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Abstract This paper extends the existing studies of heat convection by an external flow
impinging upon a flat porous insert to that on a circular cylinder inside a porous medium.
The surface of the cylinder is subject to constant temperature and can include uniform or
non-uniform transpiration. These cylindrical configurations are introduced in the analyses
of stagnation-point flows in porous media for the first time. The equations governing steady
transport of momentum and thermal energy in porous media are reduced to simpler nonlinear
differential equations and subsequently solved numerically. This reveals the dimensionless
velocity and temperature fields of the stagnation-point flow, aswell as theNusselt number and
shear stress on the surface of the cylinder. The results show that transpiration on the surface of
the cylinder and Reynolds number of the external flow dominate the fluid dynamics and heat
transfer problems. In particular, non-uniform transpiration is shown to significantly affect
the thermal and hydrodynamic responses of the system in the circumferential direction.
However, the permeability and porosity of the porous medium are found to have relatively
smaller influences.
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List of symbols

a Cylinder radius
G (η, ϕ) Function related to v-component of velocity
f (η, ϕ) Function related to u-component of velocity
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h Heat transfer coefficient
k Thermal conductivity
k̄ Freestream strain rate
k1 Permeability of the porous medium
Nu Nusselt number
Num Averaged Nusselt number
p Fluid pressure
P0 Non-dimensional fluid pressure at stagnation point
P Non-dimensional fluid pressure
Pr Prandtl number
qw Heat flow at wall
r Radial coordinate
Re Freestream Reynolds number Re = k̄a2

2υ

S (ϕ) Transpiration rate function S (ϕ) = U0(ϕ)

k̄a
T Temperature
T∞ Freestream temperature
TW Wall temperature
u, v, w Velocity components along r−, ϕ−, z-axis
U0 (ϕ) Transpiration
z Axial coordinate

Greek symbols

α Effective thermal diffusivity of the porous medium
η Similarity variable
ε Porosity
θ Non-dimensional temperature

λ Reciprocal of Darcy number λ = a2
4k1

μ Dynamic viscosity
υ Kinematic viscosity
ρ Fluid density
σ Shear stress
σm Averaged shear stress
ϕ Angular coordinate

1 Introduction

Stagnation-point flows over solid surfaces have attracted attention of engineers and scientists
for more than a century (Hiemenz 1911). This is due to the appearance of such flow config-
urations in a large number of natural and industrial applications. Most notably, significant
enhancements of heat transfer by impinging jets are well demonstrated and these flows are
widely used in process and manufacturing industries (Rohsenow et al. (1998)). Classical
investigation of an impinging flow was first conducted by Hiemenz (1911) through find-
ing an exact, two-dimensional solution of the Navier–Stokes equations near the stagnation
point on a flat plate. This solution was later completed by Homann (1936) and also Howarth
(1951) and Davey (1961). By employing numerical methods, these studies have been further
advanced to unsteady cases on flat plates with uniform or non-uniform transpiration (Rahimi
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andAbbassi 2009; Abbassi et al. 2011; Abbassi and Rahimi 2012). The theoretical treatments
of stagnation-point flows were extended to cylindrical configurations in the seventies (Wang
1973, 1974). More recent studies of flow impingement on cylinders included the effects of
axial motion (Saleh and Rahimi 2004), transpiration (Rahimi and Saleh 2007) and unsteady
angular motion of the curved surface (Rahimi and Saleh 2008).

The general problemof flow impingement on a porousmediumhas received a considerable
attention from the research community. The hydrodynamics of stagnation-point, isothermal
flow on a flat porous insert was analysed theoretically byWu et al. (2005). Through assuming
a Darcy–Brinkman flow, Wu et al. developed an asymptotic solution for the velocity field
inside a horizontal porous medium interacting with a downward impinging jet (Wu et al.
2005). They identified a transition in the flow behaviour on the basis of a parameter defined
as the ratio of the kinematic viscosity to the product of the permeability of the medium and a
characteristic velocity gradient (Wu et al. 2005). In a numerical study Jeng and Tzeng (2005)
simulated the heat transfer process during impingement of a slot jet on the surface of ametallic
foam heat sink. These authors found that the location of the maximum Nusselt number is
dependent upon the jet Reynolds number (Jeng and Tzeng 2005). They also showed that
this location moves from somewhere close to the stagnation point at low Reynolds number
to further inside the porous medium at higher values of Reynolds number (Jeng and Tzeng
2005). Later, the same group of authors conducted an experimental investigation on the
problem of jet impingement on a porous block (Jeng and Tzeng 2007). Temperature and
pressure measurements revealed that by increasing the jet Reynolds number Nusselt number
increases, while the flow pressure drop is also intensified (Jeng and Tzeng 2007). Wong and
Saeid (2009a, b) considered a jet flow blowing on the surface of a horizontal porous medium
heated from below and investigated the heat transfer by mixed convection. By assuming local
thermal equilibrium (Wong and Saeid 2009a) and local thermal non-equilibrium (Wong and
Saeid 2009b) they conducted numerical parametric studies to optimise the Nusselt number.

