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 ABSTRACT 

 Graphene is a new class of two-dimensional carbon nanostructure, which holds 

great promise for the vast applications in many technological fields. It would be 

one of the prominent new materials for the next generation nano-electronic 

devices. In this paper the influence of various vacancy defects on the critical 

buckling load of a single-layered graphene nanosheet is investigated. The 

nanosheet is modeled on the base of structural mechanics approach which covalent 

bonds between atoms are modeled as equivalent beam elements in a finite element 

model. The mechanical properties of the nanosheet extracted from the model are in 

good agreement with those of other research works. Effect of the number of 

vacancies and their positions on the critical buckling load is investigated in the 

present work. Our results show that the location of the vacancy has a significant 

role in the amount of critical buckling load. Furthermore, as the density of the 

vacancies increases, the value of critical buckling load decreases and the 

relationship is approximately linear.                         

                                                           © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords: Graphene; Structural mechanics; Buckling; Vacancy defect. 

1    INTRODUCTION 

FTER the discovery of carbon nanotubes, efforts have been made to study the nano size graphene sheets. 

Analysis of graphene sheets is a fundamental issue in the study of the nanomaterials since many of the carbon-

based nanostructures for example, carbon nanotubes, fullerenes, nanorings etc. are viewed as deformed graphene 

sheets. Graphene is a new class of two- dimensional carbon nanostructure, which holds great promise for the vast 

applications in many technological fields. It would be one of the prominent new materials for the next generation 

nano- electronic devices. Reports related to its applications as strain sensor [1], mass and pressure sensors [2], 

atomic dust detectors [3], enhancer of surface image resolution [4] are observed [5]. In particular, graphene sheets 

are the thinnest material known to the current science [6]. A monolayer of carbon atoms tightly packed into a two-

dimensional hexagonal lattice makes up a single layer graphene sheet (SLGS), which is the basic building block for 

bulk graphite and carbon nanotubes (CNTs) [7].  

To analyze mechanical behavior of graphene, two numerical tools are available. Molecular dynamics simulation 

is a technique that allows one to determining the physical and mechanical properties of materials in nanoscale. This 

achieved by solving Newton’s equations of motion with the atoms interacting through assumed interatomistic 

potentials [8, 9,10]. The second method which is known as structural mechanic approach is based on finite element 
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models. The inter-atomic interactions due to covalent and non-covalent bonds are replaced by beam and spring 

elements, respectively in the structural model.  

The structural mechanics approach developed by Li and Chou [11]. This model considers a single-walled carbon 

nanotube as a geometrical frame-like structure so that primary bonds between atoms act as loadbearing beam 

members, while the carbon atoms are seen as joints of these members. By linking structural mechanics and 

molecular mechanics, they have obtained the sectional property parameters of these beam members. Study of the 

elastic properties of single-walled carbon nanotubes containing vacancy defects using nanoscale continuum 

modeling implemented with beam elements was presented by Sakharova et al. [12]. Since the structural mechanics 

approach is an established technique in nanotube applications, it is the logical choice for the mechanical analysis of 

the graphene sheet as well [13]. 
Hemmasizadeh et al. [14] proposed an equivalent continuum model for studying the mechanical behavior of 

single-layered graphene sheets. By combining continuum and atomistic approaches, Lu and Huang [7] investigate 

the mechanical properties of single-atomic-layer graphene sheets. Shokrieh et al. [15] presented an analytical 

formulation to predict the elastic moduli of graphene sheets and carbon nanotubes using a linkage between lattice 

molecular structure and equivalent discrete frame structure. Cheng and shi [16] predicted equivalent mechanical 

properties of monolayer graphene sheets by an improved molecular structural mechanics model.  

A defect which occurs as a vacancy within the hexagonal network may decrease the mechanical properties of 

nano sheet and could downgrade its capability as a mechanical reinforcement. Several authors have studied the 

effect of defects and vacancies on graphene sheets properties from the atomistic point of view, although the focus 

has been mostly on the electronic properties [17–20]. The fracture behavior of a graphene sheet, containing a center 

crack was characterized based on the atomistic simulation and the concept of continuum mechanics [21]. An 

atomistic based finite bond element model has been developed to study the effects of multiple Stone–Wales defects 

on mechanical properties of graphene sheets and carbon nanotubes [22]. The influence of vacancies on the elastic 

properties of a single-layer graphene sheet is investigated using atomistic finite element analysis by Tapia et al. [6]. 

