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a b s t r a c t 

The current paper investigates the appropriateness and consequences of avoiding successively repeated 

collisions usually recommended in the Direct Simulation Monte Carlo (DSMC) solvers, which use the 

No Time Counter (NTC) collision technique. A sensitive test case, i.e., Fourier heat transfer problem at 

the early slip regime, is considered in the presence and absence of the successively repeated collisions. 

The effects of repeated collisions and avoiding them on different parameters such as heat flux, collision 

frequency, collision separation distance, accepted-to-selected collisions ratio, and probability distribution 

functions for the number of collisions and relative velocities of collision pairs are evaluated and dis- 

cussed. The investigations are performed considering contributions of different computational parame- 

ters, i.e., cell sizes, time step, and number of particles. In addition to collision frequency and collision 

separation distance, which were reported previously as crucial parameters affecting the accuracy of the 

DSMC solution, we found that the level of repeated collisions also plays a pivotal role in the accuracy of 

the heat flux prediction in the Fourier problem. We show that direct avoiding of repeated collisions can 

lead to a distortion of collision probability distribution and consequently, to introduction of a systematic 

error in collision frequency and predicted heat flux. This error is negligible if one uses a large number of 

particles per cell, but it is of considerable importance if there are a few particles per cell. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Direct Simulation Monte Carlo (DSMC) can be considered as

 numerical tool for solving the Boltzmann or Kac master equa-

ion based on the direct statistical simulation of the molecular

rocesses described by the kinetic theory. The stochastic binary

ollision scheme plays a major role in the DSMC method. In the

lgorithms of most popular DSMC schemes the collision process

ould be divided into four steps, i.e., 1) determination of number

f collision pairs or collision frequency estimate, 2) collision-pair

election, 3) acceptance-rejection process based on the collision

robability function, and 4) determination of post-collision veloci-

ies for the accepted pair. 

The Bird’s No Time Counter (NTC) scheme has been widely

dopted as the most commonly used collision scheme in DSMC.

ue to the random selection of collision pairs, one of the main

hortcomings of the standard NTC is the possibility of repeated
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ollisions, i.e., the same pair of particles could repeatedly be se-

ected for collision within one or several successive time steps

ithout the occurrence of events of collisions with other particles

1] . Hence, NTC scheme requires a suitable number of particles in

he cell to reduce the chance of successively repeated collisions. An

nsufficient number of particles per cell along with inappropriate

emporal and spatial discretization are sources of stochastic errors,

hich violate the accuracy of the binary collision procedure [2–

] . Usually, the argument against repeated collisions is that after a

ollision of a particle pair the particle velocities are directed in a

ay that physically a second collision of the same pair is not pos-

ible. However, an analogous argument is valid for particle veloci-

ies of any pair before checking it for a collision. More precisely, if

ne imagines a gas in equilibrium, the above described situation is

rue in mean for the first collisions of the half of possible pairs. So,

t can be shown that the problem with repeated collisions in the

SMC collision schemes is rather mathematical than physical and

t can be explained considering the local property of the collision

ntegral in the Boltzmann equation. At any instant t , the collision

ntegral is defined in a single point x . From physical viewpoint, if

ne considers a local set of particles in x it means that all particles

https://doi.org/10.1016/j.compfluid.2017.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.11.005&domain=pdf
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Nomenclature 