A similarity solution was developed byHarris et al. (2009) for mixed convection boundary
layer formed near the stagnation point on a vertical porous insert. This study further included
a stability analysis of the developed solution (Harris et al. 2009). The problem of mixed
convection in jet impingement on a flat porous medium was also investigated numerically
by Sivasamy et al. (2010). In this work, a constant heat flux was applied to the bottom of the
porous insert in an axisymmetric configuration (Sivasamy et al. 2010). The analysis showed
that increasing the jet width and the Reynolds number results in magnifying the average
Nusselt number (Sivasamy et al. 2010). It also revealed that decreasing the distance between
the jet and the heated section leads to an increase in theNusselt number (Sivasamy et al. 2010).
Analytical solutions were developed by Kokubun and Fachini (2011) for the stagnation-point
flow in an infinitely long, horizontal porous insert. This configuration was subject to constant
wall heat flux and constant wall temperature boundary conditions at the bottom plate and
could be considered as the heat transferring version of the problem solved by Wu et al.
(2005). The work of Kokubun and Fachini (2011) showed that a dimensionless parameter,
containing information on the transport characteristics of the fluid and solid phase, governs
the behaviour of heat transferring flow. This finding was analogous to that ofWu et al. (2005)
in the corresponding isothermal flow. Feng et al. (2014) tackled the problem of tube flow
impingement on a heated porous block experimentally and numerically. They investigated
metal foam and finned metal foams and showed that by increasing the height of metal foam
the Nusselt number decreases, while this was not the case for the metal finned foam (Feng
et al. 2014). They further reported that under the same flow conditions the heat transfer rate
in the metal finned foam was up to 2.8 times greater than that in the metal foam (Feng et al.
2014). Most recently, Buonomo et al. (2016) examined the interactions between a downward
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vertical, laminar jet and a confined, horizontal porous layer in an axisymmetric configuration.
Their numerical study showed that Peclet number is the main parameter in determining the
opposing or supporting arrangements of natural and forced convection (Buonomo et al. 2016).

The preceding discussion reveals that the problem of interactions between an impinging
flow and a flat porous medium is relatively well studied. A common feature amongst most of
the existingworks in this area is the existence of an impermeable surface under a horizontal or
vertical porous plate. Consideration of transpiration in the form of fluid suction or blowing is
limited to a few theoretical investigations. Ishak et al. (2008) developed a similarity solution
for an external flow impinging on a vertical porous wall, which allows mass exchanges.
A similar flow configuration was analysed theoretically by Hamad and Pop (2011). These
authors considered nanofluid convection and set the system to have internal heat generation
or consumption and showed that nanofluid flow patterns can be different to those observed in
ordinary fluids (Hamad and Pop 2011). This configuration was subsequently investigated by
Hamad and Ferdows (2012), who applied Lie group analysis and conducted a comprehensive
parametric study.The effects of thermal radiation on the problemof stagnation-point flowover
a porous shrinking sheet with suction/blowingwere examined theoretically by Bhattacharyya
and Layek (2011). Later, Rohni et al. (2012) investigated the unsteady mixed convection
caused by a stagnation-point flow over a flat plate embedded in porous media. They let the
porous medium feature fluid suction and temperature slip and developed similarity solutions
for the flow and temperature fields. In particular, these authors showed that multiple solutions
existed for specific ranges of parameters.

It follows from the survey of literature that, so far, all studies of stagnation-point flows
over porous media have been exclusively concerned with flat porous inserts. Further, they
have been largely focused on the cases with no transpiration. Curved porous systems with or
without transpiration have been rarely investigated. Given the practical significance of curved
porous media, particularly around circular tubes, the lack of studies in this area is surprising.
The current work, therefore, aims to fill this gap through considering a stagnation-point flow
on the surface of a cylinder embedded in porous media, whichmay also include transpiration.
Constant temperature boundary conditions are applied on the surface of the cylinder, and the
steady flow and temperature fields along with Nusselt number and imposed shear stress are
calculated. This investigation will be an extension of the analyses of Wu et al. (2005) and
Kokubun and Fachini (2011) to cylindrical configurations with the inclusion of non-uniform
transpiration.

2 Theoretical Method

2.1 Problem Configuration and Governing Equations

Figure 1 shows the schematic view of the problem under investigation. This includes a
cylinder with radius a centred at r = 0, which is embedded in a porous medium. The
cylinder can feature a uniform or non-uniform transpiration with prescribed circumferential
distributions. Further, the external surface of the cylinder is subject to constant temperature
boundary condition. An external axisymmetric radial stagnation-point flow of strain rate of
k̄ impinges upon the cylinder. Due to the non-uniformity of transpiration the overall flow
configuration can be un-axisymmetric. The following assumptions are made throughout the
current investigation.

