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The impetus of this research is to present a generalized Bernoulli Trial collision scheme in 
the context of the direct simulation Monte Carlo (DSMC) method. Previously, a subsequent 
of several collision schemes have been put forward, which were mathematically based on 
the Kac stochastic model. These include Bernoulli Trial (BT), Ballot Box (BB), Simplified 
Bernoulli Trial (SBT) and Intelligent Simplified Bernoulli Trial (ISBT) schemes. The number 
of considered pairs for a possible collision in the above-mentioned schemes varies between 
N(l)(N(l) − 1)/2 in BT, 1 in BB, and (N(l) − 1) in SBT or ISBT, where N(l) is the instantaneous 
number of particles in the lth cell. Here, we derive a generalized form of the Bernoulli 
Trial collision scheme (GBT) where the number of selected pairs is any desired value 
smaller than (N(l) − 1), i.e., Nsel < (N(l) − 1), keeping the same the collision frequency 
and accuracy of the solution as the original SBT and BT models. We derive two distinct 
formulas for the GBT scheme, where both formula recover BB and SBT limits if Nsel is set 
as 1 and N(l) − 1, respectively, and provide accurate solutions for a wide set of test cases. 
The present generalization further improves the computational efficiency of the BT-based 
collision models compared to the standard no time counter (NTC) and nearest neighbor 
(NN) collision models.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Direct Simulation Monte Carlo method (DSMC) [1] is the dominant technique for numerical simulation of rarefied flow 
at the hypersonic regime and at micro/nano scales. The method considers a significant number of simulator particles whose 
positions and velocities are updated during a consecutive series of ballistic motion and intermolecular binary collisions 
between particles localized in the neighborhoods of given points in the space, i.e. in cells of a computational grid. Sampling 
of macroscopic flow field properties is performed for particles positioned inside a cell.

The collision process in DSMC is introduced statistically. During the past decades, various collision algorithms have been 
suggested. The commonly accepted and widely used No Time Counter (NTC) scheme and its modern variants such as nearest 
neighbor (NN) are analyzed and discussed widely [2–5]. Majorant Frequency scheme (MFS) is another well-known collision 
scheme developed by Ivanov [6]. Within a time-step interval of �t , the method uses a time-interval of δti sampled from the 
Poisson distribution for each accepted collision. The collision process continued until 

∑
i δti > �t . In this article, we consider 
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the other branch of plausible collision algorithms based on the Kac stochastic equation [7]. The first Bernoulli trials scheme 
(BT) was put forward by Belotserkovskii and Yanitskiy [8] and Yanitskiy [9]. In accordance with the Kac equation, BT model 
defines a collision probability function for each particle pair and check all N(l)(N(l) − 1)/2 pair combinations for a potential 
collision, where N(l) is the number of particles in the lth cell. Even though the BT scheme avoids the possibility of the 
repeated collisions, it suffers from high computational costs, i.e., O (N2). A reduced variant of the BT scheme was developed 
by Yanitskiy and coworkers, called Ballot Box (BB) [8]. The scheme selects just one pair in random form the whole set of 
particles available in the cell, but it increased the collision probability of the selected pair by a factor of N(l)(N(l) − 1)/2. The 
disadvantage of the Ballot Box scheme is that the scheme required a small collision time step with respect to the optimal 
time step of the DSMC simulation. In 2011, Stefanov introduced a “simplified” alternative of the Bernoulli Trials scheme 
called ‘SBT’ [10,11], with a linear dependency of computational cost on the number of particles per cell, i.e., selecting and 
checking collision of N(l) − 1 pairs, with the same level of accuracy as BT. Nevertheless, the computational costs for a larger 
number of particles per cell are yet significant and numerical efficiency of the SBT is still less than the corresponding 
characteristics of the standard NTC collision scheme.

The objective of the current work is to derive a generalized form of the Bernoulli Trial collision scheme and reduce fur-
ther the computational effort of the SBT collision model when the number of particles is comparable with that used in the 
simulations with the NTC scheme. Here, our starting point is the Kac stochastic model and the derivation of the BT, BB and 
SBT scheme from the solution operator of the equation considering various levels of mathematical approximations. Then, 
a general strategy for further simplification of the solution operator is presented, and a general Bernoulli Trials scheme is 
derived assigned to work with any number of chosen pairs smaller than N(l) − 1 with no loss of accuracy compared the 
SBT scheme when the time step and cell size are chosen appropriately. Following Gallis et al. [12] and Taheri et al. [13], the 
convergence behavior of the new scheme is evaluated in treating one dimensional Fourier problem in slip regime. Further-
more, the accuracy of the GBT scheme in simulating dissociation of gases is considered. The method is then assessed for 
variety of non-equilibrium gas flow problems such as supersonic steady shock wave, micro/nano cavity flow, and 70-degree 
blunted cone.

2. Kac master equation

2.1. Principles

Kac stochastic model [7] is a kinetic equation describing the temporal evolution of N-particle velocity distribution 
function F N(l) (t, x(l), cN(l) ) of N-particle system caused by binary collisions. Vectors x(l) = {x(l)

1 , x(l)
2 , . . . , x(l)

N } and c(l) =
{c(l)

1 , c(l)
2 , . . . , c(l)

N } present particle coordinates x(l)
i = {x(l)

i , y(l)
i , z(l)

i } and velocities. c(l)
i = {c(l)

xi , c(l)
yi , c

(l)
zi } of a set of particles 

occupying volume V (l) (usually, volume of cell l in a computational grid) at instant t . The Kac stochastic model can be 
described in the following operator form [9,14]:

∂

∂t
F N(l)

(
t, x(l), cN(l)

) =
[ ∑

1≤i< j≤Nl

wij(Tij − I)

]
F N(l)

(
t, x(l), cN(l)

) = υ(T − I)F N(l)

