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1. Introduction

Given a �nite group G, the number of its element centralizers is known to have strong in�uence on its
structure. As the �rst example, abelian groups are exactly those groups with only one element centralizer.
The �rst nontrivial results are due to Belcastro and Sherman [6] who showed that
• There are no groups with 2 or 3 centralizers;
• A �nite group G has 4 centralizers if and only if G

Z(G)
∼= C2 × C2; and

• A �nite group G has 5 centralizers if and only if G
Z(G)

∼= C3 × C3 or S3.
The results of Belcastro and Sherman are extended by several authors in [1–3] to include all �nite groups
with at most 8 centralizers. Also, in the case of simple groups, Ashra� and Taeri in [4] describe all �nite
simple groups with atmost 22 centralizers and later Zarrin [9] characterizes all �nite semi-simple groups
with at most 73 centralizers.

In case of Lie algebras, the only results on centralizers we are aware of are due to Barnea and Isaacs
[5] who studied the relationships between the size of centralizers in a Lie algebra L with the dimension
of L/Z(L) as well as with the nilpotency of L. The works of Barnea and Isaacs are further continued
by Jaikin-Zapirain [7] and Mann [8]. We note that the same problem for groups was already studied
extensively by Ito in a series of papers within 1953–1973 and later continued by many authors.

The aim of this paper is to study Lie algebras with few centralizers. Indeed, we shall determine which
Lie algebras over a �nite �eld F have at most |F|2+|F|+2 centralizers. We note that the underlying �eld
of a Lie algebra with �nitely many centralizers is always �nite (see Theorem 3.1). To achieve our aim, we
also count the number of centralizers of all Lie algebras L for which L/Z(L) has dimension at most 4.

In what follows, Cent(L) denotes the set of centralizers of elements of a given Lie algebra L.
Throughout this paper, L denotes a Lie algebra over a �nite �eld F andZ stands for the centre of L. To ease
notations, the set of non-central elements of L will be denoted by L∗. Also, the map − : L −→ L/Z(L)
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denotes the natural epimorphism. Accordingly, Cent(L) = {C/Z(L) : C ∈ Cent(L)}. Moreover, if S is a
subspace of L including Z(L), then dim S/Z(L) is called the bar-dimension of S for convenience.

2. Counting centralizers in Lie algebras of low bar-dimensions

In this section, we count the number of centralizers of Lie algebras with central factors of dimension at
most 4. The following two theorems are straightforward and we omit their proofs.

Theorem 2.1. If dim L = 2, then |Cent(L)| = |F| + 2.

Theorem 2.2. If dim L = 3, then one of the following holds:
(1) |Cent(L)| = |F|2 +2 if and only if all but one of the proper centralizers of L have bar-dimension 1; and
(2) |Cent(L)| = |F|2 + |F| + 2 if and only if all of the proper centralizers of L have bar-dimension 1.

The rest of this section is devoted to the evaluation of the number of centralizers of a Lie algebra with
bar-dimension four.

Theorem 2.3. If dim L = 4, then one of the following holds:
(1) if Cent(L∗) has an abelian element with bar-dimension 3, then |Cent(L)| = |F|3 + 2;
(2) if Cent(L∗) has elements with bar-dimension 3 but none of which are abelian, then either

(i) L has a unique centralizer of bar-dimension 3 and Cent(L) = |F|3 + |F| + 3;
(ii) L = 〈a, b, c, d : [a, c] = c, [b, d] = d〉 ⊕ A and |Cent(L)| = |F|3 + |F|2 + |F| + 2;
(iii) L = 〈a, b, c, d, e : [a, c] = c, [b, d] = e〉 ⊕ A and |Cent(L)| = |F|3 + |F|2 + |F| + 2;
(iv) L = 〈a, b, c, d, e, f : [a, c] = e, [b, d] = f 〉 ⊕ A and |Cent(L)| = |F|3 + |F|2 + |F| + 2;
(v) L = 〈a, b, c, d, e : [a, c] = [b, d] = e〉 ⊕ A and |Cent(L)| = |F|3 + |F|2 + |F| + 2;
(vi) L = 〈a, b, c, d, e, f ∗ : [a, c] = [b, d] = e, [c, d] = αa + βb + f ∗ �= 0,α,β ∈ {0, 1}〉 ⊕ A and