CF th theoretical collision frequency at the equilibrium 

state 

CF numerical collision frequency 

CF ∗ the ratio of numerical collision frequency to the 

theoretical value 

d molecular diameter 

�x collision cell size 

�t time step 

�t w 

wall time sampling period 

�T w 

walls difference temperature 

ɛ i molecular energy of incident particle to the wall 

ɛ r molecular energy of reflected particle from the 

wall 

F n ratio of the number of real molecules to the simu- 

lated particles 

f probability distribution function 

K B Boltzmann constant 

L wall spacing in Fourier flow 

λ molecular mean free path 

M molecular mass 

MCS mean collision separation 

N pair number of pair selections 

N col number of collisions in cell 

N dup number of duplicate collisions in cell 

N c number of cells 

N m 

instantaneous number of particles in cell 

〈 N m 

〉 time-averaged number of particles in cell 

n number density 

p ij collision probability 

ω viscosity-temperature exponent 

q ∗ normalized heat flux to its converged value 

S surface area 

SCR successive collision ratio 

SOF mean collision separation divided by the mean free 

path 

σ collision cross section 

( σV R ) max maximum value of the product of collision cross- 

section and collision pair relative velocities 

T c cold wall temperature 

T h hot wall temperature 

T ref reference temperature of gas 

T λ mean free time 

V R relative velocity 

V mp most probable speed 

∀ c collision cell volume 

are in the vicinity of point x, i.e., their positions are indistinguish-

able from point x . On another side, the collision process is consid-

ered for a very small time interval around instant t so that the pre-

collision and post-collision times for all possible collisions in the

vicinity of point x are associated with instant t. Hence, mathemat-

ically one should not distinguish the moment of particle trajectory

converging leading to a collision from the moment of particle tra-

jectory diverging after a collision within a time step dt . Thus, any

collision depends only on the relative velocity magnitude but not

on its sign. In DSMC simulations, a cell with a size of dx around x is

considered instead of point x , and it is accepted that it represents

approximately the solution in point x . Similarly, the time interval

dt around instant t is associated with t and one should not dis-

tinguish the post-collision from pre-collision velocities of the par-

ticles found in the considered cell. Thus, the argument for avoid-

ing repeated collisions because they are unphysical does not dis-
over correctly the reason for the computational error introduced

y repeated collisions in the DSMC calculations. A proper expla-

ation of the effect of repeated collisions is given in the paper

5] . According to Stefanov [5] , the multiple repeated elastic colli-

ions of a pair in a cell have the effect of only one collision of

hat pair on collision process. This statement is true for both vari-

ble hard sphere (VHS) and variable soft sphere (VSS) models in

ase of elastic collisions because both models keep same the mag-

itude of relative velocity of the colliding pair. For inelastic inter-

ctions of polyatomic molecules, the effect of repeated collisions is

ot investigated, but some collision rate reduction coming from the

ranslational degrees of freedom should also be evident. Thus, the

epeated collisions of a pair lead to a reduced local collision rate.

robability analysis of repeated collisions of the NTC scheme given

n Ref. [5] showed that repeated collisions increase quickly when

he number of particles in cells decreases, and a dominated part

f repeated collisions is due to pairs with larger relative veloci-

ies, i.e., the probability of repeated collisions is of order O( P ij / N m 

),

here P ij is the NTC collision probability, and N m 

is the number

f particles per cell. The solution to the repeated collision prob-

em seems simple – one just has to avoid the repeated collisions

irectly [6] . However, as it will be shown in the sequel of this pa-

er ( Section 3.2 ), the avoidance of repeated collisions in the NTC

cheme has another adverse effect that appears when the number

f particles in cells is not sufficient. 

There are a few studies focused on the repeated collisions in

he DSMC scheme. Shevyrin et al. [7] investigated the influence of

epeated collisions on the deviation of the DSMC results from the

olution of the Boltzmann equation for heat transfer between two

arallel plates and Couette flow. Considering the distributions for

acroscopic properties (density, temperature, velocity, heat flux),

hey showed that the fraction of repeated collisions is a reliable

ndicator of deviation of simulation results from the solution of the

oltzmann equation. 

Bird proposed a new version of the DSMC algorithm with im-

rovements in most of the procedures [6,8] . In the improved NTC

lgorithm, the problem with the unrealized potential collisions be-

ween close particles situated in a cell was resolved by using a de-

erministic algorithm for finding collision partners. However, the

ealization of repeated collisions remained a source of stochastic

rror unless they are explicitly avoided. Bird stated that lower val-

es of separation of free paths ( SOF ), which is defined as a ratio of

ean collision separation to mean free path, largely self-validates

he accuracy of DSMC solutions [6] . However, it should be men-

ioned that this is a necessary but not a sufficient condition. So,

t should be noted that low SOF does not always guarantee a cor-

ect solution if it is not accompanied with avoiding of repeated

ollision between particles [9,10] . As a remedy for this problem as

ell for other problems associated with the NTC scheme such as

he so called “reminder” problem, i.e., non-integer reminder when

he number of selected particle pairs is calculated in the NTC for-

ula, it is suggested to use 7–10 particles per collision cell. In the

elaxation to equilibrium test case, Bird reported that the dupli-

ate collisions were about one percent of the total collisions when

here were about ten molecules per collision cell. With Decreasing

urther the number of molecules per cell the number of repeated

ollisions increases to two percent at four molecules per cell. With-

ut suppressing duplicate collisions, the collision rate increases by

bout 0.05% and the agreement with the theoretical equilibrium

ate is still satisfactory when there are ten or more simulated par-

icles per collision cell. In this case, the duplicated collisions typi-

ally reduced the effective collision rate by about 1% [6] . However,

t should be noted that the effect of repeated collision should be

nvestigated for sensitive parameters in complex test cases in more

etails. The suggested remedy of repeated collisions in the NTC

hat is directly avoiding them, which means that one introduces a
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ondition leading to a non-uniform distribution of selection prob-

bilities because for the first chosen pair one chooses randomly

mong N( N − 1 ) / 2 pairs of particles but the second choice is per-

ormed from among N( N − 1 ) / 2 − 1 pairs of particles etc. The ef-

ect is stronger if one keeps this direct collision control condition

ithin successive time steps. Evidently, this error is minor for a

arge number of particles, but it is of considerable importance if

here are a few particles per cell [5,11] . 

