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ABSTRACT. The main objective of this study is to analyze the spatio-temporal 
changes in land cover and land use (1984-2010), as well to simulate future land 
cover for 2030 in the Neka River Basin (NRB), including the Hyrcanian forest, in 
northern Iran. For this purpose, we used detailed land cover maps for the years 1984, 
2001 and 2010. The results showed that the highest deforestation occurred in the 
boundaries between forest and agriculture areas between 1984 and 2010. Comparing 
the observed and predicted land cover in 2010 yielded agreement of 96.41%. From 
1984 to 2010, landscape metrics showed that the forest area evolved to more 
fragmentation, with less shape complexity and less connectivity. Projections for the 
future are consistent with observed changes for the Neka landscape, with a tendency 
to continue disaggregating and increasing diversity in a number of different patch 
types. Between 2010 and 2030, we observed the arrival of new crops, rangelands, 
and urban areas within the remaining areas of homogeneous forest. Changes in the 
Hyrcanian forest will cause alteration in ecosystem services, such as erosion control, 
water yield, timber harvest, and ground water reservation. Results of this work may 
represent a useful tool to provide strategies and territorial planning for sustainable 
management of the fragile Hyrcanian forest ecosystems in the Neka Basin. 

Modelización del cambio de la cobertura del suelo en los bosques de Hircania 
del norte de Irán: una perspectiva desde el análisis de la transformación y los 
patrones del paisaje

RESUMEN. El objetivo principal de este trabajo es analizar los patrones 
espaciotemporales de cambios del uso del suelo (1984-2010) y generar escenarios 
para el horizonte temporal 2030 en la cuenca del río Neka, en el norte de Irán. Dicha 
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cuenca alberga bosques hircanios, de gran riqueza ecológica y que sólo se encuentran 
en algunos sectores del entorno del mar Caspio. Para ello se han utilizado mapas muy 
detallados de usos del suelo para los periodos 1984 y 2010. Los resultados evidencian 
procesos moderados de deforestación, fundamentalmente debidos a la expansión 
de zonas agrícolas y urbanas. Además los resultados indican una evolución hacia 
bosques más fragmentados y con una pérdida de conectividad. La metodología para 
simular cambios de usos del suelo fue capaz de reproducir adecuadamente (con un 
acierto del 96.4%) los usos del suelo simulados para el año 2010. Los escenarios para 
2030 muestran una continuidad en los cambios observados durante el periodo 1984-
2010, apareciendo nuevos cultivos y zonas urbanas dentro de las zonas actualmente 
ocupadas por bosques. Si bien la deforestación del bosque hircanio es moderada y 
ocupa un pequeño porcentaje de la superficie total, representa una afección evidente 
a los ecosistemas de la región y puede tener impactos asociados en la producción de 
escorrentía, recarga de acuíferos, explotaciones forestales y procesos erosivos. Así, la 
información generada puede resultar una herramienta de utilidad para los gestores 
del territorio y la gestión de los bosques hircanios en la cuenca del río Neka.

Key words: land use changes, landscape indices, landscape transformation 
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1. Introduction 

One consequence of world population growth is an alarming increase in land cover 
changes in the global environment, the conversion of rich ecological areas into cropland, 
and fertile lands into urban areas (Al-sharif and Pradhan, 2014). Land transformation, 
habitat degradation, and fragmentation are typical processes of landscape change (Paudel 
and Yuan, 2012). Pattern, rate, and trends of land cover change are vital to understanding 
forest dynamics, to enable conservation, and to evaluate management procedures (Gómez et 
al., 2011). Understanding trend and the amount of land cover change is an important issue 
among land use planners and environmental scientists, because these changes are one of the 
reasons for global environmental change, with deep ecological, hydrological, soil evolution, 
and erosion and social impacts. These changes are usually have an obvious anthropogenic 
source, but several topographic and geographic variables, such as slope, aspect, and altitude 
influence the nature and magnitude of these changes as well (Subedi et al., 2013). 