• The fluid is Newtonian, and the flow is steady, incompressible and laminar.
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Fig. 1 Schematic view of the problem under investigation

• The cylinder is assumed to be infinitely long.
• The porous medium is homogenous, isotropic and under local thermal equilibrium, and

hence local thermal non-equilibrium effects (Nazari et al. 2013) are ignored.
• The radiation and natural convection modes of heat transfer are ignored.
• The viscous dissipation of the flow kinetic energy is ignored.
• Physical properties such as porosity, specific heat, density and thermal conductivity are

assumed to be constant, and hence the thermal dispersion effects are ignored.
• A moderate range of pore-scale Reynolds number is considered in the porous medium,

and therefore nonlinear effects in momentum transfer are negligibly small.

A two-dimensional Darcy–Brinkman model of transport of momentum along with the one-
equation model of transport of thermal energy in cylindrical coordinate is employed in this
study (Nield and Bejan 2006; Joseph et al. 1982; Wu et al. 2005). The following summarises
the governing equations and the corresponding boundary conditions in the cylindrical coor-
dinate system shown in Fig. 1.

The continuity of mass is

∂ (ru)

∂r
+ ∂v

∂ϕ
+ r

∂w

∂z
= 0. (1)

The transport of momentum in the radial direction is written as

ρ
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u
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(2)

that in the circumferential direction is given by
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and the transport of momentum in the axial direction takes the form of

ρ

ε2

(
u
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∂r
+ v

r

∂w

∂ϕ
+ w

∂w

∂z

)
= −∂p

∂z
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ε

[
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+ 1

r

∂w

∂r
+ 1

r2
∂2w

∂ϕ2 + ∂2w

∂z2

]
− μ

k1
w.

(4)
The transport of thermal energy is expressed by

u
∂T

∂r
+ v

r

∂T

∂ϕ
+ w

∂T

∂z
= α

[
∂2T

∂r2
+ 1

r

∂T

∂r
+ 1

r2
∂2T

∂ϕ2 + ∂2T

∂z2

]
. (5)

In Eqs. (1–5) p, ρ, υ, T and k1 are the fluid pressure, density, kinematic viscosity, temperature
and permeability of the porous medium, respectively. These properties are evaluated inside
the boundary layer and in the vicinity of the flow impingement point. The boundary conditions
for the velocity field are as follows:

r = a : w = 0, v = 0, u = −U0 (ϕ) (6)

r → ∞ : w = 2k̄z, lim
r→∞ rv = 0, u = −k̄

(
r − a2

r

)
. (7)

Further, the two boundary conditions with respect to ϕ (angular coordinate) are

u (r, 0) = u (r, 2π) , v (r, 0) = v (r, 2π) , (8a)
∂u (r, 0)

∂ϕ
= ∂u (r, 2π)

∂ϕ
,
∂v (r, 0)

∂ϕ
= ∂v (r, 2π)

∂ϕ
. (8b)

Equation (6) represents no-slip conditions on the external surface of the cylinder. Also rela-
tions (7) show that the viscous flow solution approaches, in a manner analogous to the
Hiemenz flow, the potential flow solution as r → ∞ Alizadeh et al. (2016a, b). This can be
confirmed by starting from the continuity equation in the following.− 1

r
∂
∂r (ru)− ∂v

∂ϕ
= ∂w

∂z =
Constant= 2k̄z, and integrating in r - and z-directionswith boundary conditions,w = 0when
z = 0 and u = −U0 (ϕ) when r = a.

The boundary conditions for the transport of energy take the form of

r = a : T = TW = Constant, (9a)

r → ∞ : T → T∞, (9b)

and the two boundary conditions with respect to angular coordinate, ϕ, are

T (r, 0) = T (r, 2π) , (10a)
∂T (r, 0)

∂ϕ
= ∂T (r, 2π)

∂ϕ
, (10b)

where TW is the cylinder surface temperature and T∞ is the freestream temperature.

2.2 Self-similar Solutions

A reduction of the governing Eqs. (1–4) is obtained through applying the following similarity
transformations.

u = − k̄a√
η
f (η, ϕ) , v = k̄a√

η
G (η, ϕ) ,w =

[
2k̄ f ′ (η, ϕ) − k̄

η

∂G

∂ϕ

]
z, p = ρk̄2a2P,

(11)
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where η = ( r
a

)2 is the dimensionless radial variable. Transformations (11) satisfy Eq. (1)
automatically, and their substitution into Eqs. (2), (3) and (4) yields a coupled system of
differential equations in terms of f (η, ϕ), and an expression for the pressure:
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η2
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1

ε2
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Re
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a
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, (13)

where Re = k̄a2
2υ is the freestream Reynolds number, λ = a2

4k1
is the reciprocal of Darcy

number, and prime indicates differentiation with respect to η. Using conditions (6), (7) and
(8) the boundary conditions for Eqs. (12) and (13) can be derived as follows:

η = 1 : f ′(1, ϕ) = 0, f (1, ϕ) = S (ϕ) (14)

η → ∞ : f ′(∞, ϕ) = 1 (15)

f (η, 0) = f (η, 2π) ,
∂ f (η, 0)

∂ϕ
= ∂ f (η, 2π)

∂ϕ
, (16)

in which S (ϕ) = U0(ϕ)

k̄a
is the transpiration rate function. Note that Eqs. (12) and (13) are the

complete form of Eqs. (9) and (11) in Saleh and Rahimi (2004). Insertion of transformations
(11) into Eqs. (3) and (4) yields a differential equation in terms of G (η, ϕ) as well as an
expression for the pressure. This is

ε.

(
ηG ′′ + 1

4η

∂2G

∂ϕ2 − 1

2η

∂ f

∂ϕ

)
+ Re

[
f.G ′ − G

2η

∂G

∂ϕ

]
− ε2 · λ · G = 0, (17)

Considering conditions (6)–(9), the boundary and initial conditions for Eq. (17) can bewritten
as

η = 1 : G(1, ϕ) = 0,
∂G(1, ϕ)

∂ϕ
= 0 (18a)

η → ∞ : G(∞, ϕ) = 0 (18b)

G (η, 0) = G (η, 2π) ,
∂G (η, 0)

∂ϕ
= ∂G (η, 2π)

∂ϕ
. (19)

To transform the energy Eq. (5) into a non-dimensional form, the following transformation
is introduced (Alizadeh et al. (2016b, c)).

θ (η, ϕ) = T (η, ϕ) − T∞
TW − T∞

. (20)

Substitution of Eqs. (11) and (20) into Eq. (5) and neglecting the small dissipation terms
result in

ηθ ′′ + θ ′ + 1

4η

∂2θ

∂ϕ2 + Re · Pr
(
f θ ′ − G

2η

∂θ

∂ϕ

)
= 0 (21)
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with the associated boundary conditions written as

η = 1 : θ(1, ϕ) = 1 (22a)

η → ∞ : θ(∞, ϕ) = 0 (22b)

θ (r, 0) = θ (r, 2π) ,
∂θ (r, 0)

∂ϕ
= ∂θ (r, 2π)

∂ϕ
. (23a,b)

It should be noted that Eq. (17) is the complete form of Eqs. (14) in Saleh and Rahimi
(2004). Equations (12), (17) and (21), along with the boundary conditions (14–16), (18–
19), (22) and (23), were solved numerically by utilising an implicit, iterative tri-diagonal,
finite difference method similar to that discussed by Ganesan and Palani (2004) and Thomas
(2013).Although not shownhere, the obtained results revealed that the dimensionless velocity
component in the circumferential direction is negligible. Hence, in the rest of this paper we
assume that G (η, ϕ) = 0.

(a)

(b)

1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5
0

0.2

0.4

0.6

0.8

1

S (  ) = Cos (  )

Re = 7

51*18
102*36
204*72
408*144
816*288

Fig. 2 a Radial distribution of f ′(η, ϕ) for different mesh sizes at λ = 0, Re = 7.0,S(ϕ) = cos(ϕ), b typical
grid system
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ε.

(
η f ′′′ + f ′′ + 1

4η

∂2 f ′

∂ϕ2

)
+ Re

[
1 + f f ′′ − ( f ′)2

] + ε2 · λ
[
1 − f ′] = 0, (24)

P − P0 = − 1

2ε2

(
f 2

η

)
− 1

ε

(
f ′

Re

)
− 1

4εRe

∫ η

1

1

η2

∂2 f

∂ϕ2 dη + 1

ε

λ

Re

∫ η

1

f

η
dη

−2

[
1

ε2
+ λ

Re

] ( z

a

)2
, (25)

ηθ ′′ + θ ′ + 1

4η

∂2θ

∂ϕ2 + Re · Pr (
f θ ′) = 0. (26)

2.3 Shear Stress and Nusselt Number

The shear stress at the cylinder surface is given by Cunning et al. (1998) and Alizadeh et al.
(2016b, c)

σ = μ

[
∂w

∂r

]
r=a

, (27)

where μ is the fluid viscosity. Using the transformations introduced in Eq. (11), the shear
stress on the cylinder surface for semi-similar solutions becomes

σ = μ
2

a

[
2k̄z f ′′(1, ϕ)

] ⇒ σa

4μk̄z
= f ′′(1, ϕ). (28)

The local heat transfer coefficient and rate of heat transfer for defined wall temperature are
defined as

h = qw
Tw − T∞

= −k
(

∂T
∂r

)
r=a

Tw − T∞
= −2k

a

∂θ (1, ϕ)

∂η
(29)

and

qw = −2k

a

∂θ (1, ϕ)

