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a b s t r a c t

A new sensitivity-based damage detection method is proposed to identify and estimate
the location and severity of structural damage using incomplete noisy modal data. For
these purposes, an improved sensitivity function of modal strain energy (MSE) based on
Lagrange optimization problem is derived to adapt the initial sensitivity formulation of
MSE to damage detection problem with the aid of new mathematical approaches. In the
presence of incomplete noisy modal data, the sensitivity matrix is sparse, rectangular, and
ill-conditioned, which leads to an ill-posed damage equation. To overcome this issue, a
new regularization method named as Regularized Least Squares Minimal Residual
(RLSMR) is proposed to solve the ill-posed damage equation. This method relies on Krylov
subspace and exploits bidiagonalization and iterative algorithms to solve linear mathe-
matical systems. For the majority of Krylov subspace methods, conventional direct
methods for the determination of an optimal regularization parameter may not be proper.
To cope with this limitation, a hybrid technique is introduced that depends on the residual
of RLSMR method, the number of iterations, and the bidiagonalization algorithm. The
accuracy and performance of the improved and proposed methods are numerically ex-
amined by a planner truss by incorporating incomplete noisy modal parameters and finite
element modeling errors. A comparative study on the initial and improved sensitivity
functions is conduced to investigate damage detectability of these sensitivity formula-
tions. Furthermore, the accuracy and robustness of RLSMR method in detecting damage
are compared with the well-known Tikhonov regularization method. Results show that
the improved sensitivity of MSE is an efficient tool for using in the damage detection
problem due to a high sensitivity to damage and reliable damage detectability in com-
parison with the initial sensitivity function. Additionally, it is observed that the RLSMR
method with the aid of the hybrid technique successfully solves the ill-posed damage
equation and provides better damage detection results compared with the Tikhonov
regularization technique.

& 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many existing civil engineering infrastructures were constructed several decades ago, which are still in service despite of
their age and structural weakness. Deterioration and damage of these structures may cause irrecoverable economic losses,
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human injuries, and death. In order to prevent such undesirable issues, many attempts have been performed by researchers
and engineers in the context of structural health monitoring (SHM) to assess the integrity of structures and detect any
probable structural damage. Damage in a structure can occur with deviations in geometry configurations, boundary con-
ditions, and deterioration of materials leading to cracks in concrete, loose bolts and broken welds in steel connections,
corrosions, and fatigue. These adverse changes may cause undesirable stresses and displacements, unfavorable vibrations,
failure and even collapse. The process of damage identification by vibration data is usually known as vibration-based da-
mage detection, which is categorized into four levels including damage existence (level 1), damage localization (level 2),
damage quantification (level 3), and damage prognosis (level 4) [1]. The primary idea behind vibration-based damage
detection methods is that structural damage leads to inappropriate changes in the inherent physical properties of a
structure such as mass, stiffness, and damping. Any deviation in these properties, therefore, changes dynamic characteristics
or vibration responses of the structure.

Even though many innovative vibration-based methods have been proposed more recently, modal-based approaches are
still widely used in the problem of damage detection. The underlying reason is that the modal parameters such as natural
frequencies and mode shapes depend directly on the inherent physical properties regardless of the excitation sources. Some
of these methods use direct changes in the natural frequencies [2,3] and mode shapes [4–6] for structural damage detection.
However, the modal frequencies provide only global information about the condition of structure and typically fail to locate
damage [7]. The modal displacements or mode shapes, on the other hand, are usually more difficult to measure accurately
and are not extremely sensitive to moderate changes in structural stiffness [8].

Sensitivity-based damage detection methods using the modal parameters are other kinds of approaches relying on the
sensitivity analysis of measurable dynamic outputs of the structure. The sensitivity analysis represents how dynamic
characteristics vary based on changes in the physical properties of the structure [9]. A variety of methods have been de-
veloped to derive the sensitivity of modal parameters that can be found some of them in [10–13]. Additionally, the sen-
sitivity of modal strain energy (MSE) is another efficient and useful sensitivity function that can be much more sensitive to
damage. Various methods have been presented to establish different sensitivity formulations of MSE based on the direct
difference and algebraic methods, the indirect methods, and the variation principle. Yan and Ren [14] proposed a direct
algebraic method to determine the sensitivity of MSE for a real symmetric undamped system. Yan et al. [15] presented a
statistic structural damage detection algorithm using the sensitivity of MSE for the process of damage detection based on
ambient vibration measurements, where operational mode shapes is the only available data. Li et al. [16] proposed a
sensitivity function of MSE using the variation principle in order to design structural parameters by Lagrange function.

An important issue regarding the sensitivity-based methods is to derive a well-established sensitivity function. For the
damage detection problem, in general, the sensitivity formulation should be sensitive to damage. A salient characteristic of a
well-established sensitivity function is damage detectability without applying any complicated mathematical techniques to
solve damage equations. Furthermore, the incompleteness conditions of modal parameters provide limitations of using the
sensitivity-based methods in detecting damage. In practice, there is no necessity to measure all modal frequencies from
dynamic tests, because in the large-scale structures only low-order natural frequencies are measureable. As another lim-
itation, the number of measured modes is normally less than the number of degrees of freedom (DOFs) resulting from
practical and economic limitations of installing sensors at all DOFs. Under such circumstances, the sensitivity matrix gained
by incomplete modal parameters may be sparse, rectangular, and ill-conditioned. Measurement errors in vibration response
data are other obstacle to achieve successful damage detection results, because both measurement errors and ill-condi-
tioned sensitivity matrix lead to an ill-posed damage equation [17]. This means that conventional mathematical methods
based on inverse problems are not robustly able to solve an ill-posed problem.

To cope with this shortcoming, regularization methods are in general applied to guarantee the existence, uniqueness, and
stability of the solution of ill-posed damage equation. The regularized solution of damage identification problem can be
found in the article of Chen [18], who utilized a regularization method, truncated singular value decomposition (TSVD), for
detecting damage in a 16-story braced frame building model. Weber et al. [19] applied Tikhonov regularization and TSVD
methods to detect structural damage in a full-scale laboratory concrete frame. Li and Law [20] proposed an adaptive Ti-
khonov regularization approach for damage detection based on solving a nonlinear model updating inverse problem. In
another research, Chen and Maung [21] presented a direct model updating method using dynamic perturbation theory of
structural parameters and incomplete noisy modal data. For a regularized solution, they utilized Tikhonov regularization
method along with the L-curve method for the determination of regularization parameter. Another application of reg-
ularized solution to vibration-based problems can be found in Aucejo [22], who introduced Generalized Iteratively Re-
weighted Least-Squares (GIRLS) algorithm to solve a generalized Tikhonov regularization problem for the identification of
force sources using vibration measurements. Grip et al. [23] investigated a new regularization method based on the
minimization of total variation for the damage detection problem based on the sensitivity-based model updating strategy. In
their article, they compared the new regularization method with a well-established interpolation-based regularization
approach.