|Cent(L)| = |F|2 + 2|F| + 2;
(vii) L = 〈a, b, c, d : [a, c] = [b, d] = αa+βb, [c, d] = βc−αd, (α,β) ∈ {(1, 0), (0, 1), (1, 1)}〉⊕A

and |Cent(L)| = |F|2 + 2|F| + 2; or
(viii) L = 〈a, b, c, d, e∗, f ∗, g∗ : [a, c] = a or e∗, [b, d] = b or f ∗, [c, d] = αa + βb + g∗ �= 0,α,β ∈

{0, 1}〉 ⊕ A and |Cent(L)| = |F|3 − |F|2 + 2|F| + 4;
(3) if Cent(L∗) has k ≤ |F| + 1 centralizers of bar-dimension 2, at least one element of bar-dimension 1

and no elements of bar-dimension 3, then |Cent(L)| = |F|(|F| + 1 − k) + |F|3 + 2; and
(4) if all elements of Cent(L∗) have bar-dimension 2, then |Cent(L)| = |F|2 + 2,
where A is an abelian Lie algebra and by e∗, f ∗, g∗ it means that they can be omitted from the generators as
well as relators.

Proof. First assume that L has centralizers with bar-dimension 3. If L has an abelian centralizer C of
bar-dimension 3, then one can easily see that CL(l) = C, for all l ∈ C\Z and CL(l) = 〈Z, l〉, for all
l ∈ L\C. Hence

|Cent(L)| = 2 +
|F|4 − |F|3

|F| − 1
= |F|3 + 2,

which is part (1). Now, assume that all centralizers with bar-dimension 3 are non-abelian. If L has
a unique centralizer CL(a) of bar-dimension 3, then we observe that CL(l) = 〈Z, a, l〉, for all l ∈

CL(a)\〈Z, a〉 and CL(l) = 〈Z, l〉, for all l ∈ L\CL(a). Thus

|Cent(L)| = 2 +
|F|3 − |F|

|F|2 − |F|
+

|F|4 − |F|3

|F| − 1
= |F|3 + |F| + 3,

and we have part (2i). Hence we may assume that L has at least two centralizers with bar-dimension 3. It
is easy to see that there must exist commuting elements a and b such thatCL(a) �= CL(b) and bothCL(a)
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and CL(b) have bar-dimension 3. Let CL(a) = 〈Z, a, b, d〉 and CL(b) = 〈Z, a, b, c〉. Since centralizers are
subalgebras, we must have [a, c] ∈ CL(b) so that [a, c] = αa + βb + γ c + z, for some α,β , γ ∈ F
and z ∈ Z. First suppose that γ �= 0, then by applying the transformations a �→ γ −1a and c �→

γ −1αa + γ −1βb + c + γ −1z, we may also assume that [a, c] = c. From the Jacobi identity