(
t, x(l), cN(l)

)
, (1)

where I is the identity matrix, υ is the collision frequency, and

Tij =
∫

4π

ψ(ci j)B(gij, θ)dΩ(θ),

υ =
∑

1≤i< j≤Nl

wij; (2)

T ψ =
∑

1≤i< j≤Nl

wij T i jψ, wij = σi j gi j

V l
, (3)

operator Tij accounts for transformations of particle velocities in results of collisions, B(gij, θ) is the collision scattering 
kernel, Ω(θ) is the solid angle, ψ(ci j) is a linear normalized space of continuous functions over Ω(θ), gij = |ci − c j| and σi j
are the relative velocity and collision cross-section of the colliding pair, respectively. For brevity, in the following considera-
tion we assume by default that all mathematical requirements are fulfilled. The Kac stochastic model is a jump-like strictly 
Markovian process over the hypersphere Ω(N(l), E, P ) of 3N(l) − 4 dimensions in Euclidean space R(l)

3N , where N(l) is the 
number of particles in the (lth) cell, E is the kinetic energy and P is the momentum of velocity components.

The probability of time interval between two consecutive collisions follows the Poisson distribution:

Prob(δt > t) = e−υt (4)

Kac equation could be solved at time t with the definition of the transition operator G(t) in the following form:

F (l)

(
t, x(l), C (l)

) = G(t)F (l)

(
t0, x(l), C (l)

)
, (5)
N N N N
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where F N(l) (t0, x(l), CN(l) ) indicates the initial distribution function and the transition operator G(t) could be written as:

G(t) = exp

[
t

∑
1≤i< j≤Nl

wij(Tij − I)

]
= exp

[
t(T − I)

]
(6)

2.2. Bernoulli trials

For small interval dt , operator G(dt) given in Eq. (6) can be expanded with respect to degrees of dt and terms of order 
equal or higher than O (dt2) be omitted. The approximated transition operator G(dt) is written as [8,9]:

G1(dt) ≈
∏

1≤i< j≤Nl

exp
[
(Tij − I)wijdt

] =
N(l)−1∏

i=1

N(l)∏
j=i+1

exp
[
(Tij − I)wijdt

]
(7)

The exponential term in every co-factor in Eq. (7) could be substituted by a linear approximation over dt using Taylor 
expansion, consequently:

G1(dt) ≈
N(l)−1∏

i=1

N(l)∏
j=i+1

[
(1 − wijdt)I + wijdtTi j

] =
N(l)−1∏

i=1

N(l)∏
j=i+1

[
(1 − W ij)I + W ij Ti j

]
, (8)

where

W ij = σi j gi jdt

V (l)
(9)

has a meaning of collision probability of pair (i, j) and is normalized in a way to satisfy the condition prob(W ij > 1) → 0.
Every co-factor in the right-hand-side of Eq. (8) transforms the velocity distribution function F N(l) (dt, x(l), cN(l) ) into 
F N(l) (dt, x(l), cN(l) ) over Ω(N(l), E, P ) according to:

F N(l)

(
dt, x(l), cN(l)

) = (1 − wijdt)F N(l)

(
dt, x(l), cN(l)

) + wijdt

∫
4π

ψ(ci j)B(gij, θ)dΩ(θ), (10)

If the time interval dt is considered small such that:

W ij = σi j gi jdt

V (l)
= wijdt ≤ 1 (11)

for all possible values of cN(l) , Eq. (8) have an apparent algorithmic interpretation. In order to clarify this, we will note two 
basic probabilistic properties that are used in our further considerations. They concern the probabilistic meanings of product 
of probabilities p A pB pc . . .. and the second – sum of probabilities p A + pB + pc . . . of a set of events A, B, C etc. They state 
that the probability for happening of a set of events A ∩ B ∩ C . . .. is equal to the product p A pB pc . . . and the probability 
of one of all these events A ∪ B ∪ C . . .. is equal to the sum p A + pB + pc . . . Using this properties, the probabilistic 
interpretation is that the collision scheme based on Eq. (8) consists of double product of an operator concerning a pair 
collision and respectively, must consider the collisions of all N(l)(N(l) − 1)/2 pairs of particles (ci, c j ) and with probability 
pij accepts the occurrence of the corresponding collision or with probability (1 − pij ) rejects it. This scheme is of first order 
accuracy in terms of time step but its computational costs is of order N2. The condition given by Eq. (11) could be replaced 
with a weaker one as follows:

P {wijdt > 1} � 1 (12)

by choosing appropriate time step and cell size. The above procedure states that for all of the possible particle pairs in 
the collision cell (l), the collision probability should be checked, i.e. the following inequality should be monitored for all 
available particle pairs (i, j) {i < j = 1, . . . , N(l)} (before their velocities are changed to post-collision values):

W ij = σi j gi jdt

V (l)
≥ Rnf (13)

and accept the collision if W ij ≥ Rnf and reject it when W ij < Rnf .

2.3. Ballot Box collision scheme

Consider the transition operator given in Eq. (6) is approximated by cutting the expansion series of operator G1(dt) (8)
to the linear term in terms of dt as:

G2(dt) = I + dt
∑

l

wij(Tij − I). (14)

1≤i< j≤N
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Then, a linearized transition operator should contain a double-sum of probabilities with the number of terms equal to 
the number of particle pairs denoted by k = N(N − 1)/2. One probabilistic interpretation suggests choosing only one pair 
at random from all possible pairs k within a time step instead to check all of them. The probability of to select at random 
a pair with velocities (ci, c j) is constant equal to 1/k and must be taken into account in the algorithmic realization. If one 
introduces constant k inside the summation operator into the operator G2(dt), replacing (wijdt) by 1

k (kwijdt), then Eq. (14)
could be rewritten as:

G2(dt) =
[

1 −
∑

1≤i< j≤Nl

1

k
(kwijdt)

]
I +

∑
1≤i< j≤Nl

1

k
(kwijdt)Tij

=
(

1 −
∑

1≤i< j≤Nl

si j pi j

)
I +

∑
1≤i< j≤Nl

si j pi j T i j (15)

This form of operator G2(dt) can be interpreted in a straightforward way that leads to the Ballot Box collision model. In 
(15), term si j = 1/k is selection probability of a pair with velocities (ci, c j) and pij = kwijdt is the collision probability of 
the selected pair. The weak condition Prob{kwijdt > 1} � 1 should also be satisfied. In the Ballot Box scheme, the following 
procedure is performed one time per each cell:

a) At each time step, only a single pair of molecules is randomly selected with probability of 1/k from the whole set of 
particles.

b) The possibility of collision is evaluated with the probability.