Here, we provide a detailed investigation of the behavior of

he standard NTC scheme in the presence or absence of “succes-

ively repeated collisions.” The consequences of successively re-

eated collisions on the heat flux prediction of the Fourier heat

ransfer problem are evaluated in the early slip regime, investigat-

ng the collisional and statistical parameters, as well as the heat

ux values predicted at presence or absence of duplicate collisions

n the classical NTC scheme. The effects of different parameters

uch as number of particles, number of cells, time step, and level

f duplicated collisions on the heat flux of Fourier problem are ex-

mined in details. 

. NTC collision scheme 

In the standard NTC scheme, the number of collision pairs, N pair 

n the cell is calculated as [1] : 

 pair = 

1 

2 

F n N m 

〈 N m 

〉 ( σV R ) max 

�t 

∀ c 
(1) 

here both instantaneous, N m 

, and average number, 〈 N m 

〉 , of par-

icles in the cell are employed for the determination of N pair . The

ecent variant of the NTC [6,8] uses the term N m 

( N m 

− 1 ) instead

 m 

〈 N m 

〉 in Eq. (1) , i.e., 

 pair = 

1 

2 

F n N m 

( N m 

− 1 ) ( σV R ) max 

�t 

∀ c 
(2) 

In the new relation (2) is taken into account the Poisson distri-

ution property leading to equality 〈 N c ( N c − 1 ) 〉 = < N c > 

2 , which

as pointed out by Yanitsky [12] then reemphasized and utilized

n Eq. (1) by Stefanov [13] , and also presented by Bird in [6,8] . 

Once selected, the particle pair is tested for the collision by

sing the acceptance-rejection procedure. The acceptance-rejection

ogic is set up on a probabilistic concept. For a chosen pair 1 ≤ ( i,

 ) ≤ N m 

, the collision occurs if the collision probability becomes

reater than a random number between 0 and 1 as: 

p i j = 

( σV R ) i j 

( σV R ) max 

≥ Ran f (3) 

Considering a grid with a small number of particles per cell, the

onditions for accurate simulation using the NTC collision scheme

re violated frequently because the relative velocities of the few

article pairs in a cell form a strongly degenerated probability

istribution function. This leads to an unacceptable increase in

he number of successively repeated collisions in cells. The post-

ollision velocities obtained as a result of using n successively re-

eated elastic collisions are statistically distributed in the same

ay as if they are achieved by the realization of only one colli-

ion of the chosen pair [5] . As a consequence, the major effect of

he NTC simulation with a small number of particles per cell is a

eduction in the local collision frequency, which converges to the

oltzmann collision frequency only for a sufficient number of par-

icles per cell [5] . 

In the standard NTC scheme, the second particle is selected ran-

omly without extra consideration. But in the scheme avoiding re-

eated collision, an additional condition is taken into account: the

econd particle should differ from the last particle, which hit the

rst before. Here is assumed that a repeated collision means that

he same pair of particles experiences collisions in one or several
 −
uccessive time steps without occurrence of collisions with other

articles. Based on that, whenever a collision occurs between two

articles, the particles are allowed to collide again with each other

f at least one of them collides to a third particle or collides with a

olid boundary. Otherwise, a new collision of them is not permit-

ed again during the simulation. 

The hypothesis of molecular chaos assumed in the derivation of

he Boltzmann equation is valid if the probability of repeated col-

isions is negligibly small [7,11] . Otherwise, statistical correlations

ill be presented in the solutions. Thus, the occurrence of the re-

eated collisions is a source of stochastic errors in the NTC scheme.

In previous works, avoiding duplicated collisions were per-

ormed via a list of partners of the last n collisions made for each

olecule. Hence, the collision of molecules A and B was consid-

red as repeated if the list of molecule A contains molecule B and

he list of molecule B contains molecule A [7] . The parameter n

s usually selected by the user. In the current work, we set n = 1

14] to evaluate the effect of avoiding the recollision of the last col-

ision partners for each molecule in all simulation cases considered

n this study. After reflecting each molecule from a surface, the list

or that molecule is reset. 

