——[P1-N.L(Q — Q3) + p2.N.L(Qr — Q4)]F Fy iabed
- % [P1-N.£Q3 + p,.N. CQ4]( WWSFES)Wpaa + SDlngs) WW{Sng)A,Ma)
+ {? (40, —205 - Q4) ) bed ]Fg )abcd/ +1 o2k
—[1605F ¢ M FS) o+ 1604F Y ke
- {332 Q3F(15)abjlegS)bijkl + 2Q4F(15)bijle§5)abjkl]kagi
Acocoy~=32i(40, — 203 - Q4) an abcfbc + 321Q3 le lbcfbc
Acorcwy ~—16i(40) — 203 — Q4)F) i pD) it 16105 FY) S abc,,f“h +@Q FY kg gb,,kf“h (69)

We have already shown in the previous section that the
S-duality Ward identity transforms the amplitude Ao cof
to three other amplitudes, e.g., the amplitude of one dilaton,
one B-field and one gauge boson, which are consistent with
explicit calculations. The amplitude A u g is invariant
under the S-duality Ward identity; the amplitude A o)
transforms to the amplitude of two dilatons and one
transverse scalar; the amplitude A ¢)c0)q transforms to
the amplitude of two B-fields and one transverse scalar; and
the amplitude AC<2>C<4)f transforms to the amplitude of
one B-field, one R-R four-form, and one gauge boson. It
would be interesting to calculate these amplitudes explicitly
and compare them with the S-duality Ward identity
predictions.

V. T-DUALITY WARD IDENTITY

The S-matrix elements in string theory must satisfy the
T-duality Ward identity. We now verify that the amplitudes
that we have found in the previous subsections satisfy the
T-duality Ward identity. If one reduces the theory on a
circle with coordinate y and if the D ,-brane is alone on the
circle, then after T-duality the brane transforms to the
reduction of the D,,_;-brane on the dual circle. The D,,_;-
brane is also orthogonal to the dual circle. The y index in
the D p-brane, which is a world-volume index, becomes a
transverse index in the T-dual D,_;-brane.

For example, consider the reduction of the amplitude
Ac) e in (65) when it is orthogonal to the circle; i.e., the
y index is a transverse coordinate,

256
Acocng ~r [P1-N.C(Q) = Q3) + p2.N.L(Qs - Q4)] mFg >la
16 s et
+ 51 [PLNCQs + paN.LOY(-16F Y 1 FY, —4FY ”Féz);;-)
+[64(401 =205 — Q) FY TTFY -+ 64(40, — 03 = 205 FY iFY Hkee;
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256
+T[P1 NL(Q) = 03) + paNL(Qs — Q)(FFS )ya>
6 -
2' [pl N. gQ? + p2- N. CQ4]( 16F§2) yaFQZ)ya - 8F(12) IyFEZ);y)
+[64(40, =205 — Q)FV PFY |+ 64(40; — 03 = 20,) Y FY ket
+[64(401 =205 — Q) F P YIFY -+ 64(40, — 05 - 20,)F) - F vilkeg,, (70)

where i, ] are the transverse indices which do not include the y-index and ¢ , is the polarization of the transverse scalar fields
along the y-direction. In the above, we have used the implicit assumption in the reduction that fields do not depend on the
y-direction. The above reduction of the Dy-brane amplitude should be reproduced by the linear T-duality of the reduction of
the D;-brane amplitude when it is along the circle. So consider the reduction of the D;-brane amplitudes Ao

Acocoes Acocers, and Acejcoy, ie., "
Acocog ~ 21—,6 [P1-N.L(Q) = Q3) + paN.L(0s — Q)IF VA,
+ 11? [p1-N.LO3 + p2.N.LQ4(—8 (1) F{ )a —4F(11) iFg)i)
+ [64(40, — 205 — Q4) 'Fz Ja 64(40, — 05 — 2Q4) an Nkali
Acrcirg ~ 2 PUNL(Q) = 03) + paN .20 = Q) 2FY ), )
= 32p1NLQs + paNLQU(FY PEY 4 4R DOEY 1 3FTAE )
+ [64(4Q) — 205 — Q,)F\ “”Fé iy + 6440, — 03 —20) P, F i,
Acocop~64(40) — 203 - Q4)F§1 2 myka@
Acarcop ~ 6440, =20, — Q) Fy IFY kA, (71)

where @, b are the world-volume indices that do not include the y-index and ¢” is the polarization of the gauge field along
the y-direction. In above reduction, we have discarded the F®)-terms that have no y-index because they are transformed
under T-duality to F(¥)-terms that are not included in (70). Using the linear T-duality for the R-R fields, i.e.,

Gy —cuts  aul-ail (72)

and the T-duality for the gauge field along the VL. SOFT SCALAR THEOREM
circle, i.e., The S-matrix elements should satisfy the corresponding
soft theorems as well. We have proposed in the Introduction
AT = @, (73) a soft theorem for the scattering amplitude of n closed

strings and one soft open string transverse scalar field, i.e.,

one finds that the T-duality of the amplitudes in
(71) are exactly that of the amplitude in (70). We
have done similar calculations for all other amplitudes
and found exact agreement with the T-duality Ward
identity.