W ij = kwijdt = N(N − 1)σi j gi jdt

2V (l)
> Rnf (16)

If the collision was accepted, the velocities of the colliding pair are updated to their post-collision values. The computa-
tional cost of the scheme depends linearly on the number of particles, i.e., O (N). The problem with the Ballot Box scheme 
is that dt � �t (where �t is an optimal time step of simulation) in order to fulfill condition {Prob(kdt wij) > 1)} � 1. The 
collision algorithm Ballot-Box must be repeated m times per each cell time step �t , so that �t = mdt . In this way, the se-
lection procedure resembles that of the NTC scheme and as a result, the scheme cannot prevent repeated collisions within 
the time step �t .

2.4. Simplified Bernoulli-trials

Bernoulli-trials (BT) scheme checks collisions with a given probability for all possible collision pairs. This makes the BT 
algorithm time-consuming and not suitable for practical applications except when the average number of particles per cell 
(〈N〉) is close to 1. As simplification, Stefanov showed that it is possible to extend the internal product on the right-hand 
side of the G1(dt) (Eq. (8)) in a series of j with respect to t and neglect the higher order terms to reach to a new simplified 
transition operator G3(t) as follows [10,11]:

G3(dt) =
N(l)−1∏

i=1

[(
1 −

N(l)∑
j=i+1

1

k
(kwijdt)

)
I +

N(l)∑
j=i+1

1

k

(
(kwijdt)Tij

)]
, (17)

where the inner product is replaced by summation and (k = N(l) − i). The algorithmic interpretation of operator G3(dt)
states that instead of checking N(l)(N(l) −1)/2 pairs it is possible when pick the first particle i of the next pair in strict order 
from the particle list, select the second particle at random from (N(l) − i) particles placed after particle i with probability 
s j = 1/(N(l) − i) and reduce the number of collision checking to (N(l) − 1). Note that the algorithm covers the whole set 
of possible collisions. The SBT algorithm permits simulations with far less mean number of particles per cell compared to 
NTC, 〈N(l)〉 ∼ 1–2 and even less than 1 on a finer grid with smaller time step (where 〈 〉 means mean value) with reduced 
computational costs compared to the BT algorithm. The numerical procedure of SBT is as follows: Particles in the lth cell 
should be locally indexed to produce a particle list numbered as 1 . . . Nl . To this aim, the index vectors used in all available 
DSMC realizations can be used. The first particle of the collision pair (i, j), say i, is selected in sequence from the particle 
list: i = 1 . . . Nl − 1. The second particle, say j, is chosen randomly with the probability of 1/k from k = Nl − i particles 
taking place in the list after particle i.

j = (i + 1) + int(k × Rnf 1) (18)

Each pair is then checked for collision with a corresponding probability, which with taking into account factor Fnum and 
time step dt reads

W ij = (Nl − i)Fnumdtσi j gi j
l

> Rnf 2. (19)

V



480 E. Roohi et al. / Journal of Computational Physics 354 (2018) 476–492
It should be noted that the dt should be adjusted so that in great amount W ij does not exceed unity, say

prob{W ij ≥ 1} → 0 (20)

It is worth noting that the probability for W ij > 1 should be kept always close to zero by choosing appropriate cell size 
and time step. The SBT procedure avoids the production of at least part of the eventually successively repeated collisions 
which occurs in the NTC scheme when it is applied with a small number of particles. SBT scheme was successfully evaluated 
for a wide set of rarefied flow test cases [15–20].

2.5. Generalized Bernoulli-trials

The SBT algorithm is more efficient than the original BT scheme, and its efficiency is comparable to the NTC when 
the number of particles in a cell is small. However, it is still less efficient than the standard NTC in simulations using a 
relatively larger number of particles per cells and small time step. It is because a fixed number of N(l) − 1 pairs should 
be selected and checked for possible collisions while the NTC usually selects a less number of pairs to check for collision 
using the estimation of the maximum number of selected pairs for a given time step. The effect in SBT is that most of 
the selected pairs will not have a significant acceptance chance because their probability W ij is low at a small time step. 
In this occasion, it is preferred to reduce the number of selected pairs (Nsel) to a lower magnitude but increasing the pair 
weight and respectively the collision probability in such a way that the collision frequency is kept constant. In this regard, 
a rational option could be considered to reduce the number of selected pairs to Nsel = N(l)/2 or N(l)/3 and even less in 
order to be of the same number range as the number of selected pairs in the NTC scheme. To start with, the operator form 
remains the same as given in (17), but the upper bound of the product is reduced to Nsel . The new operator reads:

G4(dt) =
Nsel∏
i=1

[(
1 −

N(l)∑
j=i+1

1

k′k
(
k′kwijdt

))
I +

N(l)∑
j=i+1

1

k′k
((

k′kwijdt
)
Tij

)]
, (21)

where k′ is a correction coefficient to compensate the reduction of selected pairs and it must be found. The linearization of 
the product in (21) with respect to dt gives the following transition operator:

G ′
4(dt) =

(
1 −

Nsel∑
i=1

N(l)∑
j=i+1

1

k′k
(
k′kwijdt

))
I +

Nsel∑
i=1

N(l)∑
j=i+1

1

k′k
(
k′kwijdt

)
Tij . (22)

The operator G ′
4(dt) can be realized by selection of one pair similar to the Ballot Box scheme but it here we use it to 

show how to define the correction coefficient for the selected pairs in the operator with a reduced product.
The correction coefficient k′ is obtained from the equality:

k′
Nsel∑
i=1

N(l)∑
j=i+1

1 =
N(l)−1∑

i=1

N(l)∑
j=i+1

1 (23)

k′
[

N(l)−1∑
i=1

N(l)∑
j=i+1

1 −
(N(l)−Nsel)−1∑

i=1

(N(l)−Nsel∑
j=i+1

1

)]
=

N(l)−1∑
i=1

N(l)∑
j=i+1

1 (24)

k′[C
(
N(l),2

) − C
(
N(l) − Nsel,2

)] = C
(
N(l),2

) ⇒ k′ = C(N(l),2)

C(N(l),2) − C(N(l) − Nsel,2)
, (25)

where C(n, m) = (n(n − 1) · · · (n − m)/m! is the number of combinations of m from n elements, i.e.

C
(
N(l),2

) = N(l)(N(l) − 1
)
/2 and C

(
N(l),2

) − C
(
N(l) − Nsel,2

) = Nsel
(
2N(l) − Nsel − 1

)
. (26)

Finally,

k′ = N(l)(N(l) − 1)/2

Nsel(2N(l) − Nsel − 1)
. (27)

The inverse value of the correction coefficient 1/k′ has a simple probabilistic meaning of selection probability of Nsel pairs 
from all available pairs in the cell, which total number is N(l)(N(l) − 1)/2. Consider the matrix of all collision probabilities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1N(l) p2N(l) · · · psN(l) · · · p(N(l)−1)N(l) . .
.

p1(N(l)−1) p2(N(l)−1) . .
.

ps(s+1) . .
.

p1s . .
.

p23 . .
.

p12 . .
.

. . p · · · p · · · · · · p (l)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(28)
. 21 s1 N 1
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They are located in the upper triangle of matrix elements (p12, . . . , p1,N(l) , . . . , pN(l)−1 N(l) ). In the Bernoulli trials BT 
scheme all particle pairs are checked for collision sweeping the matrix elements one by one; in SBT only one pair from each 
column is selected at random with probability 1/k to be checked for collision and the corresponding collision probability is 
corrected by coefficient k. In the transition operator (22), Nsel pairs are selected by choosing one pair per column at random 
from the first Nsel columns of the matrix. Thus, Nsel pairs are selected from (C(N(l), 2) − C(N(l) − Nsel, 2)) pairs and the 
corresponding selection probability of all Nsel pairs from all available pairs is 1/k′ . Respectively, the probability of selection 
of each pair (i, j) is (1/k′k) and consequently, the total collision probability of each selected pair must be corrected by 
coefficient k′k in accordance with the transition operator (21).

It is worth noting that in our considerations we assumed that the particle set in each cell within a time step is random. 
In most cases, the exchange of particles between cells during the free particle motion is enough, and no additional acts are 
needed. However, the universal algorithm should contain an additional procedure of particle rearrangement. In this regards, 
the suggested procedure for the generalized form of the BT collision model (GBT) is as follows (depicted in Fig. 1):

Fig. 1. GBT collision procedure per each cell.

1. Select Nsel , i.e., assume Nsel is a fraction/function of number of particles in the cell. The following procedure is per-
formed if Nsel < N(l) − 1 in the cell, otherwise, standard SBT scheme is followed.

2. Algorithm A. Choose Nsel random particles from the list of particles in the cell, and reorder the particle list exchanging 
the positions of the selected particles with those occupying the first Nsel positions in the list, i.e., put the Nsel selected 
particles in the index list ordered as first, second, etc. particle in the list. Put the former first, second, etc. particles in 
their places in the index list.

3. Run the SBT procedure from i = 1 to Nsel, but modify the collision probability of every pair with the following correc-
tion:

W ij = k′k ∗ Fnumdtσi j gi j

V l
(29)

where

k′k = C(N(l),2)

Nsel(2N(l) − Nsel − 1)

(
N(l) − i

)
. (30)

Similar to SBT, dt should be adjusted so that W ij in (29) does not exceed unity, i.e., inequality. (20) should be satisfied.
Instead of (30), an alternative collision probability correction in the GBT algorithm is conceivable considering a general-

ization of the BB and SBT collision formulas, i.e., GBT probability correction should approach to BB and SBT corrections if 
Nsel = 1 and Nsel = N − 1, respectively. To achieve this aim, we slightly modify the BB algorithm to avoid repeated collisions. 
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The original BB algorithm chooses two particles in random from the whole set of particles in the list. However, we change 
the particle order and put the first selected particle in the BB procedure as the first particle in the list. The second particle 
is chosen at random from the particles located after the first one (i = 1) in the list of particles. However, the probability 
correction in the BB scheme, either the original one or the modified version presented here, is C(N(l), 2), as BB considers 
only one pair on behalf of all available pairs in the cell. If we pick more pairs out to check their collision possibility, i.e., 
Nsel > 1 in GBT, a smaller correction should be introduced, i.e.,

k̂k = C(N(l),2)