Despite many research efforts in vibration-based methods using sensitivity functions and regularization techniques, one
of the critical and challenging issues is how to robustly deal with the ill-posed problem with the sparse and ill-conditioned
sensitivity matrix. Another prominent issue is to use a well-established sensitivity function regarding the damage detection
problem. As a result, the main objective of this article is to propose a new sensitivity-based damage detection method using
incomplete noisy modal data for locating damage and quantifying damage severity. To achieve these aims, the initial
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sensitivity function of MSE proposed by Li et al. [16] is enhanced to establish a new sensitivity formulation pertinent to
damage. The improved formulation is based on Lagrange optimization problem by developing constraints and applying new
mathematical approaches for the calculation of Lagrange multipliers. A well-known mode expansion technique is used to
overcome the use of incomplete measured mode shapes in the formulations regarding the damage detection problem. A
new iterative regularization method namely Regularized Least Squares Minimal Residual (RLSMR) is presented to solve an
ill-posed damage identification equation in the presence of incomplete noisy modal parameters. This method is one of the
Krylov subspace techniques, which exploits bidiagonalization and iterative algorithms to solve linear mathematical systems
with a sparse and ill-conditioned sensitivity (coefficient) matrix. Due to the dependence of each regularization method on
the regularization parameter, a hybrid method as a combination of a projection technique with a direct regularization
method is introduced to determinate an optimal regularization value. This technique depends on the residual of RLSMR
method, the number of iterations, and the bidiagonalization algorithm. Eventually, the effectiveness and reliability of the
improved and proposed methods are numerically verified by a planner truss. A comparative study on the initial and im-
proved sensitivity functions is conduced to assess the damage detectability of these functions. As another comparative
study, the robustness and accuracy of RLSMR method in detecting structural damage are compared with the well-known
Tikhonov regularization method. Results demonstrate that the improved sensitivity of MSE is sensitive to damage in
comparison with the initial sensitivity function. In addition, the RLSMR method along with the hybrid technique is suc-
cessful in damage localization and quantification. Additionally, this method provides better results compared to the Ti-
khonov regularization method, when the sparse and ill-conditioned sensitivity matrix as well as the incomplete noisy
modal parameters are available.

2. Theoretical background

2.1. Basic dynamic equations

For an n DOFs structural system, the equation of motion for free vibration leads to the following eigenvalue problem:

( )λ φ− = ( )K M 0 1i i

where K∈ℜn!n and M∈ℜn!n are the stiffness and mass matrices of the structural system; λi and φi represent the ith
eigenvalue (the square of natural frequency) and eigenvector (mode shape), respectively. Assume that the eigenvectors are
mass-normalized; hence, the mass and stiffness orthogonality conditions are expressed as:

φ φ = ( )M 1 2i
T

i

λφ φ = ( )K 3i
T

i i

When the vectors of mode shape are equivalent to the nodal displacements in a structure, strain energy is stored in each
structural element. The strain energy in a structure is known as modal strain energy, which can be used as a valuable
dynamic characteristic in vibration-based applications. The sensitivity of MSE can be applied to system identification,
sensitivity design analysis, finite element model updating, structural design optimization, and damage detection. For the ith

mass-normalized mode shape, the global MSE is formulated as a combination of global stiffness matrix and mode shape in
the following form:

φ φ= ( )MSE K1
2 4i i

T
i

Assume that the global stiffness matrix is composed of ne local stiffness matrices of individual elements. On this basis,
the jth element of MSE is given by:

∑ φ φ=
( )=

MSE k1
2 5

ne

ji
j

i
T

j i
1

where kj represents the local stiffness matrix at the jth element ( )= ∑ =K kne
j 1 j .

2.2. Mass-normalization of measured mode shapes

In order to use both analytical and experimental mode shapes in vibration-based applications, the mode shapes of FE and
real structures should be the same physical condition [9]. Therefore, it is indispensable to scale the measured modal dis-
placements with the mass-normalized analytical mode shapes. Assume that ψ̂i represents the ith unscaled mode shape

measured at a few DOFs. The mass-normalized incomplete measured mode shape φ̂i
m

is obtained by:

νφ ψ^ = ^ ( )6i
m

i i
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in which the mode scale factor νi is defined as:

ν φ ψ
ψ ψ

=
^

^ ^ ( )7
i

i
m

i

i
T

i

T

where φi
m denotes the ith analytical mode shape restricted to the same dimensions as ψ̂. It is important to mention that the

full set of analytical mode shape is generally divided into two complementary sets, including the measured (master) mode
shape (φm) and the remaining unmeasured (slave) mode shape (φu) [24,25].

2.3. Mode expansion strategy

In reality, it is not possible to measure all modal displacements at all DOFs resulting from some practical and economic
limitations. Therefore, the measured mode shapes from a dynamic test are normally incomplete and only exist at a few
DOFs. In this case, a crucial issue arises how to use the measured incomplete mode shapes in the majority of formulations.
Model reduction or mode expansion techniques are normally applied to address this problem [26]. For damage detection
problems, it is necessary to use a complete structure model with detailed damage characterization in order to correctly
detect structural damage at detailed level [18]. On this basis, it would be preferable to applying the mode expansion strategy
instead of the model reduction approach [24,25]. General expansion techniques consist of the static expansion or Guyan
method [27], the dynamic expansion method [28], and System Equivalent Reduction Expansion Process (SEREP) method
[29]. In this article, the SEREP method is used to expand the measured mode shapes. The transformation matrix of this
method is written as:

⎡
⎣⎢

⎤
⎦⎥( )φ

φ
φ φ φ=

( )

−
T

8

m

u
m m m

SEREP

1T T

Consequently, the ith full measured mode shape of the tested structure φ̂i, including the measured normalized part
φ̂m

i and the unmeasured part φ̂u
i , are obtained in the following form:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥φ

φ
φ

φ^ =
^
^

= ^
( )

T
9

i
i
m

i
u i

m
SEREP

3. An improved sensitivity function of modal strain energy

The sensitivity function of MSE refers to the calculation of the first-order derivative of MSE with respect to the structural
parameter, pj, which can be described as follows:

⎛

⎝
⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟

φ φ φ φ φ φ= + +
( )

dMSE
dp

d
dp

k
d
dp

d
dp

k
k1

2
10

ji

j

i

j

T

j i i
T

j
i

j
i
T j

j
i

In general, Eq. (10) represents a direct sensitivity function of MSE, because it only needs the calculation of the first-order
derivatives of mode shape and structural stiffness. The derivative of mode shape cannot be directly determined due to the
fact that it requires to overcome the singular problem [16]. Another reason is that the first-order derivative of mode shape is
intensively sensitive to small measurement errors available in the majority of vibration response data. Therefore, the direct
or indirect applications of this derivative may not lead to a robust and compact sensitivity formulation of MSE. One novel
way to establish an influential sensitivity function is to use the properties of Lagrange multipliers method based on the
constrained optimization problem.