Different collisional parameters were considered to examine the

ffect of avoiding duplicated collision in the Fourier problem, i.e.

eat flux, collision frequency, the ratio of accepted collisions to se-

ected pairs, repeated collisions ratio, and mean collision separa-

ion. The net heat flux to the wall is calculated from the net energy

xchanged with the wall by the incident and reflected molecules as

ollows [1] : 

 w 

= 

∑ 

ε i − ∑ 

ε r 

�t w 

. S 
(4) 

The equilibrium collision rate per molecule is given theoreti-

ally ( CF th ) by [1] : 

 F th = 4 n d 2 
(

πK B T re f 

m 

)0 . 5 (
T 

T re f 

)1 −ω 

(5) 

CF represents the numerical collision frequency that is calcu-

ated by the division of the number of collisions in each cell N col 

n the execution time, and half of the mean particle numbers per

ell as follows: 

F = 

2 N col 

〈 N m 

〉 T ime 
(6) 

The parameter CF ∗ is the ratio of the numerical CF to its theo-

etical value—that is the equilibrium state—it should have a mag-

itude close to unity. The heat transfer problem considered in this

nvestigation is under conditions close to linear assumption corre-

ponded to small relative temperature gradient values. This allows

sing CF ∗ as a meaningful criterion for accuracy check. 

The level of duplicated collisions in each cell is called as “Suc-

essive Collisions Ratio ( SCR )”: 

CR = 

N dup 

N col 

(7) 

The normalized mean collision separation is as: 

OF = 

MCS 

λ
, (8) 

here λ is the local mean free path in the cell. The values of SOF

uch smaller than the unity reflects a suitable collision quality [6] .

robability distribution functions for relative velocity of collision

airs, the number of collisions, and the number of particles in the

ell are considered in this paper. The probability distribution func-

ion of an arbitrary parameter ϑ is defined as f ϑ, where: 

+ ∞ ∫ 
f ϑ dϑ = 1 (9) 
∞ 
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Fig. 1. Geometry of the Fourier flow. 

Fig. 2. Heat flux values obtained by the classic NTC scheme; considering different 

number of particles per cell and different cell numbers; �t = 0 . 1 t λ . 
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3. Results and discussion 

The Fourier problem, i.e., the heat transfer through a rarefied

gas confined between two infinite parallel walls separated by a dis-

tance L at different tem peratures, as shown in Fig. 1 , is considered

here for evaluation of the repeated collision effects. Hard sphere

argon gas ( m = 6 . 63 × 10 −26 kg , d = 3 . 658 × 10 −10 m , ω = 0 . 5 ) at

the average temperature of 273.15 K and pressure of 266.6 Pa is

considered. The wall is located at L = 1 mm, cold and hot walls are

at T c = T re f − �T w 

/ 2 and T h = T re f + �T w 

/ 2 , where �T w 

= 100 K .

Based on this condition, the plate distances is approximately 42

times of the average mean free path, i.e., Kn = 0 . 024 . The simula-

tion test case has been selected based on the work of Gallis et al.

[15–17] , and our results were compared with their NTC results. The

converged value of the heat flux for this simulation is reported as

1512 W/m 

2 [17–19] . In all simulations, collisional cell size and time

step are set in such a way that to be much smaller than the local

mean free path ( λ) and mean collision time, respectively. 

3.1. Classical NTC scheme (without a procedure of avoiding repeated 

collisions) 

In the current section, we investigate the effect of repeated

collisions on the standard NTC scheme using Bird’s DSMC1 code.

Compared to Ref. [17] , we report simulations with a smaller num-

ber of particles per each cell. Fig. 2 shows the variation of heat flux

versus the number of particles in cell for different cell numbers

( N c ). The results are compared with those of Rader et al. [17] at a

time step of 7 ns which is equivalent to 0.1 × t λ. For 〈 N m 

〉 greater

than 10, there is a linear relation between heat flux and 〈 N m 

〉 −1 .
perator 〈〉 means the average values in the computational do-

ain. Decreasing 〈 N m 

〉 below 10 leads to an underestimation of the

redicted heat flux from the linear relation. Dashed-dotted lines

ndicate linear extrapolation based on Rader et al. results reported

or large 〈 N m 

〉 . As it is seen, a decrease in the cell number leads to

n increase in the predicted heat flux. The increase in the number

f particles increases heat flux for cases of N c = 50, 100, but it de-

reases heat flux for case N c = 400. We justify this behavior in the

est of the paper. 