∂η
(Tw − T∞) . (30)

Table 1 Comparison between theNusselt numbers in the current work and those ofWang (1974) for S(ϕ) = 0
and λ = 0

Re Pr = 0.2 Pr = 2.0 Pr = 20

Present
work

Wang (1974) Present
work

Wang (1974) Present
work

Wang (1974)

1.0 0.2569 0.2572 1.066 1.065 3.523 3.521

10.0 0.6160 0.6164 3.033 3.035 10.73 10.77

100 1.775 1.779 9.259 9.262 33.64 33.72

Table 2 Default values of the simulation parameters

Simulations
parameters

η ε ϕ λ Re Pr Transpiration rate

1.45 0.9 72◦ λ = 1.0 10 1.0 S (ϕ) = cos (ϕ)
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Fig. 3 Variations of f (η, ϕ) with a η and b ϕ at Re = 5.0, S(ϕ) = cos(ϕ) and for different values of λ

Therefore, Nusselt number takes the form of

Nu = ha

2k
= −θ ′ (1, ϕ) . (31)

2.4 Grid Independency and Validation

To ensure the grid independency of the developed numerical solution, variations of the η

with f ′′(η, ϕ) on the cylinder were examined with (η, ϕ) mesh sizes of 51 × 18, 102 × 36,
204×72, 408×144 and 816×288. Figure 2a shows no considerable changes in the f ′′(η, ϕ)

for (η, ϕ)mesh sizes of (204×72), (408×144) and (816×288). Thus, a (408×144) grid in
η−ϕ-directions was applied to the computational domain. A non-uniform gridwas employed
in η-direction to capture the sharp gradients around the external surface of the cylinder, while
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Fig. 4 Variations of f (η, ϕ) with a η and b ϕ at λ = 10, S(ϕ) = cos(ϕ) and for different values of Reynolds
numbers

a uniformmesh was implemented in the ϕ-direction. The computational domain extends over
ϕmax = 360◦ and ηmax = 15, where ηmax corresponds to η →∞, which lies very well outside
the momentum and thermal boundary layers. Figure 2b illustrates the computational mesh
used in the current study.A convergence criterion based on the relative difference between two
consecutive iterations was employed. When this difference was less than 10−7, the solution
was assumed to have converged and hence the iterative process was terminated. On the basis
of the implemented numerical scheme the numerical error is of O (η)2 (Thomas 2013). In
order to examine the validity of the solutions developed in Sects. 2.2 and 2.3, the Nusselt
number calculated through Eq. (31) was compared with those obtained from the literature for
flows over cylinders with no transpiration and infinitely large permeability. The outcomes are
shown in Table 1, and the close agreement between the two sets of Nusselt number confirms
the validity of the conducted numerical simulations.
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Fig. 5 Variations of f (η, ϕ) with a η and b ϕ at Re = 1.0 and for different transpiration rate functions

3 Results and Discussion

The results presented in this section are on the basis of the default values of parameters
presented in Table 2. Any changes to these values have been explicitly shown in the figures
and tables. Three types of transpiration functions have been employed. These include S = 0,
S = const., and S = cos(ϕ), which have been further restated in the figures and tables.

3.1 Flow Velocity Field

The radial and circumferential variations of the dimensionless radial velocity ( f ) are shown
in Fig. 3 for different values of the reciprocal of Darcy number λ and transpiration functions.
As expected, this figure confirms that the form of transpiration function heavily affects the
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Fig. 6 Variations f ′(η, ϕ) with a η and b ϕ at Re = 5.0, S(ϕ) = cos(ϕ) and for different values of λ

variation of f in the radial and circumferential directions. Figure 3 further indicates that large
changes in the λ have relatively small influences upon f . It should be noted that the external
flow Reynolds number has been kept constant in Fig. 3 and hence the freestream strain rate
is unchanged. Figure 3 also shows that for zero transpiration the qualitative behaviour of
the non-dimensional velocity in the radial direction is in qualitative agreement with that of
transversal dimensionless velocity in Wu et al. (2005) and Kokubun and Fachini (2011).
This is to be expected as the radial velocity in the cylindrical configuration shown in Fig. 1
is analogous to the transversal velocity in the flow over a flat porous insert investigated
in Wu et al. (2005) and Kokubun and Fachini (2011). Figure 4 depicts the influences of

freestream Reynolds number (defined as Re = k̄a2
2v ) on the non-dimensional velocity f .