C(Nsel + 1,2)
, (31)

where C(Nsel + 1, 2) stands for the combination of 2 particles from Nsel + 1 ones. Eq. (31) is the correction incorporating 
the effects of considering Nsel number of selected pairs to be checked for collisions instead of all N(l)(N(l) − 1)/2 pairs. 
The correction given by (31) reduces to C(N(l), 2) if Nsel = 1, i.e., BB scheme, and to 1 if Nsel = N(l) − 1, i.e., SBT scheme. 
However, the GBT probability correction should include another term compensating the selection of just one particle from 
the particles located after the i-th particle in the list. If SBT with Nsel = N(l) − 1 is considered, the additional term of the 
probability correction for the i-th particle should be (Nl − i), while for BB with Nsel = 1, there is no need for an extra 
correction in (31). In order to capture both SBT and BB limits, the complementing correction term in (31) should read as: 
(Nsel + 1 − i). Consequently, an alternative GBT collision probability correction instead of (30) reads as:

k′k2 = C(N(l),2)

C(Nsel + 1,2)
(Nsel + 1 − i). (32)

In the rest of this paper, we refer to GBT formula with Eq. (30) as Scheme-1 and with Eq. (32) as Scheme-2. We 
will compare the accuracy of both schemes and show that both algorithms demonstrate the same level of accuracy. Both, 
Scheme-1 and Scheme-2 give the same collision rate per time step but the difference between them consists of different 
distributions of the collision probability of the selected pairs – the collision probability in Scheme-1 is more balanced and 
uniform, while the collision probability in Scheme-2 is linearly changing from a larger collision probability than the average 
for the first selected pairs to a smaller probability than the average for the last selected pairs. For the limit cases, Nsel = 1
and Nsel = N − 1, both algorithms are equivalent with respect to probability distribution. It is worth noting that when we 
reorder the randomly selected first particles (algorithm A), for appropriately chosen time step and cell size, the results 
become independent on the collision probability distribution of the selected pairs and depend only on the average collision 
probability of a pair. Consequently, both algorithms become stochastically equivalent.

3. Results and discussions

3.1. Collision frequency test case

Here, we demonstrate the accuracy of the GBT scheme solution for a series of test cases at rarefied flow conditions. 
The first test case is the calculation of the equilibrium collision frequency ratio that is the ratio of the numerical collision 
frequency to that of the theoretical one. The problem considered here is a spatially homogeneous monoatomic gas released 
from a random state to reach the equilibrium. The gas comprises of molecules with a reference diameter of 0.35 nm at a 
reference temperature of 300 K. The molecular mass of the gas is assumed to be 5 × 10−26 kg. The initial number density 
of gas is 1 × 1020 m−3 at the reference temperature. The flow field extends in the x-direction from the origin to x = 1 m. 
The cells width changed with the number of cells. The number of simulated particles was also altered to study the validity 
of the algorithm with different sets of particles per cell (N). The zero-dimensional code of Bird [1] was modified to include 
the GBT algorithm. In all simulations, the value of �x/�t (�x = dx/λ and �t = dt/tc , where λ is the gas mean free path 
and tc is the mean collision time) is regulated to be smaller than 2. The number of cells is set at 2000, resulting in 
dx = 5 × 10−4 m. The time step is fixed to 1 × 10−6 s. These values of dx and dt led to �x/�t = 1.228. We compare both 
probability correction formulas suggested for the GBT scheme by Eqs. (30) and (32). The results are reported for the same 
initial condition with N = 10, while Nsel was changed from 1 to N − 1. Table 1 shows the results of CFratio from both GBT 
formulas as well as the NTC predictions. The equilibrium collision rate per molecule is given theoretically (C Fth) by [1]:

CFth = 4nd2

√
π K B Tref

ms

(
T

Tref

)1−ω

(33)

where n, d, K B , Tref , ms , and ω are number density, gas molecular diameter, Boltzmann constant, reference temperature, 
molecular mass, and viscosity–temperature exponent, respectively. CFnum represents the numerical prediction of the collision 
frequency that is calculated by the division of the number of collisions in each cell (Ncoll) to the simulation time (Time) and 
half of the mean particle numbers per cell (0.5Np ) as follows:

CFnum = Ncoll

0.5N Time
(34)
p
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CFratio is the ratio of the numerical to the theoretical value, and it must have a magnitude equal to unity at the equilibrium 
condition. The table shows that solution of both GBT algorithms almost match together and are around unity with a good 
precision.

Table 1
CFratio prediction in the 0-D test case from GBT calculations with either of Eq. (30) (Scheme-1) and Eq. (32) (Scheme-2) formulas.

NSel 1 2 3 4 5 N − 3 N − 2 N − 1 NT C

Scheme-1 1.000128 1.000231 1.000120 1.000131 1.000059 0.999618 1.000004 1.000055
1.000001

Scheme-2 1.000128 1.000120 1.000012 1.000173 0.999277 0.999610 1.000056 1.000055

3.2. Simple dissociation test case

In order to examine the performance of the GBT scheme to treat chemically reacting flows, we performed a sample test 
case of dissociation of real gas. For this purpose, zero-dimensional code of Bird (DSMC0D) [1] was modified to include the 
GBT algorithm. The gas that assumed here is the nitrogen with a reference diameter of 0.417 nm at a reference temperature 
of 273 K. The molecular mass of the gas is considered to be 4.65 × 10−26 kg. The flow field extends in the x-direction from 
the origin to x = 1 m and the number of cells is assumed to be 1. The total number of particles was set as 10000. The 
time step for the NTC reference data was 2.5 × 10−11 s, but this value is decreased to 1 × 10−11 s, to avoid the W ij > 1
in the GBT simulations. In the general case of 1, 2 and 3 dimensional simulations, the choice of an optimal time step 
during the simulation can be calculated automatically every time step or time interval consisting of a number of steps by 
checking equality (20) in each cell for each collision pair and allowing a collision rate with small fixed percent (usually not 
larger than (2–3)%) of collisions with values of W ij (Eq. (29)) greater than 1. Usually, this limitation is necessary in some 
local zones of the computational domain but it defines a minimal global time step for the whole computational domain. 
Thus, in the rest of computational domain the inequality (20) will be almost surely satisfied. Here, the zero-dimensional 
test case considers the relaxation of nitrogen from an initial excitation vibrational temperature to the chemical equilibrium. 
Because of dissociation and recombination process, the gas composition is changing toward a chemical equilibrium. When 
the rate of dissociation and recombination is equal, the gas reaches chemical equilibrium. The following expression gives 
the equilibrium degree of dissociation (α) as a function of initial number density ni and the equilibrium temperature T :

α2/(1 − α) = (
0.5047 × 1028/ni

)
T 1/2{1 − exp(−3395/T )

}{
4 + 10 exp(−27658/T )

+ 6 exp(−41495/T )
}2

exp(−113200/T ) (35)

Fig. 2. Equilibrium degree of dissociation in nitrogen.