Canadija et al. [13] represented the influence of the vacancy location and the density of vacancies on the bending 

behavior of a SLGS.  

     When compressive loads are applied to the plate, it tends to buckle. Understanding the buckling behavior of 

plates is an important issue from design perspective. Graphene sheets as an upcoming nano engineering structures 

can also be subjected to in-plane loads. For proper use of graphene sheets as microelectromechanical system 

(MEMS) and nanoelectromechanical system (NEMS) components, its stability response under in-plane load should 

be studied. Thus there is a strong encouragement for acquiring proper understanding and mathematical modeling of 

the buckling of graphene sheets. Though study of buckling of graphene sheets is an important factor for proper 

design of nanodevices, miniscule numbers of studies are reported. [5]. 

In this study, the influence of various vacancy defects on the critical buckling load of a single-layered graphene 

nanosheet is investigated. The nanosheet is modeled on the base of structural mechanics approach using Abaqus 

software.  

2    STRUCTURAL MECHANICS APPROACH TO MODELCARBON NANOSHEETS  

We have proposed a structural mechanics method to model the SLGS. The total steric potential energy due to 

interactions between carbon atoms can be represented by [13]  

 

total r vdwU U U U U U            (1) 

 

where  
rU  is for a bond stretch interaction,  U   for a bond angle bending,  U   for a dihedral angle torsion,  U   for 

an improper (out-of-plane) torsion,  vdwU  for a nonbonded van der Waals interaction, as shown in Fig. 1. In general, 

for covalent systems, the main contributions to the total steric energy come from the first four terms, which have 

included four-body potentials. Under the assumption of small deformation, the harmonic approximation is adequate 

for describing the energy [23]. For sake of simplicity and convenience, we adopt the simplest harmonic forms and 

merge the dihedral angle torsion and the improper torsion into a single equivalent term, i.e. 
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Fig. 1 

Interatomic interactions in molecular mechanics [13]. 

 

 

where ,rk k and k   are the bond stretching force, bond angle bending force and torsional resistance constant, 

respectively. The symbols ,r    and   represent the bond stretching increment, the bond angle change and the 

angle change of bond twisting, respectively. 

In a carbon nanosheet, the carbon atoms are bonded to each other by covalent bonds and form hexagons on the 

wall of the tube. These covalent bonds have their characteristic bond lengths and bond angles in a three-dimensional 

space. When a nanosheet is subjected to external forces, the displacements of individual atoms are constrained by 

these bonds. The total deformation of the nanosheet is the result of these bond interactions. By considering the 

covalent bonds as connecting elements between carbon atoms, a nanosheet could be simulated as a frame-like 

structure. The carbon atoms act as joints of the connecting elements. 

In the following, we establish the relations between the sectional stiffness parameters in structural mechanics and 

the force constants in molecular mechanics. For convenience, we assume that the sections of carbon–carbon bonds 

are identical and uniformly round. Thus it can be assumed that Ix = Iy = I and only three stiffness parameters, EA, 

EI and GJ, need to be determined. Because the deformation of a space frame results in the changes of strain 

energies, we determine the three stiffness parameters based on the energy equivalence. Notice that each of the 

energy terms in molecular mechanics (Eqs. (2) – (4)) represents an individual interaction and no cross-interactions 

are included, hence we also need to consider the strain energies of structural elements under individual forces. 

According to the theory of classical structural mechanics, the strain energy of a uniform beam of length L subjected 

to pure axial force P (Fig. 2(a)) is  
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where L  is the axial stretching deformation. The strain energy of a uniform beam under pure bending moment M 

(Fig. 2(b)) is 
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where   denotes the rotational angle at the ends of the beam. The strain energy of a uniform beam under pure 

torsion T (Fig. 2(c)) is 
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where   is the relative rotation between the ends of the beam. 

 

 

         
      

 

 

 

 

 

 

 

Fig. 2 

Pure tension, bending and torsion of an element. 