3.1. Lagrange multipliers method

The method of Lagrange multipliers is an equality-constrained optimization problem that attempts to maximize or
minimize an objective function with some constraints [30,31]. A constrained optimization problem is a mathematical for-
mulation according to the maximization or minimization of the objective function F subjected to the equality constraint G ¼
0 [32]. Both objective function and constraint consist of nv unknown variables, x1 … xnv, which are usually described as
design variables [31]. With these definitions, Lagrange function (L) is expressed as follows:

( ) ∑θ θ θ θ= ( ) + ( )
( )=

x x x x x x x x xL F G, , ... , , , , ... , , , ... , , , ... ,
11

nv nm nv

nm

nv
z

z z1 2 1 2 1 2
1

1 2

where θ1…θ nm denote nm unknown Lagrange multipliers. By treating L as a function of nvþnm unknowns, the necessary
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conditions for the solution of Lagrange function corresponding to the constrained optimization problem are given by:

∑ θ∂
∂ = ∂

∂ + ∂
∂ = =

( )=x x x
nvL F G

v0, 1, 2, ... ,
12

nm

v v z
z

z

v1

θ
∂
∂ = ( ) = =

( )
x x x nmL G z, , ... , 0, 1, 2, ... ,

13nv
z

z 1 2

The solution of Eqs. (12) and (13) gives the unknown parameters of Lagrange function such as the variables x1,x2,…,xnv
and the Lagrange multipliers θ1,θ 2,…,θ nm. Definition of sufficient constraints for the Lagrange optimization problem is a
crucial step, because if a critical constraint is not included in the formulation, the solution of optimization problem most
likely to be unacceptable [32]. Moreover, the variables have to satisfy certain constraints to produce a reliable optimization
solution implying the importance of choosing adequate constraints [31].

3.2. The initial sensitivity function

The initial sensitivity formulation of MSE based on the Lagrange multipliers method was proposed by Li et al. [16]. In
their article, they dealt with the limitation of using the direct derivative of mode shape in the sensitivity function. The
Lagrange function (L*) in their work comprised an objection function (the element MSE), and two constraints including the
eigenvalue problem and mass orthogonality condition. This function was defined as:

( )( ) ( )λ λ αφ φ φ φ φ* = + ^ − + ^ − ( )pL MSE v K M M, , 1 14i i ji i i i i i i
T

i

As a result, the initial sensitivity formulation of MSE is given by:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟λ αφ φ φ φ φ

*
=

∂
∂ + ^ ∂

∂ − ∂
∂ + ^ ∂

∂ ( )

dMSE
dp p p p p

k
v K M M1

2 15

ij

j
i
T j

j
i i

T

j
i

j
i i i

T

j
i

where v̂ and α̂ are the multipliers of Lagrange function (L*). These unknown multipliers were calculated by considering the
first necessary condition of the Lagrange optimization problem, Eq. (12), through solving the following linear matrix system.

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

λ
α

φ
φ

φ− ϑ
ϑ

^
ϑ ^ = −

( )−

K M M

M 0
v k

2 0 16

i i

i
T

j i
1

In this equation, ϑ is a non-zero constant used for reducing the large condition number of the sensitivity matrix. This
constant is obtained by finding the largest absolute element matrix K-λiM and dividing the largest absolute element of φi

TM.

3.3. The improved sensitivity function

Despite appropriate innovations in the initial sensitivity function of MSE, there is a great limitation to use this function in
the damage detection problem. This limitation or shortcoming pertains to the lack of using the stiffness orthogonality
condition as a constraint in the Lagrange function. As stated earlier, the selection of adequate constraints play prominent
roles in the acceptable solution. In many optimization problems, the variables cannot be chosen arbitrarily; rather, they have
to satisfy certain constraints [31]. The variables in Eq. (14) involve the design variable (p), eigenvalue (λ), and eigenvector
(φ). For the damage detection problem, the design variable alters the damage parameter or damage variable. In most real
applications, structural damage is generally concerned with the adverse changes in stiffness matrix, while the mass matrix
normally remains unchanged. This means that the damage parameter is directly related to structural stiffness. Therefore, the
adequate constraints used in the Lagrange function should be pertinent to the stiffness matrix, which include the eigenvalue
problem and stiffness orthogonality condition. Furthermore, the main premise of establishing the sensitivity function of
MSE is to apply the mass-normalized mode shapes. Based on the fundamental principles of modal analysis, the mode shape
of the structure is usually scaled by the mass orthogonality condition. Hence, this condition should be defined in the
Lagrange optimization problem as the other constraint.

In this section, an improved sensitivity function of MSE by the Lagrange multipliers method is proposed to cope with the
main limitation of the initial sensitivity of MSE. Similarly, the Lagrange function of improved formulation contains the
element MSE as the objective function, while the eigenvalue problem and both orthogonality conditions are chosen as the
constraints. Thus, the development of Lagrange function is expressed as follows:

( ) ( )( ) ( )λ λ λφ φ φ φ φ φ= + − + − + − ( )p u w u wL MSEv v K M K M, , , , , 1 17i i i i i ij i
T

i i i i
T

i i i i
T

i

where v, u, and w are the unknown Lagrange multipliers, which should be determined. The multiplier v is a vector with the
same dimension as the mode shape vector. Furthermore, u and w are calculated as scalar quantities. By adding the stiffness
orthogonality condition to the initial Lagrange function, it is not possible to calculate the unknown multipliers of the de-
veloped Lagrange function by the linear matrix system presented in Eq. (16). Based on the necessary conditions of Lagrange
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optimization problem, Eqs. (12) and (13), these multipliers are computed by taking the first-order derivative of the Lagrange
function with respect to the independent variables (∂L/∂φi and ∂L/∂λi) and multipliers (∂L/∂vi, ∂L/∂ui and ∂L/∂wi). The partial
derivative of Lagrange function with respect to the ith mode shape is given by:

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟

( )λφ φ
φ
φ φ φ φ

φ

φ
φ φ φ φ

φ

∂
∂ = ∂

∂ + − + ∂
∂ + ∂

∂

+ ∂
∂ + ∂

∂ =
( )

u

w

L MSE
v K M K K

M M 0
18

i

i

i
i
T

i i
i

i

T

i i
T i

i

i
i

i

T

i i
T i

i

in which

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟ ( )φ

φ
φ φ φ φ

φ φ φ∂
∂ = ∂

∂ + ∂
∂ = +

( )

MSE
K K K K1

2
1
2 19

i

i

i

i

T

i i
T i

i
i i

T

The mass and stiffness matrices of the structure are symmetric; therefore, it is reasonable to state that Mφi¼φi
TM and

Kφi¼φi
TK. Accordingly, Eq. (18) is modified as follows:

( ) ( ) ( )λφ φ φ φ∂
∂ = + − + + =

( )
u wL K K M v K M2 2 0

20i
i i i i i i i

The first-order derivative of Lagrange function in relation to the eigenvalue is obtained from:

λ φ∂
∂ = − − =

( )
uL v M 0

21i
i
T

i i

Taking the derivatives of Lagrange function with respect to the multipliers leads to the following equations:

( )λ φ∂
∂ = − =

( )
L
v

K M 0
22i

i i

λφ φ∂
∂ = − =

( )u
L K 0

23i
i
T

i i

φ φ∂
∂ = − =

( )w
L M 1 0

24i
i
T

i

To calculate the Lagrange multipliers, φi
T is multiplied to Eq. (20). The result is:

( ) ( )( )λφ φ φ φ φ φ φ+ − + + = ( )u wK K M v K M2 2 0 25i
T

i i
T

i i i i
T

i i i
T

i

According to Eqs. (23) and (24), the third and fourth terms of Eq. (25) are identical to λi and one, respectively. Moreover,
Eq. (22) obviously represents that (K-λiM)ϕi or ϕi

T(K-λiM) are always equal to zero. Therefore, the multiplierw is formulated
as:

( ) λ= − +
( )w

u1 2
2 26i

i
i

By inserting Eq. (26) into Eq. (20), it can be written:

( ) ( ) ( )λ λ λφ φ− + − + − = ( )uK M K M v K M2 0 27i i i i i i i

With regard to Eq. (22), the first and third expressions of Eq. (27) are given by zero. Hence, the multiplier v is determined
by solving the following equation:

( )λ− = ( )K M v 0 28i i

Having the vector v, the other scalar multiplier u is calculated through Eq. (21) as:

φ= − ( )u v M 29i i
T

i

Eventually, the scalar multiplier w is gained by inserting the amount of multiplier u into Eq. (26). Once the multipliers of
Lagrange function have been obtained, the total derivative of Lagrange function with respect to the damage parameter p in
jth element is taken as:

( )β
= +

( )p p p
dL
d

dMSE
d

d

d

B

30j

ij

j j

P L
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For the sake of simplicity, BP and βL are:

⎡⎣ ⎤⎦( )λ λφ φ φ φ φ= − − − ( )B K M K M 1 31i i i
T

i i i
T

iP

⎡⎣ ⎤⎦β = ( )u wv 32T
T

L

Developing the derivatives of BP and βL with respect to the damage parameter pj, one can obtain:

( )β
β

β
= +

( )p p p
d

d
d
d

d
d

B B
B

33j j j

P L P
L P

L

Based on the second necessary condition of the Lagrange optimization problem presented in Eq. (13), one can realize that
the constraints of Lagrange function always correspond to zero. On the other hand, BP is equivalent to G(x1,x2,…,xnv) in the
original Lagrange optimization problem. Therefore, it can be argued that BP is also identical to zero. Accordingly, the second
term of Eq. (33) is eliminated and this equation can be rewritten as follows:

( )β
β=

( )p p
d

d
d
d

B B

34j j

P L P
L

According to the theory of variational principle [33,34], the following equations are always valid:

( ) β = ( )B 0 35
T

P L

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ β+ =

( )
d
dp

B
B

0
36j

T

P
P

L

Since BP corresponds to zero, it is apparent from Eq. (35) that βL is always non-zero. Based on Eq. (36), where BP¼0 and
βL≠0, one can deduce that the total derivative of BP with respect to the damage parameter (dBP/dpj) is identical to zero,
which means that d(BP βL)/dpj ¼ 0. Under such circumstances, the total derivative of Lagrange function corresponds to the
total derivative of MSE (dL/dpj ¼ dMSEij/dpj). On the other hand, the total derivative of Lagrange function can be written
based on the partial derivative as:

λ
λ βφ

φ∂
∂ + ∂

∂ + ∂
∂ = ∂

∂ + ∂
∂ ( )p p p p p

L L d
d

L d
d

MSE B

37j i

i

j i

i

j j j

P
L

Based on the first necessary condition of Lagrange optimization problem, the partial derivatives of Lagrange function
with respect to the eigenvalue and eigenvector are identical to zero. This means that the second and third terms of the left-
hand side of Eq. (37) become zero. Therefore:

= ∂
∂ ( )p p

dL
d

L

38j j

β=
∂

∂ + ∂
∂ ( )p p p

dL
d

MSE B

39j

ij

j j

P
L

Note that the partial derivative of BPβL with respect to pj is non-zero. In other words, Eqs. (35) and (36) are only valid for
the total derivative of BPβL. On this basis, the partial derivative of BP with respect to the damage parameter is given by:
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Eventually, based on the results of Eqs. (38),–,(40) one can write:
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This equation represents that the total derivative of element MSE is equivalent to the partial derivatives of Lagrange
function and its constraints. By inserting Eq. (40) and βL into Eq. (41), the improved sensitivity function of MSE is proposed
as:
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By neglecting the first-order derivative of the mass matrix with respect to the damage parameter, the improved sen-
sitivity function of MSE for the process of damage detection is presented as:
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where ∂K/∂pj in the partial derivative of the global stiffness matrix with respect to the damage parameter, which can
obtained as follows [26]:

∑∂
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It should be noted that the first-order derivatives of the local and global stiffness matrices with respect to the damage
parameter are typically determined by the well-known finite difference methods. Based on the forward difference method
used in this study, Eq. (44) is rewritten as:
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The key benefit of the improved sensitivity of MSE compared with Eq. (10) is to avoid using the derivative of mode shape
in the establishment of sensitivity formulation. The comparison of the initial and improved sensitivity functions of MSE
indicates that the major differences between these formulations are pertinent to the number of constraints used in the
Lagrange function, the distinct ways of calculating the Lagrange multipliers, and the direct consistency of improved sen-
sitivity function to damage detection problems.

4. Damage detection problem

Damage detection is a comparative process between two different phases of a structure, including the undamaged and
damaged conditions. Due to the major development of numerical modeling for structural systems through powerful en-
gineering software and the availability of mechanical characteristics of FE models, most of the vibration-based damage
detection methods are based on model updating strategy [8,18,20,35,36]. On this basis, it is assumed that the FE or analytical
model of the real structure represents the undamaged structural condition, whereas the experimental or tested structure
implies the damaged state. For the undamaged structure, the inherent structural properties and analytical modal para-
meters are simply obtained from the FE model. In contrast, the only experimental modal parameters are available in the
tested structure. The main premise behind the damage detection problem based on model updating strategy is to update or
calibrate the FE model of the undamaged structure by model updating techniques before the implementation of damage
detection process [18].

Because model updating is an inverse problem and the relationship between structural parameters and measured re-
sponses is inherently nonlinear, sensitivity-based methods are developed to simplify solving this problem using linear-
ization of equations [9]. In other words, the sensitivity function linearly describes a relationship between the residual of
measured responses between the undamaged and damaged states as well as changes in structural parameters. The linear
inverse problem, on the other hand, involves a residual vector, a sensitivity or coefficient matrix, and an unknown vector
that should be determined. For the process of damage detection, a damage equation by means of the linear inverse problem
is defined as follows:

⋅ = ( )S a r 46

where S ϵ ℜm!ne is the sensitivity matrix, where m and ne are representative of the number of measured modes, and the
number of elements. In addition, r ϵ ℜm denotes the residual vector including the discrepancy of measurable outputs (i.e.
incomplete modal parameters) in the undamaged and damaged conditions, and a ϵ ℜne represents the unknown damage
vector. A significant note is that the residual is a function of sensitivity matrix. For example, the residual for the sensitivity of
mode shape or natural frequency is the discrepancy of mode shapes or modal frequencies in the undamaged and damaged
states. Therefore, the compatible residual with the sensitivity of MSE can be expressed as:

= − ( )r MSE MSE 47i ij
d

ij
u

In this equation, the subscriptions d and u represent the damaged and undamaged conditions of the structure, re-
spectively. Since the stiffness matrix of the damaged structure is not available, the residual of element MSE in the ith

measured mode can be rewritten in the following form:
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It is important to point out that φ̂i denotes the ith measured mode shape of the tested structure in the damaged state.
Because the measured modal parameters are incomplete, the sensitivity matrix is usually generated as a rectangular matrix.
Additionally, it is possible that some singular values of the inverse of this matrix are close to zero, which means that the
rectangular sensitivity matrix becomes sparse and ill-conditioned. Although the least-squares method is a well-known
mathematical technique for solving the damage equation, the use of inverse operation for the rectangular, sparse, and ill-
conditioned sensitivity matrix leads to an unrealistic and erroneous solution. Moreover, small perturbations in the modal
data caused by noise may result in poor damage detection results. Under such circumstances, the damage equation is an ill-
posed problem and regularization methods need to solve this problem by filtering out the influence of noise on the
measured modal data [17]. In this article, an iterative regularization method (RLSMR) based on Krylov subspace is in-
troduced to solve the ill-posed damage equation with the special focus on using the sparse and ill-conditioned sensitivity
matrix.