Fig. 2 shows the equilibrium degree of dissociation as a function of temperature for an initial number density equal 
to standard number density. Moreover, the results for another initial number density of one-tenth of standard value are 
reported in this figure. The considered cases repeat the same cases examined by Bird (see Fig. 11–15 of Ref. [1]). The GBT 
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results from different sets of selecting particles (Nsel = N/2, N/3) are compared with the theoretical data from Eq. (35) and 
NTC results.

Two cases with different initial temperatures equal to 30000 K and 20000 K but with the same number density equal 
to the standard number density relax approximately to temperature magnitudes of 9800 K and 8650 K, respectively. Both 
results are shown together with the theoretical line and corresponding NTC data for ni = n0 from [1]. The other case is 
the relaxation from an initial temperature of 25000 K and one-tenth of standard number density that is indicated on the 
ni = 0.1n0 line. All cases are in a suitable agreement with the theoretical solution and numerical data obtained by using the 
standard NTC scheme.

3.3. GBT convergence behavior for the fourier problem

In order to study the convergence behavior of the new scheme, we simulated rarefied Fourier problem in the slip regime. 
The problem was considered by Gallis et al. [12] and Taheri et al. [13] to investigate the convergence behavior of the 
NTC and SBT collision schemes, respectively. In the Fourier problem, the gas is confined between two infinite, parallel, 
fully accommodating walls separated by a distance L, that is shown schematically in Fig. 3. One dimensional code of Bird 
(DSMC1) is modified to include the new algorithm. Hard-sphere molecules of argon with a reference diameter of dref =
3.658 ×10−10 m at the reference temperature of 273.15 K are considered. The molecular mass and the reference viscosity of 
simulated molecules are m = 6.63 × 10−26 kg and μref = 2.117 × 10−5 Pa s, respectively. The simulations were performed at 
the reference pressure of Pinit = Pref = 266.644 × 10−5 Pa. Moreover, the Knudsen number was set at 0.0237. The separated 
distance between the walls was L = 1 mm and a modest temperature gradient was applied on the walls, i.e., the walls are 
kept at the unequal temperature of Thot = Treff + �T /2 and Tcold = Treff + �T /2, where �T = 100 K.

Fig. 3. Schematic of the Fourier problem.

We followed the strategy suggested in [13] to study the convergence behavior of the GBT scheme. For more details, 
we address the readers to this paper. The GBT convergence behavior for the heat flux is investigated over a range of 
discretization parameters and Nsel . Firstly; we study the effect of number of simulated particles per cell on the convergence 
behavior. For this purpose, simulations results reported in Table 2 are performed with a fixed number of cells, i.e., 400 cells, 
and time step is set constant at 0.625 ns, while the number of simulated particles is increased from 10 to 60, and moreover 
for each value of particle per cell (PPC), the number of selected particles for collisions (Nsel) is changed. In the limiting 
conditions of PPC and dx parameters (PPC → ∞ and dx →0), according to Gallis et al. [12] the wall heat flux converges to a 
value q = 1512 W/m2 that could be accepted close enough to the mathematically expected one for this problem. The results 
of these simulations are presented in Table 2. The results indicate that as the number of particles per cells was increased 
from 10 to 60, the heat flux magnitude approaches to the mathematically expected value. A slight dependency on Nsel is 
detectable from the data in the table.

Table 2
Heat flux dependence on PPC at various Nsel .

Nsel q (W/m2) (PPC = 10) q (W/m2) (PPC = 60)

N − 1 1525 1513
N/2 1526 1515
N/3 1531 1515
N/4 1531 1513
BB 1536 1519

Considering the general recommendations for the cell size and time step in DSMC, i.e., �x = dx/λ ≈ 0.33 and �t =
dt/tc ≈ 0.25, where tc is the mean collision time, it is reported that the SBT solution needs a 1 < �x/�t < 2 in addition to 
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keeping both of cell size and time step small to provide a converged solution [13]. In other words, the ratio �x/�t should 
be chosen in a way to fulfill the molecular analog of the well-known Courant–Levy–Friedrich (CFL) condition. Since the GBT 
is an extended variant of the SBT algorithm, it is expected to need the same requirement for its convergence, i.e., the cell 
size and time step are coupled and should be chosen in such a way that 1 < �x/�t < 2. In order to study the effect of cell 
size and time step effect on convergence behavior, we performed a set of simulations with two different values of �x/�t
ratios. For the set of run that �x/�t is equal to 1.469, number of cells was 2424 and the time step was set to 0.832 ns. 
Moreover, another test was performed with 400 cells and time step of 0.625 ns, i.e., �x/�t = 11.859. All simulations are 
performed with fixed particles per cell number of 10. Table 3 shows the simulation results. The results in the table indicate 
a suitable agreement with the mathematical expectation value of heat flux magnitude for �x/�t = 1.469. This implies that 
if the appropriate combination of cell size and time step be employed, the GBT scheme could predict heat flux with a high 
accuracy.