Fig. 3 demonstrates the distribution of SCR values for various

 N m 

〉 and N c values. Using a lower number of particles leads to

 higher rate of repeated collisions. It is evident that the fewer

s the number of particles, the lower are the choices for selec-

ion of collision partner. Moreover, at the same time step, SCR is

igher for larger cell sizes, i.e., smaller N c . Larger cell sizes accom-

anied with a small time step permits the particles to remain a

onger time in the same cell, which increases the probability of re-

eated collisions. Fig. 3 -a shows that SCR could increase to 15–21%

f a coarse cell ( N c = 50) and a small number of particles per cell

 〈 N m 

〉 = 2 ) is utilized. The figure shows that in the case of N c = 50,

here is an increase in the SCR from the cold wall towards the hot

ne. This is in accordance with the theoretical probability evalua-

ion of the repeated collision given by Stefanov [5] , i.e., repeated

ollision are of an order of O( P ij / N c ). As most of the high-speed

articles are accumulated near the hot wall, and gas density is

ower there, and repeated collisions are more probable near the

ot wall. 

Fig. 4 reports the distribution of collision frequency ratio for a

arious number of particles per cell and cell numbers of 50 and

00. Collision frequency ratio is higher than unity for lower parti-

le and smaller cell numbers. According to the figure, CF ∗ depends

n the number of particles even at a fixed cell size. In the case of

mall cell and particle numbers, CF ∗ increases from cold towards

he hot wall. This is due to the appearance of the particle num-

er in the denominator of Eq. (6) . Our results show that there are

ess number of particles near the hot side of the geometry, see

ig. 5 . Moreover, the slope of CF ∗ is higher for the lower number of

ells. 

Probability distribution functions for the number of particles

nd collision number are shown in Fig. 5 for N c = 50 , 〈 N m 

〉 =
 , �t = 0 . 1 t λ. The results are obtained for three cells in the com-

utational domain, i.e. adjacent to the cold wall, middle, and ad-

acent to the hot wall. The symbols correspond to DSMC simula-

ions, and lines indicate analytical Poisson distribution given for a

henomenon with N occurrence as follows: 

 ( N ) = 

〈 N 〉 N 
N! 

e −〈 N 〉 (10)

According to Fig. 5 , the probability function for the number of

articles and collision number in a cell suitably follow the Poisson

istribution. It is also observed that the most probable values of

article number and collision number are higher for the adjacent

ell to the cold wall. The accumulation of particles near the cold

all follows the density gradient. In a steady state condition, the

emperature and density gradients have opposite signs in order to

ulfill the equation of state. The distribution of number of collisions

lso shows that number of collision is smaller on the hot side. This

ehavior is due to lower number of particles there. 

Fig. 6 shows the probability function distributions for relative

elocity of accepted collision pairs. For a lower number of particles,

.e., 〈 N m 

〉 = 2 the probability of the most probable value of the rel-

tive velocity is slightly lower, while there is a slightly larger prob-

bility for higher relative velocities. This means that the chance of

cceptance of collision pair is slightly higher at a lower number

f particles. This could be a partial reason of higher CF ∗ at lower

 N m 

〉 . 
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Fig. 3. Distributions for successive repeated collisions ratio; �t = 0 . 1 t λ . 

Fig. 4. Distributions of collision frequency ratio; �t = 0 . 1 t λ . 

Fig. 5. Probability distribution functions for number of particles and number of collisions in cells adjacent to hot wall, middle and adjacent to cold wall; Poisson distributions 

(lines) and DSMC simulations (symbols); N c = 50 , 〈 N m 〉 = 5 , �t = 0 . 1 t λ . 
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Fig. 7 investigates the effect of number of particles per cell on

ifferent parameters, i.e., normalized heat flux, mean collision sep-

ration, fraction of repeated collision, and collision frequency ra-

io. The investigation is performed for various cell numbers of 50,

0 0, and 40 0. Normalized heat flux decreases and approaches to

nity as the number of particles increases in N c = 50 and N c = 100

ases. In the case of N c = 400, the normalized heat flux increases

s 〈 N m 

〉 increases up to 10, after that it decreases slightly and ap-
roaches to unity. This observation indicates that the heat flux ex-

ibits a mixed behavior with respect to the 〈 N m 

〉 at a sufficiently

arge number of cells, i.e., it overpredicts the limiting value at a

ower 〈 N m 

〉 and underpredicts at a higher 〈 N m 

〉 . For detection of

he reason for this behavior, the variation of the other collisional

arameters reported in Fig. 7 should be considered. 