[a, d, c] + [d, c, a] + [c, a, d] = 0,

it follows that [c, d] = [a, [c, d]]. Assume [c, d] = α′a + β ′b + γ ′c + δ′d + z′ with α′,β ′, γ ′, δ′ ∈ F
and z′ ∈ Z. Then [c, d] = [a, [c, d]] = γ ′c. Hence either [c, d] = 0 or [a − γ ′−1d, c] = 0 so that,
by using the transformation d �→ a − γ ′−1d when γ ′ �= 0, we may assume that [c, d] = 0. Finally,
[b, d] ∈ CL(a)∩CL(c), which implies that [b, d] = β ′′b+ δ′′d+ z′′ with β ′′, δ′′ ∈ F and z′′ ∈ Z. But then
by suitable transformations of b and d, we may assume that either [b, d] = d or [b, d] = z′′ �= 0. Now, a
simple computation shows, in both cases, that dimCL(l) = 3 if and only if l ∈ 〈a, c〉∪〈b, d〉\{0} and that
themap 〈l〉 �→ CL(l) is a bijection for such elements l. Sowe have 2(|F|+1) centralizers of bar-dimension
3. Also, all other non-central elements have centralizers of bar-dimension 2 sharing two subspaces of bar-
dimension 1 with those centralizers of bar-dimension 3. Hence we have (|F|4 − (2|F|2 −1))/(|F|−1) =

(|F|2 − 1)(|F| + 1) centralizers of dimension 2. Therefore |Cent(L)| = |F|3 + |F|2 + |F| + 2 and parts
(2ii) and (2iii) follow.

Next assume that γ = 0 for any choice of a, b, c, d as above. Thus [a, c] = αa+ βb+ z. Similarly, we
have [b, d] = α′a + β ′b + z′ for some α′,β ′ ∈ F and z′ ∈ Z. Let [c, d] = α′′a + β ′′b + γ ′′c + δ′′d + z′′

with α′′,β ′′, γ ′′, δ′′ ∈ F and z′′ ∈ Z. From the Jacobi identity, it follows that β[b, d] = γ ′′[a, c] and
α′[a, c] = −δ′′[b, d]. Now, we have two cases.

(I) There exists an element x ∈ L\〈Z, a, b〉 with centralizer of bar-dimention 3. Then CL(x) has non-
trivial intersections with CL(a)\〈Z, a, b〉 and CL(b)\〈Z, a, b〉, from which by a suitable choice of c and
d we may assume that CL(c) = 〈Z, b, c, d〉 and CL(d) = 〈Z, a, c, d〉 have bar-dimension 3 so that L′ ⊆

〈Z, a, b〉. But then the same argument with CL(a) and CL(d), and CL(b) and CL(b) shows that L
′ ⊆

〈Z, a, d〉 and L′ ⊆ 〈Z, b, c〉. Therefore L′ ⊆ Z, which implies that [a, c] = z and [b, d] = z′. If 〈z〉 �= 〈z′〉,
then as before we may show that |Cent(L)| = |F|3 + |F|2 + |F| + 2, which gives part (2iv). Now, assume
that 〈z〉 = 〈z′〉. Then, by replacing d with a suitable multiple, we can further assume that z = z′. Since
dim L′ = 1, all proper centralizers have bar-dimension 3 and the map 〈l〉 �→ CL(l) is bijective, when l
runs over non-zero elements of L so that |Cent(L)| = 1 + (|F|4 − 1)/(|F| − 1) = |F|3 + |F|2 + |F| + 2
and this is part (2v).

(II) If CL(l) has bar-dimension 3, then l ∈ 〈Z, a, b〉. If 〈[a, c]〉 = 〈[b, d]〉, then by replacing d with
a suitable multiple, we can assume that [a, c] = [b, d]. Hence γ ′′ = β and δ′′ = −α. Then CL(l) =

〈Z, a, b, vc − ud〉 has bar-dimension 3 for every l = ua + vb ∈ 〈a, b〉\{0} so that L has exactly |F| + 1
centralizers of bar-dimension 3. Since any element with centralizer of bar-dimension 2 commutes with
some l ∈ 〈a, b〉\{0}, it follows that L has exactly |F|2 + |F| centralizers of bar-dimension 2. On the other
hand, one can easily check that L =