Table 3
Heat flux dependence on dt/dx at various Nsel .

Nsel q (W/m2) (�x/�t = 1.469) q (W/m2) (�x/�t = 11.859)

NTC 1509 –
N − 1 1512 1527
N/2 1514 1526
BB 1518 1536

It is worth noting that in Taheri et al. [13] the heat flux analysis was performed in the limit (dx → 0 and dt → 0) by 
using the SBT algorithm keeping the total number of particles same for a wide range of the number of particles per cell 
including such with much less than N = 10 down to N = 1 and N = 0.5. It was done by refining the grid appropriately with 
a decrease of the time step and cell size according to the condition used also here (�x/�t = 1.469). It was shown that the 
SBT scheme retains the same accuracy with respect to the heat flux for all cases with different number of particles per cell 
down to N = 0.5 (see Fig. 15 in [13]).

3.4. The lid-driven cavity

The other problem considered is the lid driven microcavity with a 1 × 10−6 m length containing the argon gas at Kn =
0.01, with the molecular mass and molecular diameter of 6.64 × 10−26 kg and 4.092 × 10−10 m, respectively; see Fig. 4. The 
lid velocity is set at 100 m/s, and all walls are diffuse reflectors at a constant temperature of 273 K. The GBT scheme was 
implemented in the DS2V code released with the Bird last monograph [5].

Fig. 4. Geometry and boundary condition of the cavity test case.

The GBT solution for the collision frequency and other flow field properties is compared with the prediction of other 
collision schemes. Data in Table 4 report the average value of CFratio calculated at the horizontal centerline of the cavity 
from the nearest neighbor (NN), SBT and GBT collision schemes. GBT results are reported with various Nsel magnitudes, i.e., 
Nsel = N − 4, N − 6 and 0.5N , where N = 10 particles per cell is set in the initial condition. The table shows a suitable 
agreement between the SBT and GBT results.

Flow field properties including velocity components, pressure distribution and temperature jump on the moving lid from 
NN, SBT, and GBT with various Nsel are reported in Fig. 5. An excellent agreement is observed between GBT solutions and 
SBT and NN solutions.
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Table 4
Comparison of the C Fratio from various collision schemes.

NN SBT GBT (Nsel = N − 4) GBT (Nsel = N − 6) GBT (Nsel = 0.5 × N)

0.9985934 0.9993474 0.9988435 0.9985452 0.9991280

Fig. 5. (a)–(b) Velocity components along the cavity horizontal centerline. (c) Pressure distribution at centerline. (d) Temperature jump on the moving lid.

3.5. Steady strong shock-wave

The next problem examined here is the one-dimensional stationary normal shock wave [1]. For this purpose, the Bird’s 
original one-dimensional code (DSMC-1S) is modified to include the SBT and GBT collision schemes.

The calculations are performed with a uniform grid of 600 cells without subcells. The stationary shock wave has a 
Mach number, defined as the ratio of shock wave velocity to the upstream speed of sound, of 8. The working fluid con-
sidered here is the argon gas at a reference temperature of 293 K. The variable soft sphere (VSS) model was used with 
scattering parameter of α = 1.6625, and the viscosity–temperature index is set at ω = 0.81. The upstream flow conditions 
are set as U1 = 2549.19 m/s, T1 = 293 K and number density of n1 = 1 × 1020 m−3. With this setting for temperature 
and molecular mass, the speed of sound at the upstream of the shock is calculated as a1 = 318.63 m/s. By using of suit-
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Fig. 6. Normalized density (a) and temperature (b) for different value of Nsel in normal shock.

able Rankine–Huguenot relation for the stationary normal shock wave, the downstream flow properties are computed as 
U2 = 667.17 m/s, T2 = 6115.52 K, n2 = 3.821 × 1020 m−3. The density and temperature are reported in the normalized 
form, i.e.: ρ̂ = ρ−ρ1

ρ2−ρ1
, T̂ = T −T1

T2−T1
. Fig. 6 shows the normalized density and temperature for the considered steady normal 

shock wave problem. The results obtained from GBT calculations with various Nsel are compared with the SBT solution. The 
figure shows an excellent agreement between the SBT and all GBT solutions for every used Nsel .

The BT collision family are able to perform accurate simulations with a small number of particles per cells [10,11]. To 
test the performance of the GBT scheme, the comparison is made with the solution of other collision schemes such as NTC 
and SBT. The stationary shock wave problem was simulated with a small number of particles per cell with SBT and GBT 
schemes. To reproduce the reference profile of density and temperature for a strong normal shock wave, we run the original 
DSMC1S.FOR code using NTC collision scheme with an average number of 50 simulator particles per cell. Fig. 7-a shows the 
normalized profiles obtained from both GBT formulas with PPC = 5 and two Nsel values, i.e., 2 and 3, completely match 
together. The NTC scheme was also run with PPC = 2. Fig. 7-b compares the solutions obtained from these schemes. Similar 
to SBT, GBT scheme could simulate the normal shock accurately with quite a low number of particles per cell. Fig. 7-c 
indicates that GBT scheme could keep the accuracy even with an average PPC = 0.5 with Nsel = 0.5 × N .

3.6. 70-degree blunted cone

The last test case considers the accuracy of the GBT scheme implemented on transient adaptive subcells (GBT-TAS) for 
treating hypersonic nitrogen flow over a 70-degree blunted cone, a simplified model but identical in geometric proportions 
to the Mars pathfinder probe. The same case was considered by Moss et al. [21] and recently by Palharini et al. [22]. 
Geometry, boundary condition and details of the computational domains of the geometry are demonstrated in Fig. 8. Table 5
presents freestream parameters used in the numerical simulation of the problem.

Table 5
Freestream values used in simulation.