5. Regularized solution of ill-posed damage equation

5.1. Tikhonov regularization method

The most comment way for the regularized solution of ill-posed damage detection equation is to use Tikhonov reg-
ularization method. In this method, the solution of Eq. (46) is performed as the minimization of the following objective
function:

γ( ) = ‖ − ‖ + ‖ ‖ ( )J a Sa r a 502
2 2

2
2

where the regularization parameter γZ0 controls the weight given to the solution a 2
2 relative to the residual norm

−Sa r 2
2. When the sensitivity matrix is ill-conditioned and rectangular, the classical solution of Eq. (50) through pseudo-

inverse operation does not make realistic and stable results. One way to circumvent this drawback is to decompose the
sensitivity matrix by singular value decomposition (SVD) technique. Therefore, one can write:
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m
m m

1 N consists of m sin-
gular values in descending order. On this basis, the regularized solution of the damage equation by Tikhonov regularization
method is given by:
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In Eq. (52), the expression fi(γ) ¼ ( )σ σ γ̅ ̅ +/i
2

i
2 2 is called filter factor. It is apparent that the use of filter factor in the

regularized solution of the damage equation damps the effects associated with the small singular values and ill-conditioning
of sensitivity matrix. In other words, γ¼0 causes an un-regularized solution, where the filter factors are unite for all singular
values.

5.2. Regularized least squares minimal residual method

The RLSMR method is a development of Least Squares Minimal Residual (LSMR) technique for a regularized solution of
the sparse inverse problem Sa¼r and the sparse least squares problem min||Sa-r||2. Both methods exploit iterative and
bidiagonalization algorithms based on Krylov subspace for the solution of sparse linear systems. The LSMR method is
analytically equivalent to Minimal Residual (MINRES) technique applied to the normal equation STSak ¼ STr in such a way
that quantities ∥STek∥2 are monotonically decreasing, In this approach, ek¼r–Sak represents the residual of problem for the
current iteration ak. The LSMR method in fact attempts to obtain ak in the kth iteration as an approximate solution of the
damage equation through the l2-minimization of STek [37].

Most of the Krylov subspace iterative methods require square sensitivity matrix for the solution of sparse inverse pro-
blem. When the modal parameters are incomplete, the sensitivity matrix becomes rectangular; therefore, the majority of
iterative methods may be useless. Among the Krylov subspace iterative methods, the LSMR method is capable of solving
linear systems with rectangular and sparse sensitivity matrix [38]. Nonetheless, this technique is not a proper choice for
solving the damage equation when noise contaminates the modal parameters. To overcome this drawback, the RLSMR
method solves the sparse inverse problem in an iterative manner by adding a regularization parameter to the algorithm of
LSMR method.
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In a similar way, the RLSMR method utilizes the bidiagonalization algorithm proposed by Golub and Kahan [39]. This
algorithm transforms or reduces the sensitivity matrix and residual vector to upper-bidiagonal form in the following
equations:

β = ( )x r 531 1

α = ( )y S x 54T
1 1 1

Initially, the quantity β1 are defined as the square l2-norm of the vector r. As such, the unknown vector x1 is described as
follows:

β= =
‖ ‖ ( )

x r r
r 55

1
1 2

2

The scalar amount α1 is then obtained from the square l2-norm of STx1, after calculating the vector x1. Eventually, the
unknown vector y1 is expressed as:
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For k¼1,2,…, Eqs. (53) and (54) should be written as:

β α= − ( )+ +x Sy x 57k k k k k1 1

α β= − ( )+ + + +y S x y 58k k
T

k k k1 1 1 1

In these equations, for k¼1, the vectors x1 and y1 are calculated by Eqs. (55) and (56), respectively. Furthermore, the
unknown parameters including α, β, x and y in the (kþ1)th iteration are computed in a similar way with the first iteration.
For a more clarification, the scalar parameters β and α in the (kþ1)th iteration are formulated as the square l2-norm of Syk-
αkxk and STxkþ1-βkþ1yk, respectively. Moreover, the vectors xkþ1 and ykþ1 are expressed as:
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At each iteration, the scalars βZ0 and αZ0 are chosen such that ||x||2¼ ||y||2¼1. After k iteration, an upper-bidiagonal
matrix Bk and two matrices including Xk¼[x1 … xk] and Yk¼[y1 … yk] from the vectors x and y can be constructed. The
upper-bidiagonal matrix Bk is established as follows:
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The recurrence of Eqs. (53), (54), (57), and (58) may be written as:
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where z1 and zkþ1 are the first and last columns of the identity matrix I, respectively. The solution of ill-posed damage
equation by the RLSMR method is similar to the LSMR method with the exception of adding a regularization term to

minimize ^ −^Sa r
2
, where ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦γ^ = ^ = 0S S I r r,

T T and ^ = ^ − ^e r Sa represents the residual of minimization problem based

on the RLSMR method. By defining these expressions and applying the bidiagonalization process, the algorithm of RLSMR
method is presented in Table 1.

Once the parameters of RLSMR algorithm have been calculated, the regularized solution of damage equation is carried
out to obtain the damage vector (ak) in the following form:
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in which
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Applying the bidiagonalization process and regularization parameter, the RLSMR method makes an iterative algorithm
for the regularized solution of the ill-posed damage equation with the sparse and ill-conditioned sensitivity matrix. As a
result, the RLSMR method can be a more reliable and influential solution approach in comparison with the direct reg-
ularization methods. The only remaining unknown characteristic in the algorithm of RLSMR is the regularization parameter,
which will be discussed in the next section.

5.3. Determining an optimal regularization parameter

The regularized solution of the majority of ill-posed problems through direct or iterative regularization methods depends

Table 1
The algorithm of RLSMR method [37].

Step 1: Initialize

β α α α ξ α β ρ ρ
β β β ρ τ
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= = ¯ = ¯ = = ¯ =
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0 0 0 1 1 0 0

Step 2: For k¼1,2,…, repeat steps 3–12 as follows

Step 3: Continue the bidiagonalization

β α α β= − = −+ + + + + +x Sy x y S x y,k k k k k k k
T

k k k1 1 1 1 1 1

Step 4:

( )α α α α αγ γ^ = ¯ + ^ = ¯ ^ ^ = ^c f, / , / .k k k k k k k
2 2

Step 5:

( )ρ α β α ρ β ρ θ α α α= ^ + ^ = ^ = = ¯ =+ + + + + +c f f c, / , / , , .k k k k k k k k k k k k k k k
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Step 10: Update τ̃ −k 1 forward substitution

( ) ( )τ ξ θ τ ρ τ ξ θ τ ρ˜ = − ˜ ˜ ˜ ˜ = − ˜ ˜ ̇− − − − − −/ , / ,k k k k k k k k k k1 1 1 2 1 1

Step 11: Compute ||êk||

˘ ( )β η β τ β η= + = + ̇ − ̇ + ¨ ‖^ ‖ =− +d d d e, ,k k k k k k k k1
2 2

1
2

Step 12: Compute:
||ŜTêk||, ||a||, ||Ŝ||, and the condition number of Ŝ.