Landscape matrices are important in understanding and monitoring anthropogenic 
effects on ecosystem dynamics. Landscape indices imply quantification of configuration, 
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composition, shape, contagion, density, and diversity in patches of landscape. These 
indices divide into two main groups. The first is composition metrics, such as the number, 
density, and size of patches that correlate with the variety and abundance of patch types 
and nonspatial characterization of the landscape. Configuration indices attribute the spatial 
structure of landscape, such as neighborhood relationships and contagion (McGarigal and 
Marks, 1995; Rafiee et al., 2009). In the case of landscape ecology, configuration and 
composition landscape have important roles in determining natural habitats, hydrological 
processes, energy, and the nutrient cycle (Lee et al., 2009). Many studies showed an increase 
in the use of landscape metrics for monitoring of patterns of land cover changes (Lausch 
and Herzog, 2002; Antwi et al., 2008; Ramachandra et al., 2012; Plexida et al., 2014; 
Joorabian Shooshtari and Gholamalifard, 2015; Sakieh and Salmanmahiny, 2016; García 
et al., 2017). Boentje and Blinnikov (2007) assessed forest loss in the Green Belt around 
Moscow, Russia during the 1991 to 2001 period. They found that conversion of forest to 
suburban residential and commercial comprised about 14.6% of the land within 20 km from 
the beltline. The results of landscape indices showed that forest patches became: 1) larger 
on average during the 1991-2001 time interval; 2) a reduction in forest edge observed in 
2001 compared to 1991; and 3) less connectivity between forest patches. Xin et al. (2014) 
studied land use and landscape change pattern using remote sensing and landscape metrics 
in Turkmenistan between 1976 and 2011. The metrics proposed increases in landscape 
fragmentation and declining connectivity of patches. Kamyab and Salman Mahini (2014) 
analyzed spatio-temporal patterns of urban changes in the city of Gorgan, Iran. Between 
1987 and 2001, the city of Gorgan displayed an increase in size, simpler in patches shape, 
and less fractal dimension. 

In addition to landscape metrics, indices of spatial processes for landscape 
transformation provide insight and comprehensive information about changes in landscape. 
Perforation, dissection, fragmentation, shrinkage, and attrition relate to a decline in area 
and involve land cover degradation. Aggregation, creation, and enlargement are related 
to an increase in area and creation of new land cover units. Shift and deformation do not 
relate to area change (Bogaert et al., 2004; Vranken et al., 2011). Munsi et al. (2010) 
evaluated land cover change in the Dehradun forest, Uttarakhand, India, using landscape 
metrics and landscape transformation type. The transformation type was dissection of 
dense forest, and creation of open and scrub forest during the periods 1990-2001 and 
2001-2006. The spatial process of landscape transformation in opencast mining lands 
was explored by Fagiewicz (2014). Analysis of forest, settlement area, and arable lands 
indicated that the landscape transformation process was fragmentation, that natural 
reservoirs represented shrinkage, and that wetlands showed attrition. Redondo-Vega et 
al. (2017) explored land cover changes caused by mining activity in the northwestern 
mountains of Spain, using 1956-57 aerial photographs and 2014 colour orthophotos. 
Mining operations caused a radical change in cultivated surfaces, livestock grazing, 
and low hillsides. Additionally, the mining of mineral resources altered or eliminated 
valuable features of geomorphologic heritage.

In addition to landscape indices and change process, land cover change models 
can be useful tools for understanding dynamic future landscape. GIS models and RS 
data can be used to simulate how landscape elements changes over time and place and 
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to explore various types of scenarios for the future (Paudel and Yuan, 2012). Hyrcanian 
forests in northern Iran are a source of biodiversity, diverse habitats, and commercial 
timber production, and have a vital role in soil conservation, carbon storage, gentler air, 
and water purification (Poorzady and Bakhtiari, 2009; Joorabian Shooshtari et al., 2012). 
Transition in these forests to another land cover type is one of the major challenges of 
recent years; therefore, their protection is important and necessary (Kelarestaghi and 
Jafarian Jeloudar, 2011). Losses in these forests have major effects on biodiversity and 
ecosystem services. Consequently, the analysis and prediction of Hyrcanian forest cover 
dynamics during different periods is important to improve comprehensive understanding 
about the quantity of deforestation in these valuable ecosystems. The main goal of this 
study is analyzing landscape transformation type from 1984 to 2030 and performance 
assessment using SimWeight (similarity weighted instance-based learning algorithm) to 
discern modeling change potential in the Neka River Basin (NRB), northern Iran.