⋃

0�=l∈〈a,b〉 CL(l) so that there is no element with a centralizer of

bar-dimension 1. Therefore |Cent(L)| = |F|2 + 2|F| + 2. If (α,β) = (0, 0), then [a, c] = [b, d] = z �= 0
and [c, d] = α′′a + β ′′b + z′′ �= 0. Also, by replacing a, b with suitable multiples, one can assume that
α′′,β ′′ = 0, 1, which gives part (2vi). Otherwise, by using the transformations c �→ ua + vb + c and
d �→ u′a + v′b + d with a suitable choice of u, v, u′, v′, one can assume that α′′ = β ′′ = 0. Now, by
transformations (a, d) �→ (a+α−1z, d−α−1z′′)when α �= 0 and (b, c) �→ (b+β−1z, c+β−1z′′)when
β �= 0 we may further assume that z = z′′ = 0. Finally, by replacing a, b, c, d with suitable multiples, we
may also assume that α,β = 0, 1 so that we obtain part (2vii).

Next assume that 〈[a, c]〉 �= 〈[b, d]〉. Thenβ = α′ = γ ′′ = δ′′ = 0 and one can easily check thatCL(a)
and CL(b) are the only centralizers of bar-dimension 3, CL(l) for x ∈ (〈a, b, c〉 ∪ 〈a, b, d〉)\(〈a〉 ∪ 〈b〉) are
the only centralizer of bar-dimension 2 and all other proper centralizers have bar-dimension 1. Therefore
|Cent(L)| = |F|3−|F|2+2|F|+4. Finally, by suitable transformations a �→ ua+wz and b �→ v′b+w′z′,
we may assume that α′′,β ′′ = 0, 1, [a, c] = a, z and [b, d] = b, z′, from which we get part (2viii).
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Finally, suppose that Cent(L) has no elements of bar-dimension 3. If all elements of Cent(L∗) are
2-dimensional, then we obtain case (4). Hence we may assume Cent(L∗) contains 1-dimensional
elements. First suppose that Cent(L∗) contains two distinct elements C and D of dimension 2. Clearly,
L = C + D. If C = 〈c1, c2〉, D = 〈d1, d2〉 and dimCL(c1 + d1) = dimCL(c1 + d2) = 2, then there exist
αi,βi, γi, δi ∈ F (i = 1, 2) with (β1, δ1), (β2, γ2) �= (0, 0) such that [c1+di,αic1+βic2+γid1+δid2] = 0.
Hence

(γ1 − α1)[c1, d1] + δ1[c1, d2] − β1[c2, d1] = 0,

γ2[c1, d1] + (δ2 − α2)[c1, d2] − β2[c2, d2] = 0.

One can easily see that β1β2 �= 0 so that L′ = 〈[c1, d1], [c1, d2]〉 is 2-dimensional. But then all elements of
Cent(L∗) are 2-dimensional contradicting our assumption. Thus, for every element c ∈ C\{0} and a basis

{d, d
′
} of D, either CL(c + d) or CL(c + d′) is 1-dimensional. Hence, to every 1-dimensional subspace

C0 of C there corresponds a 1-dimensional subspace D0 such that CL(c + d) = 1 for all c ∈ C0\{0}
and d ∈ D\D0. Therefore Cent(L

∗) contains at least (|F| + 1)(|F|2 − |F|) = |F|3 − |F| elements with
dimension 1. Now, if k denotes the number of 2-dimensional elements of Cent(L∗), then we observe that

k ≤
(|F|4 − 1) − (|F|3 − |F|)(|F| − 1)

|F|2 − 1
= |F| + 1.

This yields case (3) and the proof is complete.

Example. Let L = 〈x, y, z,w : [x, z] = w, [x,w] = [y, z] = z, [y,w] = y〉 be a 4-dimensional Lie
algebra with Z(L) = 0. Then L has exactly |F| + 1 centralizers of bar-dimension 2 and all other proper
centralizers have bar-dimension 1. Hence the bound given in part (3) of the above theorem is sharp.

Note that Lie algebras satisfying part (4) of the above theorem always exist (see the example to
Theorem 3.4 for instance).