 

 

 

It can be seen that in Eqs. (2) – (7) both 
rU  and 

PU  represent the stretching energy, both U   and 
MU  represent 

the bending energy, and both U   and 
TU  represent the torsional energy. It is reasonable to assume that the rotation 

angle 2  is equivalent to the total change   of the bond angle,  L  is equivalent to r , and   is equivalent 

to  . Thus by comparing Eqs. (2) – (4) and Eqs. (5) – (7), a direct relationship between the structural mechanics 

parameters EA, EI and GJ and the molecular mechanics parameters ,rk k  and k   are deduced as follows [13]: 
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where E and G are the beam elastic and shear moduli, respectively, A is the cross-sectional area, L the beam length 

(bond distance between carbon atoms), I the moment of inertia and J the polar moment of inertia of the beam. Eqs. 

(8–10) establishes the foundation of applying the theory of structural mechanics to the modeling of carbon 

nanotubes or other similar fullerene structures. As long as the force constants ,rk k  and k  are known, the 

sectional stiffness parameters EA, EI and GJ can be readily obtained. 

3    MODELING OF NANOSHEETS USING FINITE ELEMENT MODEL  

The structural model discussed above describes a nanosheet model using beam elements. Also, the carbon atoms 

will be denoted by nodes at appropriate positions. By assuming a circular beam section with diameter d, the 

sectional and material properties of the beam element are determined as follows: 
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(11) 

 

The force field constants ,rk k  and k   are assumed 7 10 26.25 10 , 8.76 10N nm Nnm rad   and 

10 22.78 10 Nnm rad  respectively. Furthermore, the carbon-carbon bond length L=0.142 nm is used [24-26]. 
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Substituting these parameters into Eq. (11) we get 

 

0.147 , 5.49 , 0.87bd nm E Tpa G Tpa    (12) 

 

These parameters are used as inputs to the finite element model. To model the atomic bonds, a two node spacial 

beam element is used in ABAQUS. A zig-zag SLGS of side lengths 6.248a nm and 4.182b nm was modeled. 

The model is illustrated in Fig. 3. The hexagonal lattice of SLGS and its dimensions are demonstrated in Fig. 3(a). 

Carbon–carbon bonds are modeled as beam elements and nodes are located at carbon atom positions (Fig. 3(b)).  

          

       (a)  

 

 

 

                                     (b) 

 

Fig. 3 

SLGS., (a) Finite element model, (b) Equivalent beam model. 
 

 

4    SLGS VACANCY PATTERNS    

In present work, the Tapia et al. [6] types of vacancy defects are assumed. Fig. 4 displays the locations and labels of 

vacancies are selected to provide adequate information about effect of positions and densities of vacancies on 

buckling response of graphene nanosheet. Analyzed sheets were made up of 29 17  hexagonal rings. A vacancy 

was simply modeled by the elimination of a corresponding finite element node and three corresponding beam 

elements used for bonds simulation. 

The case ‘‘SLGS’’ represents the baseline case of a graphene sheet without vacancy. Configurations labeled with 

letters ‘‘C’’, ‘‘U’’, ‘‘L’’, ‘‘B’’ and ‘‘F’’ represent cases with a single vacancy located at the center, upper, lower, 

back and front part of the sheet, respectively. Configurations ‘‘UX3’’, ‘‘CX3’’ and ‘‘LX3’’ contain three vacancies 

equally spaced in a row along the x-direction, with the three vacancies located at a constant y which is different for 

each configuration. Configurations‘‘BY3’’, ‘‘CY3’’, and ‘‘FY3’’ are analogous to UX3, CX3 and LX3 but the three 

vacancies are located in a column along the y-direction at different x-positions for each case. Configurations‘‘CX5’’, 

‘‘CX7’’and ‘CX9’’contain five, seven and nine vacancies, respectively, spaced along a central row at y = b/2. 

Finally, configurations ‘‘A5’’, ‘‘A9’’, and‘‘A21’’ are arrays of five, nine and 21 vacancies as shown in Fig. 4.  
 

  SLNS                                          C 

      
 U         L 

 

   

 

 
        B 



548                       S.M.H. Farrash et al.   

 
 

© 2017 IAU, Arak Branch 

     
 

        

  F                                                  CX3 

      

 LX3                                             BY3 

         

CX5                                              CX7 

      

 A5                                                A9 

      

        UX3 

        
         

        FY3 

         
 

 

       CX9 

         
 

       A21 

        

Fig. 4 

Graphene sheets – labels and vacancy positions, according to Tapia et al.[6] 

5    MODEL VALIDATION     

To validate the model, the values of elastic properties of the pristine SLGS, the Young’s modulus, shear modulus 

and poison’s ratio have been calculated and compared to those of other researches in Table 1. 