2. Material and Methods

2.1. Study area

The study area is in Iran’s Neka River Basin, which consists of 1871 km2 in 
Mazandaran and Golestan Province (Fig. 1). The elevation of the area ranges from 50 
to 3791 m a.s.l., with average elevation of 1576 m a.s.l. The mean annual precipitation 
is 600 mm and the mean annual temperature is 17ºC (Ghanbarpour et al., 2014). Almost 
44% of the study area is covered by rangelands. Hyrcanian forests occupy about 36% of the 
Basin, followed by agriculture area occupying over 18% in 2010. The Hyrcanian forests zone 
covers the Talysh Mountains in southeastern Azerbaijan and the northern slope of the Alborz 
Mountains in Iran. These forests are composed mostly of deciduous forest with high biological 
diversity and endemic species. In total, 3234 species belonging to 856 genera and 148 families 
of vascular plants have been reported in these forests (Mostajeran et al., 2016). Human activities 
have severely reduced the areas of Hyrcanian forest from 3,600,000 ha in 1942 (Saei, 1942) to 
1,920,000 ha in 1990 (Moshtagh Kahnamuii and Rasaneh, 1990). The study area is potentially 
at high risk of flooding (Mohammadi et al., 2014), as occurred in 1999. 

Figure 1. Location of the research area in northern Iran.
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2.2. Historical changes, transition potential, and future modeling 

The input data required for Land Change Modeler (LCM) includes at least two land 
cover maps at different time periods (Eastman, 2012). In the present study, in order to explore 
changes analysis, we have used the land cover maps from 1984, 2001 and 2010, which had 
been extracted from satellite images. The amount of conversion, spatial distribution of 
transitions, gains and losses bet ween land cover categories were calculated and analyzed 
between the periods 1984-2001 and 2001-2010 by LCM for Ecological Sustainability 
(Schulz et al., 2010). We conducted land cover change model development through the 
following steps. First, we used the land cover maps of 1984 and 2001 in developing a land 
cover map for the year 2010. The actual 2010 land cover map was applied to evaluate the 
performance of the model based on the Kappa Index of Agreement (KIA) (Pontius et al., 
2001). This stage was adopted in order to evaluate the model simulation. Then, land cover 
maps of the years 2001 and 2010 were performed to create prospective land cover maps 
of 2030. SimWeight was used to develop suitability maps of the likelihood for transition 
from one class to another (Sangermano et al., 2012; Lin et al., 2014). It uses a slightly 
modified variant of the K-nearest neighbor procedure. Sample size and K parameters must 
be specified (Eastman, 2012). In SimWeight, each variable’s importance in each submodel 
is computed using the relevance weight indicator (Eq. 1),

Relevance Weight = 1 - 

	

SD	in	change	area

SD	in	case	study
	

	

 (1)

where SD is standard deviation of the variable (Sangermano et al., 2010). We ignored 
variables with an estimated relevance less than 0.01 in modeling each submodel.