3. Lie algebras with few centralizers

Utilizing the results of Section 2, we are now able to determine all Lie algebras Lwith atmost |F|2+|F|+2
centralizers. In addition, in this case, the possible number of centralizers of Lwill be computed.We begin
with the characterization of those non-abelian Lie algebras which admit the smallest possible number
of centralizers.

Theorem 3.1. Let L be a non-abelian Lie algebra. Then |Cent(L)| ≥ |F| + 2 and the equality holds if and
only if dim L = 2.

Proof. Since L is not abelian, there exist two elements a and b in L such that [a, b] �= 0. Let Aa,b =

{αa + b : α ∈ F} ∪ {0, a}. A simple veri�cation shows that CL(x) �= CL(y), for all distinct elements x
and y of Aa,b. Therefore |Cent(L)| ≥ |F| + 2. On the other hand, by Theorem 2.1, |Cent(L)| = |F| + 2
whenever dim L = 2. Hence it remains to show that dim L = 2, when |Cent(L)| = |F| + 2.

Suppose that |Cent(L)| = |F| + 2 and let a, b ∈ L such that [a, b] �= 0. Since {CL(l) : l ∈ Aa,b}

possesses |F| + 2 distinct centralizers, it follows that Cent(L) = {CL(l) : l ∈ Aa,b}. In particular,

L = CL(a) ∪
⋃

α∈F

CL(αa + b).

If x ∈ L\CL(a) is any element, then a + x ∈ L\CL(a) and hence there exist α,β ∈ F such that

x ∈ CL(αa + b) and a + x ∈ CL(βa + b),
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which imply that

α[a, x] + [b, x] = 0 and β[a, x] + [b, x] = [a, b].

Clearly, α �= β and we have [a, (β −α)x− b] = 0, from which it follows that x ∈ CL(a)+ Fb. Therefore
L = CL(a) + Fb and hence dimCL(a) = dim L − 1. Similarly, dimCL(b) = dim L − 1. On the other
hand, CL(a) ∩ CL(b) ⊆ CL(l) for all l ∈ L so that CL(a) ∩ CL(b) ⊆ Z. Now, we have

dim L = dim L − dimZ

≤ dim L − dim(CL(a) ∩ CL(b))

≤ (dim L − dimCL(a)) + (dim L − dimCL(b)) = 2,

which implies that dim L = 2, as required.

For further analysis of centralizers, we need to introduce a particular class of Lie algebras.

De�nition. A CA-Lie algebra is a Lie algebra all of whose proper centralizers are abelian.

We note that the elements of Cent(L∗) in a CA-Lie algebra L give rise to a partition of L in the sense
that no non-zero element of L belongs to two distinct elements of Cent(L∗). The following result gives a
lower bound for the number of centralizers of a CA-Lie algebra in terms of its bar-dimension.

Lemma 3.2. If Cent(L∗) partitions L, then

|F|
⌈

dim L/2
⌉

+ 2 ≤ |Cent(L)|.

Proof. Let dim L = n. If dimC = k > n/2 for some C ∈ Cent(L∗), then since L =
⋃

X∈Cent(L∗) X and

dimX ≤ n − k for all X ∈ Cent(L∗)\{C}, it follows that

|L| ≤ |C| + (|Cent(L)| − 2)(|F|n−k − 1).

Hence

|F|�
n
2 � + 2 ≤ |F|k + 2 ≤ |Cent(L)|,

and we are done. Finally, suppose that dimX ≤ n/2, for all X ∈ Cent(L∗). Then

|F|�
n
2 � + 1 ≤

|F|n − 1

|F|�
n
2 � − 1

≤ |Cent(L)| − 1,

as required.

In what follows, CentL(S) (resp. CentL(S)) stands for the set of all CL(s) (resp. CL(s)) of elements
s ∈ S ⊆ L, in which L is a given Lie algebra.