Reynolds number appears to be particularly influential on the radial distribution of f , in
which increasing the Reynolds number from 0.1 to 10 can almost double the value of f .
Once again, the strong effects of transpiration rate are evident in Fig. 4. It is interesting
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Fig. 7 Variations of f ′(η, ϕ) with a η and b ϕ at λ = 10, S(ϕ) = cos(ϕ) and for different values of Reynolds
numbers

to note that the radial distribution of f is only quantitatively influenced by the changes in
the transpiration function. However, the circumferential distribution of f is heavily affected
by the transpiration function in both qualitative and quantitative manners, see Fig. 4b. To
further elaborate on the effects of transpiration function, Fig. 5 shows the distributions of
f (η, ϕ) for different functional forms of the transpiration rate. It is clear from Fig. 5a that
the qualitative trend in the radial distribution of f (η, ϕ) is simple and remains indifferent to
changes in the transpiration rate.However, this is significantly different for the circumferential
distribution of f shown in Fig. 5b in which the non-dimensional velocity closely follows the
transpiration rate. This is due to the kinematic balance of the velocity components induced
by the transpiration and external flow around the stagnation point.

The behaviours of the dimensionless axial velocity, f ′ (η, ϕ), are investigated in Figs. 6,
7 and 8. Figure 6 examines the effects of permeability of the porous medium on f ′ (η, ϕ).
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Fig. 8 Variations of f ′(η, ϕ) in terms of a η and b ϕ at λ = 10, Re = 1.0 and for different transpiration rate
functions

Part a of this figure shows that at large enough values of dimensionless radius and for all
values of λ and transpiration rate, the values of f ′ approach the same value. However, the
circumferential distribution of f ′, shown in Fig. 6b, features a strong dependency upon the
transpiration rate. For zero and constant transpiration rate this includes a sharp increase with
respect to ϕ followed by an asymptotic approach towards a constant value. Introduction of
non-uniform transpiration complicates this behaviour in which the initial sharp increase in
f ′ is followed by a strongly permeability depend drop. As a general trend, Fig. 6 shows that
by increasing λ, the numerical value of f ′ increases. This is in keeping with the findings
of Wu et al. (2005) for the isothermal flow on a flat porous insert and is related to the
increases in the thickness ofmomentum at lower permeability of the porousmedium. Figure 7
depicts the substantial effects of Reynolds number on f ′. For very small values of Reynolds
number (Re = 1.0), the radial distribution of f ′ is almost perfectly linear, see Fig. 7a. In
the circumferential direction, it grows from zero at ϕ = 0 and reaches a constant value at
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Fig. 9 Variations of θ(η, ϕ) with a η and b ϕ at Pr = 1.0, Re = 5.0, S(ϕ) = cos(ϕ) and for different values
of λ

higher value of ϕ. These behaviours are only slightly modified at Re = 3.0. However, for
higher values of Reynolds number the initial increase in f ′ with respect to η becomes much
sharper, while the rate of increase slows down at larger values of η. For the non-uniform
transpiration function and in the circumferential direction f ′ can further include negative
growth. This is particularly the case at high Reynolds numbers, which tend to magnify the
effects of transpiration rates. Figure 8 illustrates the dependency of f ′ on the functional form
of the transpiration rate. Similar to that discussed in Fig. 5, the influences of transpiration
rate are more noticeable in the circumferential distribution of f ′. Figure 8a shows that the
non-dimensional axial velocity is nearly zero in the vicinity of the stagnation point. However,
for small values of ϕ and for all investigated transpiration functions it increases rapidly in
the angular direction. Further developments of the non-dimensional axial velocity follow the
functional form of the transpiration rate.
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Fig. 10 Variations of θ(η, ϕ) with a η and b ϕ at Pr = 0.7, S(ϕ) = cos(ϕ) and for different values of
Reynolds number

3.2 Flow Temperature Field

Figure 9 shows the radial and circumferential distribution of the non-dimensional tempera-
ture, θ (η, ϕ) , for different values of λ and three types of transpiration rate. Similar to that
discussed for the velocity field, the influences of permeability upon the radial distribution
of flow temperature appear to be minor, see Fig. 9a. However, the transpiration rate signif-
icantly alters the temperature distribution. The almost uniform circumferential temperature
distribution in the cases of zero and uniform transpiration and the strong variations of θ with
ϕ for non-uniform transpiration are very noticeable in Fig. 9b. Variation of non-dimensional
temperature with respect to the dimensionless radius, η, gives an indication of the thick-
ness of the thermal boundary layer on the surface of cylinder. Figure 9a shows that with no
transpiration the thermal boundary layer is relatively thick as nonzero values of θ prevail
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Fig. 11 Variations of θ(η, ϕ) with a η and b ϕ at Re = 1.0, S(ϕ) = cos(ϕ) and for different values of Prandtl
number

to η ∼= 2.6. Yet, the addition of transpiration (suction) causes a significant decrease in the
thickness of the thermal boundary layer. The strongest reduction is by constant transpiration,
in which the value of θ reaches zero at η ∼= 1.5.