Step 13:
Terminate iterations based on the same stopping rules as LSQR [40].
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strongly on the regularization parameter [41–43]. Finding an optimal regularization value is a crucial process, because a very
small regularization quantity will not be any influence on the ill-posed problem and a very large amount results in a great
deviation from the original problem [44]. The most common methods for the determination of regularization parameter are
discrepancy principle, generalized cross-validation (GCV) and L-curve [43]. Choosing an appropriate method relies on the
size of noise level in vibration measurements. If the size of error is known, the discrepancy principle method may be useful.
In reality, the size of noise level is often unknown; thus, the optimal regularization parameter can be estimated by the GCV
and L-curve methods. The GCV function for the estimation of Tikhonov regularization parameter is defined as [24]:
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However, the direct methods (i.e. discrepancy principle, L-curve, and GCV) may be impractical in the case of using Krylov
subspace iterative methods or existing a large sensitivity matrix [43]. In such circumstances, projection or hybrid methods
are normally suggested to determine the optimal regularization value, particularly for solving the ill-posed problems by
Krylov subspace iterative methods.

Unlike the direct methods that discretize the solution of ill-posed problem onto a finite dimensional space, a projected
problem projects the solution onto a k-dimensional subspace leading to a sufficient regularizing effect [43]. To put it another
way, the number of iterations (k) required by the Krylov subspace iterative methods provides a regularization value. In a
projection method, the type of iterative method, the number of iterations (subspaces), and the amount of stopping point for
the termination of iterations are prominent issues of determining the optimal regularization parameter. However, the use of
projection method alone may not provide a reliable and acceptable regularization quantity, particularly when the number of
iterations or subspaces is relatively small. In order to deal with this limitation, the hybrid method is an appropriate choice.
In general, this method combines a projection method and a direct regularization technique. In this article, a combination of
projected GCV function with the conventional GCV function for Tikhonov regularization technique is used as a hybrid
method. The idea behind using Tikhonov regularization technique is to regularize the projected problem for some iterations.
Applying the filter factor of Tikhonov regularization method obtained by the singular values of the upper-bidiagonal matrix
Bk and a regularization value (γ), the hybrid GCV function is formulated as:
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where st is the tth singular value of Bk in descending order at the k iteration. The hybrid GCV function obviously indicates

Fig. 1. The FE model of planner truss: (a) the model dimensions and elements, (b) the model DOFs.
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that the determination of optimal regularization value depends on the residual of RLSMR method, the number of iterations,
and the bidiagonalization algorithm for the construction of upper-bidiagonal matrix. The full discussion of determining the
regularization parameter by the projection and hybrid methods is beyond the scope of this article. Further comprehensive
details can be found in [43,45].

6. Numerical study

In order to demonstrate the accuracy and performance of the improved and proposed methods in damage localization
and quantification, a numerical model of truss structure is applied as shown in Fig. 1(a). This model is a well-known nu-
merical structure, which has widely been used in vibration-based applications [46–48]. An analytical FE model of the truss is
constructed by in-house MATLAB codes, which serves as the original or baseline model of the truss structure without
damage. The FE model consists of 12 nodes, 25 bar elements, and 21 DOFs as illustrated in Fig. 1(b). It is assume that the
truss elements are made from steel material with the modulus of elasticity 200 GPa, Poisson's ratio 0.3, the material density
7850 kg/m3, and invariant cross sections given in Table 2.

For this structure, several changes in the stiffness and mass matrices have been defined to use in the FE model updating
problem in order for the calibration of inherent physical properties of the truss structure. There are some important points
for using these structural changes in the damage identification problem. First, it can be neglected the mass variations
resulting from the lack of correlation with damage. Hence, it is plausible to assume that the mass matrix of the structure
remains unchanged. Second, in most real-world structures, damage causes adverse changes as reductions in structural
stiffness. Therefore, stiffness reduction factors are only applied to perform the procedures of damage localization and
quantification. Third, the reduction factors used in some studies present large changes in the stiffness matrix, which it is
relatively equivalent to large structural damage. An underlying issue in the damage detection problem is to seek whether
damage identification methods are able to detect small damage. As a result, new damage cases are defined to assess the
performance of the improved and proposed methods in detecting small damage. For this purpose, structural damage is
simply simulated as reductions in axial rigidity of some elements as presented in Table 3.

The FE model with the reduced axial rigidity is then used to generate the simulated modal parameters of the tested
structure. The modal data extracted from this structure serve as the measured modal parameters in the damaged condition.
To simulate the incompleteness conditions of the modal data, it is assumed that the first five eigenvalues and eight modal
displacements at the DOFs 2, 5, 6, 8, 13, 15, 19, and 21 are measurable. Since the mass matrix of the FE model in the
undamaged state is available, the complete analytical mode shapes (φ) are scaled by the mass orthogonality condition.
Additionally, the measured incomplete modal displacements of the tested structure are normalized using Eq. (6) to provide
the mass-normalized incomplete mode shapes (φ̂m

). Applying the SEREP transformation matrix, eventually, the normalized
incomplete modal displacements are expanded to produce the complete mode shapes (φ̂) for the tested structure.

6.1. Effect of measured modes on sensitivity matrix

Before the analysis of damage detection results, it would be appropriate to investigate the effect of the number of
measured modes on the improved sensitivity matrix of MSE. On this basis, one assumes that the sets of 5, 10, 15, and 21
measured modes are available. Figs. 2 and 3 show the observations of this analysis on the improved sensitivity matrix in the
damage cases 1 and 2, respectively.

Table 2
The invariant cross sections of the truss structure.

Element No. Area (m2)

1–6 0.0018
7–12 0.0015
13–17 0.0010
18–25 0.0012

Table 3
The new damage cases for the planner truss structure.

Case no. Element no. Stiffness reduction factor (%)

1 4 5%
10 7.5%

2 3 5%
9 10%
20 12%
25 15%
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As can be seen from these figures, the absolute coefficients of sensitivity matrix at the damaged elements of the truss
structure increase with increasing the number of measured modes. This means that the improved sensitivity function of
MSE provides a better observation in detecting damage by measuring further modes. This conclusion can simply be proved
by the comparison of results between the first five modes, Figs. 2(a) and 3(a), and the complete measured modes, Figs. 2
(d) and 3(d). As another observation, it is obvious from the figures that the damaged elements in both cases have the tallest
peaks compared with the other undamaged elements in the truss structure. Thus, it can be argued that the improved
sensitivity of MSE is very sensitive to damage even if the small damage occurs in the structure.