Lemma 3.3. Let L be a Lie algebra of bar-dimension n ≥ 5 such that |Cent(L)| ≤ |F|2 + |F| + 2. For any
commutative subspace C ⊆ L of dimension 2 disjoint from Z(L), there exists an element l ∈ L such that
CC(l) = 0.

Proof. Assume CC(l) �= 0 for all l ∈ L. Then L =
⋃

l∈C\{0} CL(l). There exists X ∈ CentL(C
∗) such that

dimX = n − 1, for otherwise

|F|n = |L| ≤ (|F| + 1)|F|n−2 < |F|n,
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which is a contradiction. Let s be the number of those elements Y of CentL(C
∗)\{X} of dimension n− 1

and t = |F| − s. Since dim(X ∩ Y) = n − 2 for any such Y , it follows that

|F|n = |L| ≤ |X| + s(|F|n−1 − |F|n−2) + t(|F|n−2 − |F|2),

which is impossible unless s = |F| and t = 0. Thus dimCL(l) = n − 1 for all l ∈ C\{0}. Assume
dimCL(x) < n − 1 for some x ∈ L. Clearly, x ∈ CL(a) for some a ∈ C\{0}. Let D = 〈a, x〉. Since
D is commutative, the above argument grantee the existence of an element l ∈ L such that CD(l) = 0.
Then |CentL(D + l)| = |F|2 otherwise CL(d1 + l) = CL(d2 + l) for distinct elements d1, d2 ∈ D, which
implies that [d1 + l, d2 + l] = 0 or [d1 − d2, l] = 0, a contradiction. Clearly, |CentL(D

∗)| = |F| + 1
and that CentL(D

∗) and CentL(D+ l) are disjoint. Thus |Cent(L)| = |F|2 + |F| + 2. On the other hand,
|CentL(C

∗)| = |F|+1 andCentL(C
∗) andCentL(D+l) are also disjoint for every centralizer inCentL(C

∗)

contains a but no centralizer in CentL(D+ l) contains a. Hence, we must have CentL(C
∗) = CentL(D

∗),
which implies thatCL(x) = CL(b) has bar dimension n−1 for some b ∈ C\〈a〉, which is a contradiction.
Therefore, all nontrivial centralizers in L have bar dimension n− 1. If l ∈ L\Z(L) and l′ ∈ L\CL(l), then
Z(CL(l))∩CL(l

′) = Z(L), which is possible only ifZ(CL(l)) = 〈l〉. This shows that, themap 〈l〉 �−→ CL(l)
is injective and subsequently |Cent(L)| = |F|n > |F|2 + |F| + 2, the �nal contradiction.

Theorem 3.4. Let L be a Lie algebra such that |Cent(L)| > |F| + 2. Then |Cent(L)| ≥ |F|2 + 2 and the
equality holds if and only if
(1) dim L = 3 and all but one of the proper centralizers of L have bar-dimension 1; or
(2) dim L = 4 and all of the proper centralizers of L have bar-dimension 2.

Proof. Let dim L = n. By Theorems 2.1, 2.2 and 2.3, we can assume that n ≥ 5. Moreover, we assume
|Cent(L)| ≤ |F|2 + 2. If all proper centralizers of L have bar-dimension 1, then

|Cent(L)| = 1 +
|L| − 1

|F| − 1
= |F|n−1 + |F|n−2 + · · · + |F| + 2 > |F|2 + 2

and we are done. Hence one can assume that there exist commuting elements a, b ∈ L\Z such that
〈a〉 �= 〈b〉. Let C = 〈a, b〉. By Lemma 3.3, there exists an element l ∈ L such that CC(l) = 0. Then
|CentL(C + l)| = |F|2 and consequently |Cent(L)| ≥ |F|2 + 2.