Figure 10 depicts the effects of Reynolds number upon the flow temperature field. Fig-
ure 10a implies that increasing the Reynolds number of the external flow substantially
decreases the thickness of the thermal boundary layer and limits the heat transfer to a narrow
layer of fluid around the cylinder. This implied indicated by the rapid drop of θ at higher
Reynolds numbers. It means the fluid temperature reaches that of the freestream and there-
fore the thermal boundary layer terminates at smaller values of η. The interpretation of the
results in Fig. 10b is quite involved. In general, this figure indicates that by increasing the
Reynolds number a larger fraction of the cylinder circumference becomes exposed to lower
values of θ . In explaining this behaviour, it should be first noted that, as shown in Table 2,
the results in Fig. 10b correspond to η = 1.45. Hence, θ = 0 in this figure implies that
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Fig. 12 Variation of θ(η, ϕ) in terms of a η and b ϕ, at Pr = 0.7, Re = 1.0 and for different transpiration
rate functions

thickness of the thermal boundary layer is smaller than η = 0.45. Considering this, Fig. 10b
clearly reflects the thickness reduction of the thermal boundary layer at higher Reynolds
numbers. The influences of the fluid Prandtl number on the temperature field are investigated
in Fig. 11. As expected, by increasing Prandtl number the heat transfer from the cylinder
intensifies. This results in smaller temperature difference between the fluid and the surface
of the cylinder, which in turn reduces the value of θ. A similar qualitative trend was detected
by Bhattacharyya and Layek (2011) in their analysis of flow over a flat porous medium with
uniform transpiration. The impacts of transpiration rate on the temperature field are illus-
trated in Fig. 12. Variations of the temperature field with respect to changes in the functional
form of the transpiration rate are further investigated in this figure. An interesting feature
observed in Fig. 12 is the temperature differences induced by blowing and suction. The posi-
tive sign of transpiration function refers to suction, while the negative sign indicates blowing.
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Fig. 13 Effects of variations in the transpiration rate function a on the shear stress, b on the local Nusselt
number

Figure 12a clearly shows that blowing results in larger non-dimensional temperatures, which
indicates greater temperature differences between the fluid and the surface of the cylinder.
The reason for this behaviour can be attributed to the thickness of the boundary layer and
its adverse effect on the heat transfer rate. Surface suction of the fluid reduces the thickness
of the boundary layer. This strengthens the heat convection and reduces the temperature
difference between the surface of the cylinder and the fluid. Blowing, however, makes the
hydrodynamic and thermal boundary layers thicker and therefore impedes heat transfer by
convection and results in increasing the non-dimensional temperature.

3.3 Nusselt Number, Shear Stress and Pressure Drop

Stagnation-point flows often generate significant shear stress on the solid surface (Alizadeh
et al. 2016a, b), which contributes to the erosion of the system and hence should be evaluated
carefully. Figure 13a shows the circumferential distribution of non-dimensional shear stress.
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Table 3 Effects of Reynolds
number and λ on the average
shear stress (σm · a/4μk̄z) for
S (ϕ) = cos (ϕ) and Pr = 1.0

Re σm · a/4μk̄z λ σm · a/4μk̄z

0.01 0.09413 0 1.43428

0.1 0.21868 1.0 2.05037

1.0 1.43428 10 5.64413

10 10.65943 50 13.52675

100 38.12034 100 18.75878
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Fig. 14 Effects of variations in the porosity on a the shear stress, b the local Nusselt number

Expectedly, there is no shear stress at the stagnation point, and as the value of ϕ increases
and flow gains momentum, the shear stress increases monotonically. The rate of this increase
appears to be dependent upon the functional form of transpiration, and for the cases inves-
tigated in Fig. 13a the maximum growth rate corresponds to the uniform transpiration. The
average values of the shear stress around the cylinder are presented in Table 3 for varying

123



R. Alizadeh et al.

Table 4 Effects of Prandtl
number and λ on the average
Nusselt number (Num ) for
S (ϕ) = 0, Re = 1.0

Pr Num λ Num

0.1 3.59774 0 3.84219

0.4 3.74114 1.0 3.84888

0.7 3.84888 10 3.88851

1.0 3.93788 50 3.95263

10 5.07670 100 3.98287

Table 5 Effects of Prandtl
number and λ on the average
Nusselt number (Num ) for
S (ϕ) = 1, Re = 1.0

Pr Num λ Num

0.1 3.89342 0 6.19832

0.4 5.02176 1.0 6.20146

0.7 6.20146 10 6.22214

1.0 7.41599 50 6.26340

10 44.32687 100 6.28660

Table 6 Effects of Prandtl
number and λ on the average
Nusselt number (Num ) for
Re = 1.0

Pr Num λ Num

0.1 3.59124 0 4.12700

0.4 3.76584 1.0 4.13656

0.7 3.94454 10 4.16776

1.0 4.126997 50 4.19767

10 10.52329 100 4.20916

Reynolds number and λ. The substantial growth of the average shear stress with respect to
Reynolds number and λ is evident in this table. Figure 13b shows the circumferential distri-
bution of the local Nusselt number. In agreement with that observed in other heat transferring
stagnation-point flows (Saleh and Rahimi 2004 and Alizadeh et al. 2016b, c), the numeri-
cal value of Nusselt number at the stagnation point is very large. This value drops quickly
at higher values of ϕ as the boundary layers starts to develop. Figure 13b shows that uni-
form transpiration results in constant Nusselt number for ϕ ≥ 20◦. However, non-uniform
transpirations lead to significant fluctuations in the distribution of Nusselt number in the
circumferential direction.