The Young’s modulus of a material is the ratio of normal stress to normal strain as obtained from a uniaxial 

tension test. So, the Young’s modulus of SLGS (E0) has been calculated using the following equation: 
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where P is the axial force, A is the cross sectional area of the nanosheet subjected to axial load, a  is elongation 

and a is the initial length of nanosheet. Moreover, A is equal to b t  where t is the thickness of the nanosheet. The 

value of the thickness has been assumed 0.34 nm [6, 12, 27].   

Fig. 5 shows the displacement contour plots in x and y directions. Using Abaqus model, the values of E, G and   

for pristine sheet have been obtained 1.033 Tpa, 0.192 Tpa and 0.0821 respectively. As it can be seen in Table 1. the 

obtained Young’s modulus of the nanosheet by the present work is almost the same as their comparable results. 

Furthermore, the values of G and   are found 0.19 Tpa and 0.07 respectively from our simulation which are in good 

agreement with the values presented by Tapia et al. [6].  

To confirm the validation of models with vacancy defects, the simulation of tensile test and shear test were 

executed for these models and the mechanical properties were compared to those from Tapia et al.[6]. The results 

for elastic modulus are presented in Fig. 6. 

Fig. 6(a) and 6(b) show the values of E/E0 when the location of the single or triple vacancy defect varies along x 

and y direction, respectively. Based on these figures, although the Young’s modulus reduces by increasing the 

number of vacancies, the location of vacancies has no significant effect on this value. Fig. 6(c) displays the influence 

of the number of vacancies on the nanosheet Young’s modulus. Considering the graph, we can say that a rise in the 

number of vacancies brings about an approximately linear decline in the value of the nanosheet Young’s modulus.  

The effect of the areal density of vacancies (A/A0, where A0 = a b  is the full area of the nanosheet and A is total 

area of the vacancies) on the elastic properties of the sheet for configurations C, A5, A7, A9 and A21 has been 

illustrated in Fig. 6(d). A linearly decreasing behavior is observed between E and the areal density of vacancies.  

As it can be seen from these graphs, the values of elastic modulus, obtained from our models match well with 

those predicted by Tapia et al. [6].   

 
Table 1 

Comparision of Young’s modulus results for single layered graphene sheet (E0). 

Investigators Young’s modulus (Tpa) 

Present work 1.041 

Tapia et all. [6] 1.042 

Sakhaee-pour[27] 1.040 

Shokrieh and Rafiee [15] 1.04 

Li and Chou [12] 1.033 

Lier et al. [28] 1.11 

Kudin et al.[29] 1.029 

Xiao et all. [30] 1.06 

Reddy et all. [31] 1.11 

Wu et all. [32] 1.06 

Natsuki et all. [33] 1.06 
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(b) 

  

Fig. 5 

Displacement contour plots, (a) x direction, (b) y direction. 
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Fig. 6 

The influence of location and number of vacancies on the Young’s modulus, (a) single or triple vacancy defect varies along x 

direction, (b) single or triple vacancy defect varies along y direction, (c) influence of the number of vacancies along x direction, 

(d) the effect of the areal density of vacancies. 

6    INFLUENCE OF THE VACANCY DEFECT ON THE BUCKLING BEHAVIOR OF A SLGS   

On the base of the lack of study on the buckling of thin nanoplates such as graphene sheets with allowance for 

vacancy defects, this article presents the influence of the vacancy location and the density of defects on the critical 

buckling load of a single-layered graphene nanosheet. 

The assumed rectangular simply supported SLGS is shown in Fig. 7. A distributed load has been applied on the 

edge at x=0; furthermore, a displacement boundary condition Ux=0 has been implemented on all nodes which are 

located at x=a. Let the magnitude of compressive force per unit length of the edge be denoted by Nx. By gradually 

increasing Nx we arrive at the condition where the flat form of equilibrium of the compressed plate becomes unstable 

and buckling occurs.  