Finally, suppose that the equality holds. Then CL(c) = CL(a) = CL(b), for all c ∈ C\{0}. Let S :=
CL(a). We show that S is abelian. To this end, let s ∈ S\Z. If CL(s) = CL(c + l) for some c ∈ C, then
[a, l] = 0 as a ∈ CL(s), which is a contradiction. Thus CL(s) = S, as required. Since, the elements a and
b were arbitrary, it follows that all proper centralizers of L are abelian so that L is a CA-Lie algebra. But

then Lemma 3.2 yields |F|�
n
2 � ≤ |F|2. Hence n ≤ 4, which is a contradiction.

Example. The following Lie algebras satisfy parts (1) and (2) of the above theorem.
(1) Let Lλ = 〈x, y, z : [x, y] = y, [x, z] = λz〉 be a 3-dimensional Lie algebra with dim(L′) = 2 and

Z(L) = 0. Then |Cent(L)| = |F|2 + 2.
(2) Let L = 〈x, y, z,w : [x, z] = w, [x,w] = [y, z] = z, [y,w] = λw〉 if char(F) > 2 and λ ∈ F\{x2 :

x ∈ F} and L = 〈x, y, z,w : [x, z] = w, [x,w] = [y, z] = z, [y,w] = λz + λw〉 if char(F) = 2 and
λ−1 ∈ F\{x(x− 1) : x ∈ F}. Then L is a 4-dimensional Lie algebra with dim(L′) = 2 and Z(L) = 0.
One can easily see that |Cent(L)| = |F|2 + 2.

In what follows, we present the third smallest possible size of the set Cent(L) of a non-abelian Lie
algebra L .

Theorem 3.5. Let L be a Lie algebra such that |Cent(L)| > |F|2 + 2. Then |Cent(L)| ≥ |F|2 + |F| + 2
and the equality holds if and only if dim L = 3 and all proper centralizers of L have bar-dimension 1.
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Proof. Let dim L = n. First observe that if n ≤ 4, then the result holds by Theorems 2.1, 2.2 and 2.3.
Hence it is enough to consider the case where n ≥ 5. Suppose that |Cent(L)| ≤ |F|2 + |F| + 2. We
proceed in some steps.

Step 1. If C is a commuting subspace of L of dimension 2 disjoint from Z, then there exist elements
a, b such that C = 〈a, b〉 and CL(a) = CL(b). First of all we note that such a C exists as in the �rst
paragraph of Theorem 3.4. Also, by Lemma 3.3, there exists an element l ∈ L such that CC(l) = 0.
If |CentL(C)| < |F| + 2, then we are done. Hence assume that |CentL(C)| = |F| + 2. We know that
|CentL(C+ l)| = |F|2. In addition, CentL(C) ∩CentL(C+ l) = ∅ for otherwise l commutes with a non-
zero element of C. Thus Cent(L) = CentL(C) ∪ CentL(C + l). Now, if C = 〈a, b〉 and x ∈ CL(a)\CL(b),
then we must have CL(x) = CL(c) for some c ∈ C\{0}, otherwise CL(x) = CL(c + l) for some c ∈ C so
that a commutes with l contradicting the assumption on l. But then b ∈ CL(x), which is a contradiction.
Thus CL(a) ⊆ CL(b). Similarly CL(b) ⊆ CL(a), which implies that CL(a) = CL(b), contradicting the
fact that |CentL(C)| = |F| + 2.

Step 2. If C is a commuting subspace of L of dimension 3 disjoint from Z, then CC(l) �= 0, for all
l ∈ L. Indeed, if CC(l) = 0 for some l ∈ L, then CentL(C + l) contains |F|3 distinct centralizers, which
is impossible.

Step 3. There is no element of dimension n− 1 in Cent(L). Suppose on the contrary that C is such an
element. Clearly,

|Cent(L)| ≥ |Cent(C)| + |CentL(L\C)|.