Performance of SimWeight was evaluated using Peirce Skill Score, which is the 
difference between a hit rate (calculates the mean transition potential among the validation 
pixels that actually went through the transition) and a false alarm rate (calculates 
the mean transition potential among pixels that were eligible to change but did not) 
(Eastman, 2012). An extensive description of SimWeight can be found in Sangermano 
et al. (2010). LCM identifies the transition potential maps based on historical changes 
and explanatory (static or dynamic) variables (Lin et al., 2014). We selected 9 variables, 
including elevation, slope, empirical likelihood to change map (which is the empirical 
probability of change between 1984 and 2001), distance to residential areas, forest areas, 
agricultural lands, rangeland, major road, and fluvial streams (Fig. 2). Distance maps 
were prepared with values indicating Eucidian distances from target layers. The 30 m 
digital evaluation model (DEM) from ASTER Global DEM (METI, Japan and NASA, 
USA) was used to prepare the slope. Cramer’s V coefficient (based on the chi-square 
statistic) was examined in order to explore the explanatory power of these variables 
(Pérez-Vega et al., 2012). A Cramer’s V value of about 0.15 or higher, and 0.4 or higher, 
reveals that the potential of variables is useful and good, respectively (Eastman, 2012). 
Six types of transition were produced, including 1) transition from forest to agriculture 
area; 2) forest to residential area; 3) forest to rangeland; 4) agriculture to residential 
area; 5) agriculture to rangeland; and 6) rangeland to residential areas. The quantities of 
change from one class to another class were calculated by Markov chain analysis (Khoi 



Shooshtari et al.

748 Cuadernos de Investigación Geográfica 44 (2), 2018, pp. 743-761

and Murayama, 2010). After calculating future demand for land, multi objective land 
allocation (hard prediction) was run to generate the future land cover (in this case, for 
the years 2010 and 2030).

Figure 2. Drivers used in the research study.

2.3. Calculation of landscape metrics and landscape transformation analysis

Seven indices were selected to analyze the landscape transformations: Patch 
Density (PD), Perimeter Area Weighted Mean Ratio (PARA_AM), Interspersion and 
Juxtaposition Index (IJI), Patch Cohesion Index (COHESION), and Mean Euclidian 
Nearest-Neighbor Distance (ENN_MN) were analyzed at the class level, and two metrics 
including Shannon’s diversity index and Contagion were calculated at the landscape 
level using the FRAGSTATS program (UMass Landscape Ecology Lab, Amherst, USA) 
(Table 1) (McGarigal et al., 2002). PARA rises with increasing patch shape complexity. 
The IJI index represents the degree to which patch types are interspersed. Contagion 
index measures the degree of land cover types clumping in a landscape (Riitters et al., 
1996). The value of this index is 0, when the patch types are maximally disaggregated, 
and 100 when all patch types are maximally aggregated (McGarigal et al., 2002). 
A decision tree algorithm within LCM was applied to identify the spatial process in 
landscape transformation (Fig. 3) (Bogaert et al., 2004). It consists of number of patches, 
perimeter, and area of the class in two different time periods. 



Land cover change modelling in Hyrcanian forests, northern Iran

749Cuadernos de Investigación Geográfica 44 (2), 2018, pp. 743-761

Figure 3. Decision tree algorithm to determine transformation processes (n1, a1, and p1 indicate 
number of patches, area and perimeters of class in T1 and n2, a2, and p2 refers to the number of 

patches, area, and perimeters of class in T2) (adapted from Bogaert et al., 2004).

Table 1. Descriptions of metrics used in  the present study.

Level Indices Name (units) Acronym and Range Description
Landscape 
level

Shannon’s diversity index 
(unitless)

SHDI≥0, without limit States the patch diversity in 
landscape

Contagion (%) 0 < CONTAG ≤ 100 Tendency of land cover 
classes to be aggregated

Class level Patch density  
(number/100 ha)

Perimeter Area Weighted Mean 
Ratio (unitless)

PD>0, constrained by 
cell size 

PARA_MN>0, without 
limit

Indicates number of patches 
per unit area 

A measure of shape 
complexity

Interspersion and juxtaposition 
index (%)

0 < IJI ≤ 100 IJI is applied to measure 
patch adjacency

Patch cohesion index (unitless) 0 < COHESION < 100 Measures the physical 
connectedness of the 
corresponding land cover 
type

Mean Euclidian Nearest-
Neighbor Distance (meters)

ENN_MN>0, without 
limit

The average distance 
between patches of the same 
class
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3. Results

3.1. Analysis of land cover change

Analysis of the land cover changes in the NRB from 1984 to 2010 are depicted in 
Table 2. The area of different classes indicates that the dominant land cover types are 
rangeland and forest, representing 80% of the overall case study.