Theoretically, the mean separation between two random points

n a unit-size 1-D cell is 0.333333 [15] . However, mean collision
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Fig. 6. Probability distribution functions for relative velocity of collision pairs; �t = 0 . 1 t λ . 
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separation changes with reducing 〈 N m 

〉 due to the repeated col-

lision effects. Variations of non-dimensional mean collision sepa-

ration ( SOF ) versus 〈 N m 

〉 are shown in Fig. 7 . It is well observed

that SOF increases as 〈 N m 

〉 decreases. However, the effect of 〈 N m 

〉
is negligible for N c = 400. This indicates that at a sufficiently high

number of cells, SOF is approximately independent on 〈 N m 

〉 . De-

creasing number of particles down to 〈 N m 

〉 = 2 leads to an addi-

tional 6%, 4%, and 0.15% growth in SOF (with respect to the ex-

pected theoretical value corresponding to a large number of parti-

cles per cell, i.e., case with 〈 N m 

〉 = 10 2 ) for N c = 50, 100, and 400,

respectively. Therefore, lower values of 〈 N m 

〉 and N c increase SOF .

Increasing SOF means that collisions have been performed by far-

ther particles. This leads to an overprediction of the heat flux. 

Decreasing 〈 N m 

〉 leads to increase in successive (repeated) col-

lision ratio ( SCR ) up to 20%, 13%, and 4% for N c = 50, 10 0, and 40 0,

respectively. Fig. 7 shows that SCR continuously increases as 〈 N m 

〉
decreases. The repeated collisions constitute a considerable portion

of collisions at a lower number of particles. This leads to a wrong

heat transfer prediction at a lower 〈 N m 

〉 . Fig. 7 illustrates that as the

number of particles decreases up to 2, collision frequency grows

1.1%, 1.1% and 0.8% with respect to the theoretical value in Eq (6) ,

for N c = 50, 10 0, and 40 0, respectively. According to Fig. 7 , collision

frequency ratio mainly depends on the number of particles, and it

significantly increases if there are a few particles per cell. 

It was observed in Fig. 2 that the heat flux has a mixed behav-

ior for the case with N c = 400, while there are the same CF varia-

tions (with respect to the 〈 N m 

〉 ) for different cell numbers. There-

fore, the origin of the diverse behavior of heat flux in this case is

the competition between SOF effects and SCR effects due to varia-

tions of particle numbers in the cell. As 〈 N m 

〉 decreases, the heat

flux goes up due to the collisions between more distant particles

and at the same time tends to decrease due to the ineffective col-

lisions resulting from successively repeated collisions. In the cases

of N c = 50 and 100, the additive effect of collisions between far-

ther particles is dominant in all range of 〈 N m 

〉 variations, and heat

flux increases due to the decrease of 〈 N m 

〉 . But in the case of a

sufficient number of cells ( N c = 400), the additive effect of farther

particle collisions is dominant up to 〈 N m 

〉 = 10 , thereafter that sub-

tractive effect of repeated collisions becomes dominant. Therefore,

in the case of N c = 400, the heat flux first increases as 〈 N m 

〉 de-

creases up to 〈 N m 

〉 = 10 and after that decreases with the further

reduction of 〈 N m 

〉 . 
Fig. 8 illustrates the effect of mean collision separation and re-

peated collisions on the resulted heat flux for three considered cell
izes. As it is seen, SOF strongly affects the heat flux in a such

ay that lower SOF values leads to a normalized heat flux closer to

nity. However, there are variations in heat flux at approximately

onstant SOF which is due to the variations in SCR and CF ∗ values.

he heat flux increases with the SCR decrease in cases of N c = 400,

hile it decreases with the SCR decrease for other cell sizes. Ac-

ually, in the cases of N c = 50 and 100, the heat flux increases due

o the increase of CF . In general, one could conclude that lower

 N m 

〉 values lead to higher SCR, which decreases the effective heat

xchange, and a higher CF, which increases the heat flux. The com-

etition between these effects leads to mixed behavior of obtained

eat flux in Fourier problem versus the number of particles. In the

ase of N c = 50 and 100, the effect of CF is dominant. But in the

resence of a suitable cell size, the effect of SCR is dominant in the

ealization of heat flux behavior versus the number of particles. 