6.2. Detectability of damage by sensitivity matrix

The damage detectability by sensitivity matrix is a useful tool to realize which structural elements suffer from damage and
which are not. Although the observations in Figs. 2 and 3 demonstrate the capability of the improved sensitivity function in
detecting damage, some elements may not be detectable, particularly in the case of using a few modes. In order to assess the
ability of sensitivity matrix of MSE to detect structural damage, a detectability index (D) is defined as follows [19]:

= ‖ ‖ ( )D s 68j j 2

where ||.||2 is representative of l2-norm and sj denotes the jth column of the sensitivity matrix, j¼1,2,…,ne. A damaged element
with a large detectability index can be simply identified, whereas elements with small values of detectability index are almost
undamaged areas in the structure. The great merit of detectability index is that it provides a reasonable criterion to identify
damage locations without solving the damage equation by any mathematical technique. A comparative analysis on the initial and
improved sensitivity functions of MSE is conducted to demonstrate the performance of these sensitivity functions in detecting
structural damage. Figs. 4 and 5 show the values of detectability index for the damage cases 1 and 2 considering the first five
modes, respectively.

Fig. 2. The effect of measured modes on the improved sensitivity matrix of MSE in the damage case 1: (a) the first five modes, (b) the first ten modes,
(c) the first fifteen modes, (d) the complete modes.
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Fig. 3. The effect of measured modes on the improved sensitivity of matrix MSE in the damage case 2: (a) the first five modes, (b) the first ten modes,
(c) the first fifteen modes, (d) the complete modes.

Fig. 4. The detectability of damage in the case 1: (a) the improved sensitivity of MSE, (b) the initial sensitivity of MSE.
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Fig. 4(a) indicates the amounts of detectability index in the damage case 1 using the improved sensitivity of MSE. It is
apparent from the figure that the elements 4 and 10 are indicative of the locations of damage due to the largest quantities of
detectability index at these areas compared to the other truss elements. Based on Table 3, the stiffness reduction factors in
the damage case 1 have been applied to these elements implying the locations of damage. Fig. 4(b) shows the values of
detectability index obtained from the initial sensitivity of MSE. As this figure reveals, there are unclear and false observa-
tions in detecting damage.

Fig. 5(a) illustrates the quantities of detectability index gained by the improved sensitivity of MSE in the damage case 2. It
is seen that the values of detectability index at the elements 3, 9, 20, and 25 are much more than the other elements, which
means that these areas of the truss structure are damage locations. The results of detectability index using the initial
sensitivity of MSE in the damage case 2 is shown in Fig. 5(b). In a similar way to the previous damage case, the amounts of
detectability index at the elements 3, 20, and 25 cannot clearly suggest the locations of damage with the exception of the
element 9. Consequently, the results obtained from Figs. (4) and 5 lead to the conclusions that the improved sensitivity of
MSE is sensitive to damage and provides much more appropriate damage detectability results in comparison with the initial
sensitivity function.

6.3. Evaluation of ill-posed problem

The majority of damage identification methods are ill-posed problems. An ill-posed problem has two specific

Fig. 5. The detectability of damage in the case 2: (a) the improved sensitivity of MSE, (b) the initial sensitivity of MSE.

Fig. 6. The evaluation of ill-posed problem for the damage equation in: (a) 1% noise level, (b) 5% noise level (DC: Damage Case).
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Fig. 7. Damage localization and quantification by the incomplete noisy modal parameters in the damage case 1: (a) RLSMR method, (b) Tikhonov reg-
ularization method.

Table 5
The optimal regularization parameters in the different noise levels.

Method Case no. Noise level (%)

1 5

RLSMR 1 57.81e-4 70.22e-4
2 61.97e-4 88.14e-4

Tikhonov 1 46.93e-6 66.21e-6
2 50.81e-6 54.06e-6

Table 4
The number of iterations required by the RLSMR method.

Case no. Noise level (%)

1 5

1 23 34
2 29 41
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characteristics: (i) the singular values of sensitivity matrix decay gradually to zero, and (ii) the ratio between the largest and
smallest non-zero singular values of the sensitivity matrix is large [44]. This ratio implies that the sensitivity matrix is ill-
conditioned; that is, the solution of linear system is very sensitive to small perturbations such as measurement errors in the
modal data. This section aims to ascertain whether the damage equation is an ill-posed problem. On this basis, two different
noise levels are utilized to simulate measurement errors including: (i) 1% noise level, and (ii) 5% noise level. The simulation
of noisy modal data in most numerical problems is carried out by adding a sequence of random numbers as Gaussian
distribution with zero mean in the following forms:

( )μ ηφ φ^* = + ^ ( )1 69i i i

( )λ μ η λ^ * = + ^ ( )1 70i i i

where φ̂*
i and φ̂idenote the ith noisy and noise-free measured eigenvectors (the mass-normalized mode shapes of the tested

structure), respectively. Additionally, λ̂ *
i and λ̂i are the ith noisy and noise-free measured eigenvalues. In these equations, η

represents the noise level and μ is a Gaussian random sequence with zero mean. Assume that the mode shapes of the
structure in the undamaged condition are contaminated by noise. Fig. 6 shows the singular values of the improved sensi-
tivity matrix of MSE by considering the two different noise levels.

As can be seen, the singular values tend to decay gradually to zero in both damage cases. Furthermore, the condition
numbers of the improved sensitivity matrix are large quantities. Such observations prove that the damage equation is an ill-
posed problem. It is also seen in this figure that increasing the level of noise, the singular values of sensitivity matrix more
tend to decay gradually to zero. This conclusion is concerned with the effect of perturbation on the solution of damage
equation. It is worth remarking that the sensitivity matrix is a 5-by-25 rectangular matrix, where 5 denotes the number of
measured modes (m) and 25 implies the number of elements (ne). Since mone; therefore, the only five singular values
obtained by the SVD technique are usable.

Fig. 8. Damage localization and quantification by the incomplete noisy modal parameters in the damage case 2: (a) RLSMR method, (b) Tikhonov reg-
ularization method.
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6.4. Damage detection using incomplete noisy modal data

In this section, the process of damage detection is implemented by the improved sensitivity of MSE, the RLSMR method,
and the hybrid technique. The term of damage detection refers to identify the damage locations (the process of damage
localization) and estimate the damage severity (the process of damage quantification). Despite superior ability of the im-
proved sensitivity of MSE to identify damage locations by the detectability index, this process may fail to yield robust and
proper results when the modal parameters are contaminated by noise. Furthermore, it is important to estimate damage
severity, because the detectability index is not generally able to perform the process of damage quantification. Therefore,
there is a great necessity to solve the ill-posed damage equation by the RLSMR method. For a comparative study, the results
of damage localization and quantification gained by the RLSMR method along with the hybrid GCV function are compared
with the corresponding results of Tikhonov regularization method incorporating the conventional GCV function.

In order to determine the optimal regularization value by the hybrid method, one significant characteristic is the number
of iterations required by the RLSMR method for the regularized solution of ill-posed damage equation. Table 4 presents the
iterations of RLSMR method for the regularized solution in the two noise levels.

The information in Table 4 indicates that the number of iterations increases with increasing the level of noise, the
number of damaged elements, and the severity of damage. Moreover, there are reasonable iterations throughout the reg-
ularized solution of damage equation in all noise levels. These conclusions demonstrate that the RLSMR method with a good
estimation of regularization parameter converges to a stable solution with acceptable iterations. Note that the stopping
condition for the termination of iterations in the algorithm of RLSMR corresponds to 1.0e-5. Once the iterations of RLSMR
method have been determined, the optimal regularization values concerning the noise levels and both damage cases are
gained by the hybrid GCV function presented in Eq. (67). Furthermore, the optimal regularization quantities for the Ti-
khonov regularization technique are computed by the conventional GCV function as formulated in Eq. (66). Table 5 re-
presents the regularization parameters for the RLSMR and Tikhonov methods.