Table 2. Area of categories of land cover for the years 1984, 2001 and 2010 and area changed 
during the 1984-2001, 2001-2010 and 1984-2010 periods.

Land cover 
class

1984 2001 1984-2001 2010 2001-2010 1984-2010

Area (ha) % Area (ha) % area changed Area (ha) % area changed area changed

Forest 72168.8 38.6 69169.1 37.0 -2999.7 67198.5 35.9 -1970.6 -4970.3

Agriculture 30571.5 16.3 32679.8 17.5 2108.3 33625.1 18.0 945.3 3053.6

Rangeland 80080.8 42.8 80682.5 43.1 601.7 81582.8 43.6 900 1502

Residential 159.7 0.08 253.2 0.13 93.5 277.6 0.14 24.4 117.9

Bare land 655.8 0.35 662.1 0.35 6.3 662.1 0.35 0 6.3

Water bodies 3.5 0.001 4.5 0.002 1 4.7 0.002 0.2 1.2

Road 2026.6 1.08 2215.5 1.1 188.9 2316.4 1.2 99.3 289.8

River 1445.6 0.8 1445.6 0.8 0 1445.6 0.8 0 0

The analysis revealed that major decline, 3000 ha, occurred in forest (1.6% of the 
total area and 4.1% of the forest area) and 1971 ha (1.1% of the total area and 2.8% of 
the forest area), respectively, between the periods 1984-2001 and 2001-2010. During the 
period 1984-2001, forest converted to agricultural lands and rangelands by 2260 ha and 
601 ha, respectively. The GIS analysis reported that built-up area and road expansion 
in the NRB was 94 ha (58.8% of the residential area) and 189 ha (9.3% of the road 
area), respectively, in the period from 1984 to 2001. Transition from agricultural land 
to residential area mainly contributed to the increase in this class. During the second 
time period, 2001 to 2010, the major changes in the study area occurred in forest, with 
conversion to agricultural areas (1018 ha) and to rangelands (885 ha). Another change 
was the increase in built-up area and road between 2001 and 2010. The study revealed 
that the area occupied by water bodies and bare lands almost remained constant during the 
26-year period from 1984 to 2010. Spatial patterns of changes from forest to agricultural 
areas and rangelands from 1984 to 2010 are shown in Figure 4.

Figure 4. Neka Basin forest conversion to agriculture area and rangelands for the period of 1984-2010.
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3.2. Prediction of land cover changes

The results of Cramer’s V statistic, representing the association level of the 
explanatory variables and the existent land cover in the NRB, are shown in Table S1 
(see Supplementary Material, Table S1). Empirical likelihood to change and slope are 
the variables that showed the highest and lowest relationship with land cover changes. 
Transition potential modeling was carried out using SimWeight for 6 submodels in the 
study zone. Results of the relevance weight of independent variables and Peirce Skill 
Score for SimWeight validation are presented in Tables 3 and 4, respectively. Nine 
variables showed different levels of importance in each submodel. All submodels were 
strongly affected by the empirical likelihood to change variable. The lowest Peirce Skill 
Score (0.37) was for conversion from agriculture areas to residential submodel and the 
largest value (0.84) was for transition from the rangelands to residential areas submodel. 
The transition probability matrix calculated by Markov chain analysis in the NRB is 
presented in Table S2 (see Supplementary Material, Table S2). 

Table 3. Results of the relevance weight of variables for each submodel.

Variable Forest to 
residential

Forest to 
agriculture

Forest to 
rangeland

Agriculture  
to residential

Agriculture  
to rangeland

Rangeland  
to residential

DEM 0.30 0.28 0.34 0.25 0.38 0.75
Slope 0.62 0.18 0 0.51 0 0.43
Distance from forest 
in 1984

1 1 1 0.56 0.18 0.70

Distance from 
residential in 1984

0.99 0.54 0 0.98 0 1

Distance from 
agriculture in 1984

0.94 0.83 0.68 1 1 0.66

Distance from 
rangeland in 1984

0 0 0.98 0 1 1

Distance from road in 
1984

0.83 0.27 0.03 0.62 0 0.83

Distance from river 0 0 0 0.21 0 0
Empirical likelihood to 
change

1 1 1 1 1 1

Table 4. Accuracy assessment of SimWeight by Peirce Skill Score.