Figure 14 depicts the influences of porosity of the porous medium upon the shear stress
and averaged Nusselt number. As shown in this figure the dimensionless shear stress on
the surface of the cylinder is largely affected by the variations in the porosity. Figure 14a
shows that increasing porosity results in significant reduction in the shear stress. Nonetheless,
this is clearly not the case for Nusselt number, which appears to be almost independent of
the porosity (see Fig. 14b). Although not shown in here, the temperature field also features
a very weak dependency on the porosity. In interpreting these results, it is important to
note that the values of permeability, represented by λ, are considered constant in Fig. 14.
To further investigate the effects of transpiration, Tables 4, 5 and 6 present the numerical
values of the Nusselt number averaged around the circumference of the cylinder (Num) for
three different types of transpiration. Averaged Nusselt numbers are reported against Prandtl
number and λ. A comparison of the reported values of the averaged Nusselt number in these
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Fig. 15 Variations of P − P0 with a η and b ϕ at Re = 5.0, S(ϕ) = cos(ϕ) and for different values of λ

tables reveals the major effects of the transpiration function. At low values of Prandtl number
the averaged Nusselt number for all considered transpiration functions is more and less the
same. However, as Prandtl number increases the rate of increase in the averaged Nusselt
number becomes significantly dependent upon the type of transpiration. This is such that
under no transpiration Num grows for less than 50% for the investigated range of Prandtl
number (Table 3). However, Num increases by three times under the non-uniform (Table 6)
and by more than ten times under uniform transpiration (Table 5). This great dependency of
Num upon the transpiration function is in agreement with the results discussed in Sects. 3.1
and 3.2 about the influences of transpiration function on the velocity and temperature fields.
Tables 4, 5 and 6 also show that the averaged Nusselt number is only weakly dependent upon
λ. The data presented in these tables show a relatively minor increase in the average Nusselt
number at higher values of λ. This can be explained by noting that Num is greatly affected
by the large local Nusselt numbers around the stagnation point, which are not dependent on
the permeability.
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Figure 15 shows the difference between the non-dimensional pressures at the stagnation
point and that of other points in the flow. Clearly, the pressure is maximised at the stagnation
point and therefore all other points of flow have a relatively lower pressure. For suction-
type transpiration, Fig. 15a shows a monotonic increase in the pressure difference. However,
blowing changes this behaviour and results in an initial decrease in the dimensionless pressure
for radii close to the surface of the cylinder, followed by a linear increase in the pressure
difference. Circumferential distribution of the pressure difference in Fig. 15b reflects the
effects of transpiration function and λ. For the constant transpiration in either of suction
or blowing the pressure difference remains constant for the majority of the circumference.
Nonetheless, this is not the case for the non-uniform transpiration. Further, as expected,
magnifying λ leads to the intensification of the pressure difference.

4 Conclusions

Fluid flow, temperature field, Nusselt number and the imposed shear stress were investigated
theoretically in a stagnation-point flow formed by the impingement of an external flow on a
cylinder embedded in porous media. This study extended the existing analyses of external
flow impingement on flat porous inserts to a cylindrical configuration. It further introduced
different types of transpiration over the surface of the cylinder. This included uniform suction
and blowing as well as non-uniform transpiration, which resulted in a non-axisymmetric flow
configuration. A semi-similar solution was developed for the flow and temperature fields
through reduction of the governing equations to simpler nonlinear differential equations,
which were then solved numerically. The major findings of this study can be summarised as
follows:

• The radial and axial components of the flow velocity are majorly influenced by the
transpiration. Yet, the effects of permeability of the porous medium on the velocity field
are less significant.

• External flow Reynolds number appeared to be an important parameter controlling the
hydrodynamics of the problem.

• Introduction of non-uniform transpiration resulted in significant variations of flow tem-
perature in the circumferential direction. It was observed that in the case of uniform
transpiration, flow temperature around the cylinder remains constant.

• It was shown that increasing Reynolds number reduces the thickness of the thermal
boundary layer and hence it significantly modifies the flow temperature distribution in
the radial and circumferential directions.

• The averaged Nusselt number was shown to feature a great sensitivity to the transpiration
rate. Interestingly, this dependency upon the transpiration is massively intensified at high
values of Prandtl number.

The results presented in this work can be further used for validation of the future numerical
and theoretical investigations of stagnation-point flows in curved porous media.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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