Azt

where d,, d, are

Eq. (2). We now check this theorem explicitly for the
scattering amplitude of two closed string R-R states and
one scalar field.

When the open string vertex operator is the transverse
scalar, the amplitudes that we have found can be written as

~[p1.NL(Qy = Q3) + p2.N.L(Q> — Q4)]dy + [p1.N.LQ3 + py.N.(Q4)d, + terms proportional to k3, (74)
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[Te(D)FY" - Fy) = 20D P om YY)

BupFL Ve FS 8y P 0 Y ) 75)

2 apay...ap,i

When the scalar field is soft, i.e., k3 — 0, at the leading order of k3, the terms in the second line of (74) vanish and the

integrals in the first line become

Q) — Q3 =2aB(1 + py.ps. p2.D.py)3F>

Q> — Q4 = 22B(1 + py.ps, p2.D.py + 1)3F,

Q3 = 22B(p1.pa. p2-D.pa + 1)3F

Q4 =2aB(py.p2, p2.D.py +2)5F>

Using the following identities,

a,0,0
3F2 ,1 =1
C

al,1 [(c)[(c—a-D)
F 1| = , 77
’ 2[ b,c } I'(c—a)l'(c—b) (77)
one finds
Q)= Q3 = 0y — Qs = 22B(1 + py.ps. p2.D.p,)
Q3 = Q4 = 22B(py.p2. p2.D.p + 1). (78)

Replacing them in (74), one finds that the amplitude at the
leading order of k3 becomes

Asir =8 (p1 + pa)iAs, (79)

where

['(py.p2)T(p2.D.ps)

A, ~K(1,2 80
K )F(l + p1-p2+ p2.D.p2) (80

and the kinematic factor K(1,2) is
K(1.2) = (p2.D.pady + p1.pads). (81)

The amplitude (80) is exactly the disk-level scattering
amplitude of two R-R vertex operators [36]. So the
amplitude that we have found satisfies the soft theorem
at the leading order, when the transverse scalar field is soft.
It would be interesting to find the subleading terms in the
soft theorem (2) and check them by explicit calculations.

l+p1.p2,0,0 1
1+ p1.py+ p2.D.py. 1

1+ pips 11 .
L+ pi.py+paDps+ 1,17

P1-P2.0.0 )
p1-p2+ pa.D.py+ 1,17

pl'p291’1

; 76
p1-p2+ p2.D.py +2,1 76)

[
VII. SOFT PHOTON THEOREM

We have proposed in the Introduction a soft theorem for
the scattering amplitude of n closed strings and one soft
open string gauge field, i.e., Eq. (1). This relation can be
used to find for the antisymmetric matrix [A,],, that its
trace is the scattering amplitude of n closed string vertex
operators, which is zero. Using this theorem, one can find
[A,]. explicitly.

Using the soft limit of the integrals (78), one finds that
the matrix [A4,],, has the same structure as the scattering
amplitude of the two closed strings from the D-brane, i.e.,
(80), with the following kinematic factors:
KP=H(CO,CO)]y ~ py - N - poFy ) iFS

iab

_ 1 3 5) ijk
[KP=1(C®), c¥)],, SETISN V. Png ),»ijg )ab ’

[Kp:z(c(l)’ C(S))]ab ~ P N - sz(Z) CiF(4)abci
1 ,
+ 2_!],1 V. sz(2) ljF(4)abij
[KP=3(CO),CP)],~ py - N - PzF(11) CF(23)

cab

1) (3
+p1'V'p2F§>1F<2)iab

B 1 3) edi (5
[KP=3(C), D), ~o5 PN paF ) CUED

1 S
+§P1'V‘P2F§) ']Fg)

abcij

1 3) i 5
+t3P Ve paFy) URES )abijk'
(82)

The trace of the above matrices is zero. One may
use a stringy recursion relation similar to the
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Britto-Cachazo-Feng-Witten field theory recursion relation
[37] to construct the amplitude of four R-R states, i.e.,
Ao ¢ e+ o, from the above two-point functions.

PHYSICAL REVIEW D 96, 066018 (2017)
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