Submodel Hit rate False alarm rate Peirce Skill Score
Forest to residential 0.92 0.08 0.84
Forest to agriculture 0.69 0.28 0.42
Forest to range 0.74 0.25 0.49
Agriculture area to residential 0.67 0.30 0.37
Agriculture area to rangeland 0.75 0.20 0.55
Rangeland to residential 0.92 0.11 0.81
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The highest likelihood of transition from forest to agriculture occurred between 
2010 and 2030. The contribution to increasing residential areas comes from agricultural 
lands. The 2030 land cover map showed a reduction in forest (4225 ha) and increases in 
rangeland (2024 ha), agricultural areas (2144 ha), and residential (57 ha), as compared 
with 2010 land cover (Fig. 5). The predictive performance of the LCM was validated by 
comparing the model simulating 2010 land cover with the observed 2010 land cover; 
agreement was 96.41% (Fig. 5). 

Figure 5. Output of Neka Basin simulated land cover (A) in 2010 versus (B) observed 2010 land 
cover, and (C) simulated land cover for 2030.

3.3. Analysis of landscape metrics and spatial processes of landscape  
transformation 

Patch density (PD) in forest class increased from 1.5 in 1984 to 1.9 in 2030. This 
index for forest recorded a decline during all time intervals except 2010-2030. The 
number of patches per unit area and the reduction in area in the forest class between 
1984 and 2010 declined, attributed to attrition in this class. During the 2010-2030 
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period, forest represents dissection because of an increase of patch density (from 
1.3 to 1.9) and a decrease in area (from 67198 ha to 62973 ha). Changes in PD 
(from 1.62 to 1.51) showed decreasing and increasing areas under agricultural lands, 
referring to the aggregation transformation type for the 1984-2010 period (Fig. 
6). Rangelands showed results similar to those of agricultural areas, with a spatial 
process of aggregation and creation during 1984-2010 and 2010-2030, respectively. 
The number of patches per unit area in residential use declined between 1984-2001, 
while PD increased between 2001 and 2030; in addition, the increasing area in this 
class means aggregation for the first period and a creation transformation process 
for the second and third periods (Table 5). PD values of road and area under this 
class confirmed an increase, which reflects that the change process was creation 
from 1984 to 2010. The change process type for road was dissection between 1984 
and 2010. Residential areas underwent creation, indicating that PD (from 0.10 to 
0.15), and area (from 253 ha to 334 ha) increased (Table 5). PARA is a simple 
measure of shape complexity, but without standardization to a simple Euclidean 
shape (McGarigal et al., 2002). Rangeland and road for PARA showed a decreasing 
trend during the 1984-2030 period, which represents less shape complexity. 
Residential, agriculture areas, and forest decreased during the 1984-2010 period 
and increased between 2010 and 2030, indicating more shape complexity of these 
categories in the third period (Fig. 6). The COHESION metric reflects the physical 
connectedness of the particular land use class (Lee et al., 2009). Connectivity is 
important to the constancy of both biotic populations in a fragmented ecosystem 
(Joorabian Shooshtari and Gholamalifard, 2015). Between 1984 and 2030, this index 
increased for agricultural lands, residential, rangeland and road, thus making them 
more connected. Connectivity between patches of forest from 2010 to 2030 revealed 
reduction (Fig. 6). Analyses of COHESION metric deduced a decline in forest from 
1984 to 2030, which showed less physical connectedness between patches in the 
NRB. High values of IJI indicate patch types that are equally adjacent to each other 
(McGarigal et al., 2002; Munsi et al., 2010; Lin et al., 2007). Decreasing of this 
metric for forest and residential areas becomes more clumped over the years 1984-
2030, while for agriculture areas and rangelands, it increases (Fig. 6). The lowest 
value of the mean Euclidian nearest-neighbor in the NRB was obtained in road class. 
This class displayed a decreasing trend (42.2 to 41.8) from 1984 to 2030. Values 
of ENN in forest decreased between 2010 and 2030, indicating that forest patches 
became more isolated, affecting the movement and dispersal of species (Midha and 
Mathur, 2010). A decreasing trend in ENN for the agriculture area (88.8 to 80.8) and 
residential (109.4 to 80.9) was apparent from 1984 to 2030. A decrease in the score 
of ENN was observed for rangeland from 80.1 in 1984 to 85.1 in 2030. Moreover, by 
analyzing landscape metrics at the class level, assessment of patterns of the NRB was 
conducted at the landscape level. The CONTAG metric for the entire NRB landscape 
showed reduction from 66.9% in 1984 to 66.5% in 2030. The increase in SHDI index 
was seen for the landscape between 1984 and 2030 (Table 6). These changes showed 
the NRB landscape’s tendency to disaggregate with increasing diversity. According 
to very small changes in bare land and water body classes, the focus is not on their 
results, but upon graphic display (Fig. 6).
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Figure 6. The values of patch density (PD), perimeter area weighted mean ratio (PARA), patch 
cohesion index (COHESION), interspersion and juxtaposition index (IJI), and mean Euclidian 
nearest-neighbor (ENN) at class level. The values on the secondary axis belong to the water 