From step 2, we know that dimZ(C) ≤ 2. If dimZ(C) = 2, then dimCL(l) ≤ n−2 for all l ∈ L\C so that
|CentL(L\C)| ≥ |F|2. Thus |Cent(C)| < |F|+2, which is possible only if C is abelian (see Theorem 3.1).
But then, dimC = dimZ(C) = 2 and consequently dim L = 3, a contradiction. Therefore dimZ(C) =

1. Clearly, |CentL(L\C)| ≥ |F| so that |Cent(C)| < |F|2 + 2. Now, by Theorem 3.4, dimC/Z(C) ≤ 2,
which implies that dim L ≤ 4, a contradiction.

Step 4. L has no commuting subspaces of dimension 3 disjoint from Z. Suppose on the contrary
that C is such a subspace. We show that |CentL(C

∗)| ≤ |F|2. First observe that CentL(C
∗) has at most

|F|2 + |F| + 1 elements. If every element of CentL(C
∗) appears twice, then |CentL(C

∗)| ≤ (|F|2 + |F| +

1)/2 < |F|2 and we are done. Otherwise, there exists an element x ∈ C\{0} such that CL(x) �= CL(l), for
all l ∈ C\〈x〉. But then, by step 1, among |F| subspaces of 〈x, l〉 of dimension 1 di¡erent from 〈x〉, there
are two of which, say 〈la〉 and 〈lb〉, satisfying CL(la) = CL(lb). Since 〈la〉 and 〈lb〉 are all distinct when
〈x, l〉 ranges over all subspaces of C of dimension 2 including x and there are |F| + 1 such subspaces, it
follows that

|CentL(C
∗)| ≤ (|F|2 + |F| + 1) − (|F| + 1) = |F|2,

as required. On the other hand, from step 3, we know that all elements of CentL(C
∗) have dimen-

sion at most n − 2. Also, step 2 indicates that the elements of CentL(C
∗) cover L. Thus |L| <

|CentL(C
∗)||F|n−2 = |F|n, which is a contradiction.

Step 5. There is an element of dimension n − 2 in Cent(L). If m denotes the maximum dimension
among elements of Cent(L∗), then

|F|n = |L| < |Cent(L)||F|m < |F|m+3,

which implies thatm ≥ n − 2. Sincem ≤ n − 2 by step 3, we must havem = n − 2.
Now, assume that C = CL(x) ∈ Cent(L) is an element of dimension n − 2. For any l ∈ L\C, we have

|CL(l)| = |F|s+t , where |F|t = |CL(l) ∩ C|, in which s = 1, 2 and t ≤ n − 2 − s. Hence |CL(l)\C| ≤
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|F|n−2 − |F|n−4 so that

|CentL(L\C)| ≥
|F|n − |F|n−2

|F|n−2 − |F|n−4
= |F|2.

On the other hand, by step 4, |CL(l) ∩ C| = |F|2 for all l ∈ C\〈x〉 so that

|CentL(C
∗)| ≥

|F|n−2 − |F|

|F|2 − |F|
= |F|n−4 + · · · + |F| + 1.

Therefore |Cent(L)| = 1+|CentL(C
∗)|+|CentL(L\C)| ≥ |F|2+|F|n−4+· · ·+|F|+2, which is possible

only if n = 5 and |Cent(L)| = |F|2 + |F| + 2. Then |CL(l)| = |F|n−2 = |F|3 and |CL(l) ∩C| = |F|n−4 =

|F|, for all l ∈ L\C. Also, CL(a) = CL(b), for all a, b ∈ 〈x, l〉\〈x〉 and l ∈ C\〈x〉. However, if y ∈ L\C and
CL(x)∩CL(y) = 〈z〉, then y ∈ CL(z) = CL(x+ z) from which it follows that y ∈ CL(x), a contradiction.
The proof is complete.

Example. Let L = sl3(F) = 〈x, y, z : [x, y] = z, [x, z] = −2x, [y, z] = 2y〉. Then |Cent(L)| = |F|2 +

|F| + 2 and L satis�es the above theorem.
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