Fig. 9 shows the variations of heat flux obtained by classical

TC method with respect to the number of particles per cell for

ifferent cell numbers and time steps. The results are compared

ith those of Rader et al. [17] (solid lines) obtained for �t = 0 . 1 T λ.

s it is seen, with the decrease in the number of particles for all

ell numbers and time steps, the additive effect of farther-particles

ollision is dominant against the subtractive effect of the repeti-

ive collisions on the heat flux. Hence, heat flux increases as the

umber of particles per cell decreases. The time step increment

as an additive effect on heat flux. It will be discussed in follow-

ng figures. Fig. 10 repeats the calculations performed in Fig. 9 for

he NTC scheme using Eq. (2) instead of Eq. (1) . The figure indi-

ates that where an appropriate time step is applied, heat flux is

educed if Eq. (2) is used. 

Fig. 11 reports the variations of average repeated collision ratio

CR for different cell numbers, particles per cell, and time steps. As

xpected, the decrease in the number of particles and number of

ells leads to an increase in the number of duplicated collisions. An

nteresting result is obtained considering the time step variation. In

he NTC scheme, the decrease of time step leads to a reduction of

he maximum number of selected collision pairs in a collision cell.

ne should also expect a reduction in the fraction of repeated col-

isions. However, for a given particle pair the collision probability

s determined by the acceptance-rejection rule with the probabil-

ty given by Eq. (3) that does not depend on time step. Thus, the

hance of a repeated collision of a twice chosen pair in the NTC

lgorithm does not decrease with the reduction of the time step.

his explains the similar levels of repeated collisions shown in

a)–(c). 
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Fig. 7. Number of particles effects on heat flux, mean collision separation, duplicate collision ratio, and collision frequency; �t = 0 . 1 t λ . 
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.2. Avoiding repeated collisions 

To investigate the consequences of avoiding repeated collisions,

e reconsider the simulation test case reported in Fig. 9 for the

TC scheme but with no possibility of successively repeated col-
ision in the Bird’s DSMC1 code. We directly avoided repeated

ollision using the procedure already discussed in the paper and

mployed in DS2V code [6] . The heat flux results are demon-

trated in Fig. 12 . Comparison between Figs. 9 and 12 indicates

hat the avoidance of repeated collisions considerably reduces the
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Fig. 8. Effect of mean collision separation and duplicate collision ratio on heat flux; �t = 0 . 1 t λ , rectangle symbol: N c = 50, triangle symbol: N c = 100, circle symbol: N c = 400. 

Fig. 9. Heat flux values obtained from the classic NTC scheme; considering different number of particles, cell numbers of 50 ( ), 100 ( ), 400 ( ), and time steps of (a) 

�t = 0 . 01 t λ , (b) �t = 0 . 1 t λ , and (c) �t = t λ . 

Fig. 10. Heat flux values obtained from the classic NTC scheme but using Eq. (2) ; considering different number of particles, cell numbers of 50 ( ), 100 ( ), 400 ( ), and 

time steps of (a) �t = 0 . 01 t λ , (b) �t = 0 . 1 t λ , and (c) �t = t λ . 
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predicted heat flux. This leads to a closer estimation of the heat

flux especially in the case of a higher cell number and lower time

steps (dashed-dotted lines and filled circles in Fig. 12 -a,b). In the

cases with �t = 0 . 1 T λ, N c = 400, the heat flux decreases as 〈 N m 

〉
decreases. This is similar to the behavior detected in Fig. 2 for

N c = 400 and 〈 N m 

〉 less than 10. 

To highlight the effect of duplicated collisions, we considered a

case with N c = 50, 〈 N m 

〉 = 2 where a high rate of duplicated col-

lision ratio was observed. From probability distribution functions

for relative velocity of colliding particles and number of collisions,

it is found out that the avoidance of duplicate collisions decreases

the mean relative velocity of the collided pairs and hence reduces

the probability for acceptance of the collision. This observation

is in accordance with the probability analysis of Ref. [5] which

showed that repeated collisions are most probable for particles

with higher relative velocity. Therefore, an average number of col-

lisions diminishes. Also, according to Eq. (3) , the collision proba-

bility is lower for lower values of V R . As reported by Gallis et al.

[15] , the theoretical average mean collision separation in classical
TC scheme, i.e., the average distance between two colliding par-

icles, is equal to 1/3 times of the collisional cell size. However,

n the absence of the duplicated collisions, it increases by 5% in

he present case. This higher MCS values leads to farther-particles

ollisions. These farther-particle collisions detected in Fig. 13 could

e the reason for a higher heat flux prediction reported in

ig. 8 . 