The process of determining the regularization value using the GCV functions starts with a high regularization value. The

Fig. 9. The relative errors in damage quantities for the damage case 1: (a) 1% noisy data, (b) 5% noisy data.
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optimal regularization parameter is one that the GCV function to be minimized. From Table 5, one can realize that the
regularization amounts increase with increasing the noise levels and the damage extents.

Figs. 7 and 8 indicate the results of damage localization and quantification using the incomplete noisy modal parameters
in the damage cases 1 and 2 respectively. In each figure, the results obtained by the RLSMR method are compared with the
Tikhonov regularization method. It is worth noting that the vertical coordinate of these figures is identical to the absolute
amounts of discrepancy axial rigidity (ΔEA). As Figs. 7(a) and 8(a) appear, the locations of damage are precisely identified by
the RLSMR method in both noise levels. The same conclusion can be achieved based on the Tikhonov regularization method
as illustrated in Figs. 7(b) and 8(b). It is significant to point out that one of the main reasons of precise damage localization
results in both regularization methods is pertinent to the improved sensitivity of MSE and its great damage detectability.

From the results of damage quantification obtained by the RLSMR method, one can satisfy that this method is reasonably
capable of quantifying damage in the presence of incomplete noisy modal parameters and ill-conditioned sensitivity matrix.
Furthermore, it can be seen from Figs. 7(a) and 8(a) that the false estimations of damage severities at the undamaged
elements are nearly inconsiderable value. Another observation in these figures is that the levels of noise do not have any
effects on the process of damage localization and quantification. The comparison of results in the process of damage

Fig. 10. The relative errors in damage quantities for the damage case 2: (a) 1% noisy data, (b) 5% noisy data.

Table 6
The number of iterations and optimal regularization parameters needed to the RLSMR method by considering the mass modeling errors.

Case no. Index Mass modeling errors (%)

1 5 10

1 Iteration no. 16 16 20
γ 25.11e-4 22.87e-4 37.71e-4

2 Iteration no. 18 19 23
γ 38.11e-4 44.90e-4 51.29e-4
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quantification indicates that the false estimations of damage quantifies by the Tikhonov regularization method are much
more than the corresponding estimations gained by the RLSMR method. Moreover, one can observe that there are ap-
proximately large computational errors in the estimated damage severities obtained from the Tikhonov regularization
method, particularly in the 5% noise level. For a better comparative process, Figs. 9 and 10 illustrate the relative errors in
damage quantities for the damage cases 1 and 2, respectively.

The observations in these figures appear that the relative errors in the damage quantities of Tikhonov regularization
method increase with increasing the noise levels so that there are relatively large errors (approximately near to 20% for the
case 2) in the quantification of damage. On the contrary, the RLSMR method yields proper results with the small relative
errors in such a way that the largest error corresponds to 10.07% for the 5% noise level. As a result, the observations in
Figs. 7–10 evidence the superiority of RLSMR method along with the hybrid GCV function over the Tikhonov regularization
technique by incorporating the conventional GCV function in quantifying damage.

6.5. Modeling errors

A damage detection problem based on model updating strategy might be impacted by critical issues such as incomplete
measurements, damage detectability, noisy data, and modeling errors. In most cases, it is assumed that the FE model of the
structure, which refers to the original or undamaged state, has been updated and calibrated by model updating techniques
[18]. However, it is possible to encounter uncertainties in modeling of the FE model such as an inaccurate estimation of mass
matrix. For the majority of real cases, structural damage does not affect the mass parameters; however, an unreliable and
inaccurate assumption of mass properties may introduce some errors in estimating the mode shapes and natural fre-
quencies of FE model, which are used to construct the sensitivity matrix [18,35,36]. In order to simulate such uncertainties
in the damage detection problem, three different modeling errors including 1, 5, and 10% of uniformly distributed mass
errors are separately added to all individual elements. The number of iterations and the optimal regularization values
needed to the RLSMR method are presented in Table 6.

Fig. 11. Damage localization and quantification using the improved sensitivity of MSE and the RLSMR method by considering the mass modeling errors:
(a) case 1, (b) case 2.
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With such information, Fig. 11 shows the results of damage localization and quantification in both damage cases in the
presence of mass modeling errors.

From this figure, one can discern that there are acceptable results in detecting damage even in the presence of modeling
errors. Additionally, it is seen that the locations of damage are precisely identified by the improved and proposed methods. For
the procedure of damage quantification, there are accurate estimations with inconsiderable computational errors at the da-
maged elements. In both damage cases, the false damage quantities at the undamaged elements are very small amounts in the
1 and 5% mass modeling errors. In the 10% modeling error, the false estimation of damage quantities at the undamaged
elements increase; however, these amounts are not comparable with their corresponding values at the damaged elements.

The relative errors in damage quantities by considering the mass modeling errors are shown in Fig. 12. It can be perceived
from this figure that the errors are nearly less than 3% and 5% for the damage cases 1 and 2, respectively. Therefore, there is
sufficient evidence to demonstrate the accuracy of damage detection results in the presence of mass modeling errors.

7. Conclusions

In this article, a new sensitivity-based damage detection method has been proposed to identify damage location and
estimate damage severity using the incomplete noisy modal parameters and FE modeling errors. An improved sensitivity
function of MSE has been developed to establish a sensitivity formulation regarding the damage detection problem using
the Lagrange optimization problem with the new mathematical approaches. To solve the ill-posed damage identification
equation, the new iterative regularization method (RLSMR) has been introduced. The performance of this method in the
damage detection problem has been compared with the well-known Tikhonov regularization method. The hybrid technique
has then been presented to determine the optimal regularization parameter. Eventually, the accuracy and reliability of the
improved and proposed methods have numerically been demonstrated by the well-known planner truss. A comparative
study on the initial and improved sensitivity functions of MSE has also been conducted to evaluate the capability of damage
detectability by these functions.

Fig. 12. The relative errors in damage quantities by considering the mass modeling errors: (a) case 1, (b) case 2.
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The numerical results showed that: (1) The improved sensitivity function of MSE is very sensitive to damage based on
the obtained values of detectability index. (2) The detectability of damage by the improved sensitivity function demon-
strated that it is able to locate damage. (3) The comparison of the initial and improved sensitivity functions indicated that
the improved sensitivity of MSE has a robust damage detectability, whereas the initial sensitivity function fails to detect
damage. (4) Both RLSMR and Tikhonov methods are capable of locating structural damage in all noise levels. (5) The ac-
curacy of damage localization results depends strongly on the improved sensitivity function of MSE. (6) The comparison of
these methods in the process of damage quantification showed that the RLSMR method provide better results than the
Tikhonov regularization method. (7) The RLSMR method solves the damage equation with a few and plausible iterations in
such a way that the highest noise level makes most iterations. (8) Taking the mass modeling errors into accounts, the
improved sensitivity of MSE and RLSMR method are influentially able to identify damage location and estimate damage
quantity.
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