bodies class in the graph of the ENN.

Table 5. Spatial processes of landscape transformation type.

Variable Forest Agriculture Rangeland Residential Bare land Water 
bodies Road

1984-2001 Attrition Aggregation Aggregation Aggregation Aggregation Creation Creation

2001-2010 Attrition Aggregation Aggregation Creation Shift Enlargement Creation

2010-2030 Dissection Creation Creation Creation Shift Shift Shift
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Table 6. Metrics change at the landscape level in the Neka River Basin.

Metric 1984 2001 2010 2030
SHDI   1.288   1.298   1.301   1.304
CONTAG 66.993 66.880 66.870 66.575

4. Discussion

In the present study, GIS modeling and landscape transformation analysis were 
innovative planning tools to explore land cover dynamics and spatial change process 
of NRB landscape transformation from 1984 to 2030. The results of change analysis 
over the 1984-2010 study period demonstrated forest loss of 4970 ha. Logically, the 
highest deforestation occurred in the surrounding agricultural lands, because of their 
accessibility. Additionally, the increase in population growth, use of wood as fuel, 
construction, and repairing villagers’ houses are other reasons for deforestation in the 
study area (Joorabian Shooshtari et al., 2010). Abdullah and Nakagoshi (2006) reported 
agricultural development as a major variable in landscape dynamics. The spatial 
expansion in rangelands (1502 ha) and agriculture areas (3053 ha) was observed between 
1984 and 2010. A slight increase in the extent of residential areas and transportation was 
revealed during the 26-year period from 1984 to 2010. The increase of rangeland was 
mainly due to the reduction of forest during the 1984-2010 period.

We applied SimWeight in order to conduct transition potential modeling in 6 
submodels. In our study, the highest association was observed between empirical 
likelihood to change map and elevation, and land cover changes based on Cramer’s V 
coefficient. Munsi et al. (2012) reported that the empirical likelihood of change and 
elevation showed strong correlation with land cover changes for modeling patterns 
of forest cover in India. Bagheri and Shataee (2010) performed modeling of forest 
dynamics in the Chehl-Chay basin, Golestan Province, Iran. Their results showed 
that elevation increase causes an increase in deforestation, because of more villages 
and road development in higher altitudes. In the NRB, proximity to forest, residential 
areas, rangeland, and agriculture variables showed overall Cramer’s V > 0.23, meaning 
that these independent variables are especially important drivers in the description of 
land cover change dynamics. Distance to residential and road variables revealed high 
relevance weight in the forest to residential submodel and distance to rangeland was 
highly important to the transition from forest to rangeland. Eraso et al. (2013) verified 
that proximity to road, cities, and pastures were the main factors affecting deforestation 
of montane forest. Slope showed high values of relevance weight in the transition 
from forest, agriculture, and rangeland to residential submodels, as steep areas are not 
in expected to support more anthropogenic activities, and are difficult to cultivate or 
urbanize in this area; therefore, this variable is more important in these submodels. 
Distance to river affects the location of agricultural areas; accordingly, the proximity to 
water bodies is related to deforestation (Khoi and Murayama, 2010). 