The elastic buckling load of the model is computed by the structural stability method [34] that finds compressive 

forces by which the generated model does not have a unique equilibrium configuration. The compressive forces are 

obtained through the eigenvalue problem solution. Then, the minimum force is considered as the buckling force of 

the SLGS. In order to study the effect of various defect types on the elastic buckling behavior of the SLGS, various 

vacancies according to Fig. 4 were generated and corresponding buckling loads are calculated. First buckling mode 

shapes for some vacancy defects are demonstrated in Fig. 8.  
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Fig. 7 

Simply supported SLGS under in-plane compression load, 

At x=0; Uz=0, At x=a; Ux= Uz=0, At y=0; Uz=0, At y=b; 

Uz=0. 

 

 

              

(a)  

 
(b)          

  

(c)  (d)  
  

(e)  (f)  

  

Fig. 8 

First buckling mode shape of a single layer graphene nanosheet with different defects, (a) SLGS, (b) “C” defect configuration, 

(c) “F” defect configuration, (d) “CX3” defect configuration, (e) “A5” defect configuration, (f) “A21” defect configuration. 
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7    RESULTS  

The vacancy position, number of vacancies in one direction and the areal density of the vacancies affect the critical 

buckling load of the nanosheet. To facilitate the interpretation of the results, all buckling loads calculated for the 

sheet with vacancies were normalized with the corresponding results of the pristine SLGS that is Nx/NxSLGS. Fig. 9 

shows the variation of normalized critical buckling load considering various locations and densities of the defect.  

The influence of the vacancy position in horizontal direction has been shown in Fig. 9(a). The horizontal axis 

(x/a) corresponds to the nondimensional location of the vacancy in B, C and F configurations (see Fig. 4). This line 

graph indicates that existence of a single vacancy in the back or front of a nanosheet leads to a slight decrease, 

approximately 0.5 %, in the amount of the Nx/NxSLGS while a central defect develops over 1.5% reduction in this 

value. Also triple vacancy defects, BY3, CY3 and FY3, reduces the critical buckling load by different percentages. 

BY3 and FY3 vacancy types result in a decrease of about 1.5 % and CY3 defect causes over than 3% drop in the 

value of Nx/NxSLGS. 

Fig. 9(b) represents the effect of vacancy position when its position changes in vertical direction. The horizontal 

axis (y/b) is the nondimensional location of the vacancy in L, C and U configurations. Moreover, according to Fig. 

4, triple vacancy defects, LX3, CX3 and UX3 indicate the position of a triple vacancy in y direction. Comparison of 

Fig. 9(a) and Fig. 9(b) demonstrated that the percentages of reduction of the amount of normalized critical buckling 

loads are similar to those when the vacancy location changes in x direction. In both cases the minimum critical 

buckling loads are related to central defects (C, CX3, CY3), in which the maximum strain occurs.  

The influence of number of vacancies in horizontal direction on the nanosheet critical buckling load is shown in 

Fig. 9(c). Regarding the graph, the normalized critical buckling load decreases gradually and falls to the lowest point 

with more than 6% reduction at CX9 configuration. 

When there are more vacancies in both horizontal and vertical directions, the areal density of vacancies 

increases. The influence of the areal density of vacancies on the normalized critical buckling load of the nanosheet is 

illustrated in Fig. 9(d). C, A5, A7, A9 and A21 defect types are investigated in this graph. Based on the graph, as the 

density of vacancies goes up, the normalized critical buckling load reduces. The relationship is almost linear and the 

most drop is related to A21 configuration with approximately 12% reduction with respect to SLGS.  

 

 
     (a) 

 
(b) 

  

 
(c) 

 
(d) 

  

Fig. 9 

Normalized critical buckling load, (a) Effect of vacancies in horizontal direction, (b) Effect of vacancies in vertical direction, 

(c) Effect of the number of vacancies in horizontal direction, (d) Effect of areal density of vacancies. 
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8   CONCLUSIONS 

A valid finite element analysis of a single layer graphene nanosheet using structural mechanics approach was 

presented. On the base of this model, the effect of vacancy location, number and density of defects on the critical 

buckling load of a simply supported rectangular single layer graphene nanosheet have been investigated. On 

contrary to the Young’s modulus, which the vacancy location has negligible effect in its value, the uniaxial buckling 

load shows considerable variation when the position of a vacancy defect changes. Also an upward trend in the 

number of vacancies leads to an approximately linear decline in the value of critical buckling load.  
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