Velocity (V∞) 1503.1 m/s
Temperature (T∞) 13.316 K
Number density (n∞) 3.717 × 1020 m−3

Density (ρ∞) 1.730 × 10−5 kg/m3

Pressure (P∞) 6.833 × 10−2 Pa
Dynamic viscosity (μ∞) 7.279 × 10−6 N s/m2

Mean free path (λ∞) 1.691 × 10−3 m
Knudsen (Kn∞) 0.034
Reynolds (Re∞) 178.6

Nitrogen at Tref = 300 K, with the molecular mass of 4.65 × 10−26 kg, molecular diameter of 4.17 ×10−10 m, the 
value of rotational collision number (Zrot = 5), and viscosity–temperature index of ω = 0.75, was considered. In the 
code, the vibrational mode was deactivated. The results reported here were obtained using a 200 × 200 grid adapted 
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Fig. 7. Comparison of different scheme for small number of particles per cell.

to PPC = 9.5 and subcells with an average number of particle per subcell of PPSC = 3 for SBT-TAS and GBT-TAS col-
lision algorithms. The algorithms were implemented in DS2V code of Bird. TAS technique is used to provide an ade-
quate number of subcells compatible with the instantaneous number of particles per each collision cell in hypersonic 
flow with significant variations of the collision frequency and gas mean free path [23,24]. Fig. 9 shows streamlines and 
the formed vortex behind the probe from the NN, the default scheme in DS2V, SBT-TAS, and GBT-TAS schemes. An 
excellent agreement is observed among all the schemes. Fig. 10 shows the surface properties of the probe obtained 
from the NN, SBT-TAS, and GBT-TAS with different numbers of collisions in subcell, i.e., Nsel = 0.5 × N , Nsel = 0.7 × N , 
Nsel = N − 2, where N is the instantaneous number of particles in each subcell. All results agree suitably with each 
other.

The computational performance of GBT-TAS with an average PPSC = 3 and Nsel = N − 2 is compared with SBT-TAS in 
Table 6. The required time and required number of iterations to achieve a converged heat flux distribution are reported. In 
this regard, the normalized difference between two consecutive outputs of the heat flux is considered, if this normalized 
difference is less than 0.0006, the solution is assumed to be reached a converged heat flux solution. The employed hardware 
is a Core-i7-3770 K CPU with 24 GB RAM. The table shows that computational cost of the GBT-TAS is lower than SBT-TAS 
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Fig. 8. Top: Mars pathfinder probe geometry, bottom: Geometry and boundary condition of the 70-degree blunted cone test case (units are in mm, Rc: cor-
ner radius, R j : cone base radius, Rn: nose radius).

Fig. 9. Streamlines and vortexes over the probe (a) SBT-TAS, (b) NN and (c) GBT-TAS.

if Nsel = N − 2. The table shows that even though the average number of selections per cell is higher for the SBT scheme, 
it has a relatively reduced rate of accepted collisions compared to the GBT, i.e., acceptance to selection ratio (〈Nc〉/〈Nsel〉) is 
around 30% for the SBT-TAS, while it is around 50% for the GBT-TAS with Nsel = N − 2.
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Fig. 10. Surface properties distribution (a), heat flux (b), shear stress (c). Pressure obtained from GBT-TAS at various Nsel compared with NN and SBT-TAS 
solutions.

Table 6
Comparison of computational performance of SBT-TAS and GBT-TAS.

Collision scheme CPU-time 
(min)

Number of sampling 
before heat flux 
convergence

Solution 
time (s)

〈Nsel〉 at
t = 3849.5 (s)

〈Nsel〉 at heat flux 
convergence time

〈Nc〉 at
t = 3849.5 (s)

Accept to select 
ratio at t = 3849

SBT-TAS, Nsel = N − 1 51.91 868 4745.531 2.36 2.39 0.73 30%
GBT-TAS, Nsel = N − 2 35.92 308 3849.500 1.59 1.59 0.85 53%

Concluding remarks

Here, a generalized Bernoulli Trial (GBT) collision is derived from the Kac stochastic equation. The GBT technique reduces 
the number of selected pairs for a possible binary collision while it ensures a correct collision frequency using a modified 
collision probability formula. The scheme is able to work with any desired number of collision pairs Nsel , selected from 
number of particles N occupied a considered cell within time step, e.g., Nsel < N −1, by using suitable time step and cell size. 
The derivation of two different GBT schemes was achieved considering two different points of views; one is a mathematical 
derivation and simplification of the solution operator of the Kac stochastic model and another is a generalization of the 
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Ballot Box (BB) and simplified Bernoulli Trial (SBT) correction formulas. Even though two different formulas were derived for 
GBT, solutions of both schemes completely agreed with each other. As the introduced correction in GBT formula increases 
the collision probability, further limitation in time step size should be set to avoid W ij > 1, where W ij is the collision 
probability. Both derived formulas were evaluated for various test cases, i.e., relaxation to equilibrium, dissociation of real 
gas, Fourier problem, cavity flow, steady shock wave and a blunted cone. In all occasions, GBT solution agreed well with the 
solution of the NTC, SBT and NN schemes while the computational performance of the GBT is reduced compared to the SBT 
scheme if a proper Nsel is chosen.
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Appendix A. A GBT pseudo algorithm

In GBT, the following pseudo algorithm for particle selection is running for each cell l.

1. Compute k′ = N(l)(N(l)−1)/2
Nsel(2N(l)−Nsel−1)

2. Choose Nsel from N(l) particles at random
3. Exchange their positions in the particle list (algorithm A).
4. For i = 1, Nsel

Compute k = (N(l) − i)
Compute index of second particle j = i + rand ∗ k + 1

Compute probability W ij = k′k∗Fnumdtσi j gi j

V l . If rand < W ij the collision of particle pair (i, j) is accepted and new particle 
velocities are computed
Proceed to next i

1. End
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