Fig. 14 shows the variations of normalized heat flux with the

imulation time step for different cell numbers and numbers of

articles at absence of duplicated collisions. The heat flux varia-

ion at low time steps is negligible, but it is significant at large

ime steps increasing dramatically the heat flux. The same trends

ere observed by the classical NTC. In the absence of duplicated

ollisions, increase in the heat flux due to higher time steps is less

ompared to the case with duplicated collisions. It is due to this

act that collision frequency significantly decreases at high time

teps in the absence of duplicated collisions; See Fig. 15 . Mean-

hile, in the case of classical NTC, the CF approximately remains

qual to theoretical value. The main reason for the reduction of CF
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Fig. 11. Fraction of repeated collisions SCR in NTC scheme for different numbers of cells, i.e. 50 ( ), 100 ( ), 400 ( ), and time steps of (a) �t = 0 . 01 t λ , (b) �t = 0 . 1 t λ , 

and (c) �t = t λ . 

Fig. 12. Heat flux values obtained from the NTC scheme avoiding the successively repeated collisions (dashed lines) considering a different number of particles, cell numbers 

of 50 ( ), 100 ( ), 400 ( ), and time steps of (a) �t = 0 . 01 t λ , (b) �t = 0 . 1 t λ , and (c) �t = t λ . 

Fig. 13. Effects of repetitive collisions avoidance in NTC scheme on relative velocities, number of collisions, mean collision separation, and accepted collisions ratio. 

Fig. 14. Variation of heat flux values versus time step for NTC scheme avoiding 

the successively repeated collisions; considering different cell numbers of 50 (solid 

lines), 100 (dashed lines), 400 (dashed-dotted lines) and particles per cell of 10 ( ), 

40 ( ), 100 ( ∗). 

Fig. 15. Variation of collision frequency ratio versus time step for NTC scheme 

avoiding the successively repeated collisions; considering different cell numbers of 

50 (solid lines), 100 (dashed lines), 400 (dashed-dotted lines) and particles per cell 

of 10 ( ), 40 ( ), 100 ( ∗). 
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in the absence of duplicate collision is lower relative velocities of

collision pairs as discussed in the results shown in Fig. 12 . 

4. Conclusions 

The effects of successive duplicated collisions and their avoid-

ance on the DSMC calculations by using NTC collision scheme were

detected and discussed in details in the case of Fourier heat trans-

fer problem. It was shown that in addition to collision separation

and collision frequency, the percentage of repeated collisions also

plays an essential role in the accuracy of DSMC simulations. Our

investigations indicated that the direct avoidance of duplicate colli-

sions decreases the chance of acceptance of collisions of pairs with

higher relative velocities. As the NTC probability depends on rela-

tive velocity, this prevention reduces the average collision probabil-

ity, and consequently, decreases the collision frequency. This effect

increases critically for the accuracy of heat transfer calculations

when the number of particles in a cell decreases to several. There-

fore, avoiding successively duplicate collisions in NTC may lead to

underprediction of heat flux in simulations with a small number of

particles. As shown for the classical NTC scheme, a lower number

of particles at fixed cell size leads to a higher collision separation,

and consequently, to an increase of the predicted heat flux. How-

ever, in fine grid cases, i.e., for sufficiently small collision separa-

tion values, a very low number of particles results in a consider-

able percentage of duplicated collisions. Duplicated collisions have

no effective role in the heat transfer as they count as an effec-

tive one collision, therefore; heat flux reduces. For higher SOF val-

ues, the additive effect of farther-molecules collisions prevails the

subtractive effect of duplicated collisions and consequently heat

flux increases as the total number of particles decreases. This is a

mixed behavior of heat flux in the Fourier problem with respect to

the particle numbers. This mixed behavior could also be detected

in the NTC scheme with avoidance of duplicated collisions. At suf-

ficiently small SOF values, the heat flux decreases as the number

of particles decreases due to a significant reduction of the colli-

sion frequency. At higher SOF values, the heat flux increases as

the number of particles decreases, however; the slope of heat flux

curve is less than that of the standard NTC scheme. The direct

prevention of repeated collisions introduces additional errors in

the standard NTC scheme when the number of particles per each

cell is small. In this case, the collision procedure may check many

times the same pair that previously was rejected. Next time the

routine can choose the same pair and check it until a collision is

realized. Using the direct prevention procedure, a conditional prob-

ability with removing from consideration some pairs destroys the

correct random choice of pairs and the non-uniformity of selection

probability distribution becomes significant. Moreover, the direct

prevention of repeated collisions will eventually result in selecting

pairs with smaller relative velocities, that have a lower chance for

acceptance. The consequence is a deviation from the correct col-

lision probability, defined in the Boltzmann equation, what leads
o an incorrect collision frequency, and respectively, to an incor-

ect heat flux in DSMC calculations using NTC scheme with small

umber of particles in cells. 
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