In the NRB, the results of SimWeight validation showed reasonable performance. 
Sangermano et al. (2010) mentioned that SimWeight is an effective procedure for 
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calculating transition potential, without requiring specification of complex parameters, 
and a distribution-free non-parametric method. In the present study, a Markov chain 
matrix was applied to determine the quantity of changes from each to another category 
for future dates (Kim, 2010; Mas et al., 2014; Camacho Olmedo et al., 2015). Forest 
showed the highest probability of changes to agriculture and rangelands based on Markov 
transition probabilities from 2010 to 2030. The KIA indicated a good agreement between 
the 2010 model’s predicted land cover and 2010’s actual land cover as a reference in 
the NRB. According to our prediction results, deforestation will probably take place 
in buffer areas surrounding agriculture areas and rangelands by the year 2030. A slight 
increase was observed in residential areas between 2010 and 2030.

Moreover, in the present study, analysis of landscape pattern was conducted 
by landscape metrics and landscape transformation analysis. While numbers of 
patches have increased, the area under the class has been reduced, indicating that 
the transformation type is dissection or fragmentation. If the number of patches has 
decreased while the area of the class remains constant or increases, this indicates that 
the transformation type is aggregation (Munsi et al., 2010; Raja Naqvi et al., 2014). 
In the present study, during the 1984-2001 and 2001-2010 periods, transformation 
type was attrition for forest because of increasing human pressure. Between 2010 and 
2030, forest was dissected, which means that the number of patches increased while 
the area under the class (67198 ha to 62973 ha) is decreasing. Residential areas showed 
aggregation during 1984-2001, representing more clumping and compacting in this class. 
Population growth causes increasing demand for agriculture fields and built-up area, 
which leads in the NRB to the decline of forest and ecosystem degradation. Landscape 
transformation type in agriculture areas was aggregation and creation between 1984-
2010 and 2010-2030, mainly because of removal of forest patches. Additionally, 
investigation of results obtained from landscape metrics showed that increasing the 
SHDI index combined with a reduction of CONTAG revealed that scenery becomes 
disaggregated and increasingly diverse from 1984 to 2010. This tendency is expected 
to continue over the next decades. 

Hyrcanian forests are unique, very old with a very long history and some relic 
species date back to the Tertiary period (Rouhi-Moghaddam et al., 2007), so slight and 
limited changes in these forests are very important and have consequences for ecological 
condition, basin hydrology, and sediment transport. The NRB is prone to flooding, which 
could contribute to the decline in the forest area, followed by a decrease in rainfall retention 
in soil and increased runoff (Talebi Amiri et al., 2009). According to the slight change in 
land cover of the Neka Basin, there is apparently no major driver of hydrological changes 
in the region, except perhaps for the increased water demand for agricultural areas and 
the water supply for residential and industrial regions. Sometimes, a very small change in 
land cover and landscape structure can have a significant impact on regional soil erosion 
and sediment yield (García-Ruiz et al., 2008). The recommendation for future studies 
is explore the response of sediment transport to land cover change in the Neka Basin. 
Furthermore, many channels extracted the water of Neka River for agricultural use; it is 
important to obtain comprehensive information about the increase sediment yield within 
channels, in order to make informed management decisions.
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5. Conclusions

The results of this study suggested that landscape indices and landscape 
transformation analysis are effective tools for understanding the ecological patterns 
of land cover change and maintaining and managing the natural resources in the study 
zone. In general, forest in the NRB showed dissection transformation type during the 
2010-2030 period. Deforestation in the present case study has effects on the reduction in 
essential nutrients, regulation of runoff and regional climate, rainfall infiltration, and soil 
conservation (Joorabian Shooshtari and Gholamalifard, 2015). It is necessary to develop 
strategies for landscape composition, configuration, structure, and restoration for the 
Hyrcanian forest in the NRB.
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