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The current paper investigates the appropriateness and consequences of avoiding successively repeated
collisions usually recommended in the Direct Simulation Monte Carlo (DSMC) solvers, which use the
No Time Counter (NTC) collision technique. A sensitive test case, i.e., Fourier heat transfer problem at
the early slip regime, is considered in the presence and absence of the successively repeated collisions.
The effects of repeated collisions and avoiding them on different parameters such as heat flux, collision
frequency, collision separation distance, accepted-to-selected collisions ratio, and probability distribution
functions for the number of collisions and relative velocities of collision pairs are evaluated and dis-
cussed. The investigations are performed considering contributions of different computational parame-
ters, i.e., cell sizes, time step, and number of particles. In addition to collision frequency and collision
separation distance, which were reported previously as crucial parameters affecting the accuracy of the
DSMC solution, we found that the level of repeated collisions also plays a pivotal role in the accuracy of
the heat flux prediction in the Fourier problem. We show that direct avoiding of repeated collisions can
lead to a distortion of collision probability distribution and consequently, to introduction of a systematic
error in collision frequency and predicted heat flux. This error is negligible if one uses a large number of

particles per cell, but it is of considerable importance if there are a few particles per cell.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Direct Simulation Monte Carlo (DSMC) can be considered as
a numerical tool for solving the Boltzmann or Kac master equa-
tion based on the direct statistical simulation of the molecular
processes described by the kinetic theory. The stochastic binary
collision scheme plays a major role in the DSMC method. In the
algorithms of most popular DSMC schemes the collision process
could be divided into four steps, i.e., 1) determination of number
of collision pairs or collision frequency estimate, 2) collision-pair
selection, 3) acceptance-rejection process based on the collision
probability function, and 4) determination of post-collision veloci-
ties for the accepted pair.

The Bird’s No Time Counter (NTC) scheme has been widely
adopted as the most commonly used collision scheme in DSMC.
Due to the random selection of collision pairs, one of the main
shortcomings of the standard NTC is the possibility of repeated
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collisions, i.e., the same pair of particles could repeatedly be se-
lected for collision within one or several successive time steps
without the occurrence of events of collisions with other particles
[1]. Hence, NTC scheme requires a suitable number of particles in
the cell to reduce the chance of successively repeated collisions. An
insufficient number of particles per cell along with inappropriate
temporal and spatial discretization are sources of stochastic errors,
which violate the accuracy of the binary collision procedure [2-
4]. Usually, the argument against repeated collisions is that after a
collision of a particle pair the particle velocities are directed in a
way that physically a second collision of the same pair is not pos-
sible. However, an analogous argument is valid for particle veloci-
ties of any pair before checking it for a collision. More precisely, if
one imagines a gas in equilibrium, the above described situation is
true in mean for the first collisions of the half of possible pairs. So,
it can be shown that the problem with repeated collisions in the
DSMC collision schemes is rather mathematical than physical and
it can be explained considering the local property of the collision
integral in the Boltzmann equation. At any instant ¢, the collision
integral is defined in a single point x. From physical viewpoint, if
one considers a local set of particles in x it means that all particles
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Nomenclature

CFy, theoretical collision frequency at the equilibrium
state

CF numerical collision frequency

CF* the ratio of numerical collision frequency to the
theoretical value

d molecular diameter

Ax collision cell size

At time step

Atw wall time sampling period

ATy walls difference temperature

el molecular energy of incident particle to the wall

e molecular energy of reflected particle from the
wall

Fn ratio of the number of real molecules to the simu-

lated particles
f probability distribution function
Kp Boltzmann constant
L wall spacing in Fourier flow
A molecular mean free path
M molecular mass

MCS mean collision separation

Npgir number of pair selections

Neoi number of collisions in cell

Nayp number of duplicate collisions in cell

Nc number of cells

Nm instantaneous number of particles in cell

(Nm) time-averaged number of particles in cell

n number density

Dij collision probability

w viscosity-temperature exponent

q* normalized heat flux to its converged value

S surface area

SCR successive collision ratio

SOF mean collision separation divided by the mean free
path

o collision cross section

(0VR)max maximum value of the product of collision cross-
section and collision pair relative velocities

T¢ cold wall temperature

Ty hot wall temperature

Tref reference temperature of gas
T, mean free time

Vr relative velocity

Vinp most probable speed

Ve collision cell volume

are in the vicinity of point x, i.e., their positions are indistinguish-
able from point x. On another side, the collision process is consid-
ered for a very small time interval around instant t so that the pre-
collision and post-collision times for all possible collisions in the
vicinity of point x are associated with instant t. Hence, mathemat-
ically one should not distinguish the moment of particle trajectory
converging leading to a collision from the moment of particle tra-
jectory diverging after a collision within a time step dt. Thus, any
collision depends only on the relative velocity magnitude but not
on its sign. In DSMC simulations, a cell with a size of dx around x is
considered instead of point x, and it is accepted that it represents
approximately the solution in point x. Similarly, the time interval
dt around instant t is associated with t and one should not dis-
tinguish the post-collision from pre-collision velocities of the par-
ticles found in the considered cell. Thus, the argument for avoid-
ing repeated collisions because they are unphysical does not dis-

cover correctly the reason for the computational error introduced
by repeated collisions in the DSMC calculations. A proper expla-
nation of the effect of repeated collisions is given in the paper
[5]. According to Stefanov [5], the multiple repeated elastic colli-
sions of a pair in a cell have the effect of only one collision of
that pair on collision process. This statement is true for both vari-
able hard sphere (VHS) and variable soft sphere (VSS) models in
case of elastic collisions because both models keep same the mag-
nitude of relative velocity of the colliding pair. For inelastic inter-
actions of polyatomic molecules, the effect of repeated collisions is
not investigated, but some collision rate reduction coming from the
translational degrees of freedom should also be evident. Thus, the
repeated collisions of a pair lead to a reduced local collision rate.
Probability analysis of repeated collisions of the NTC scheme given
in Ref. [5] showed that repeated collisions increase quickly when
the number of particles in cells decreases, and a dominated part
of repeated collisions is due to pairs with larger relative veloci-
ties, i.e., the probability of repeated collisions is of order O(P;/Nm),
where P; is the NTC collision probability, and Np is the number
of particles per cell. The solution to the repeated collision prob-
lem seems simple - one just has to avoid the repeated collisions
directly [6]. However, as it will be shown in the sequel of this pa-
per (Section 3.2), the avoidance of repeated collisions in the NTC
scheme has another adverse effect that appears when the number
of particles in cells is not sufficient.

There are a few studies focused on the repeated collisions in
the DSMC scheme. Shevyrin et al. [7] investigated the influence of
repeated collisions on the deviation of the DSMC results from the
solution of the Boltzmann equation for heat transfer between two
parallel plates and Couette flow. Considering the distributions for
macroscopic properties (density, temperature, velocity, heat flux),
they showed that the fraction of repeated collisions is a reliable
indicator of deviation of simulation results from the solution of the
Boltzmann equation.

Bird proposed a new version of the DSMC algorithm with im-
provements in most of the procedures [6,8]. In the improved NTC
algorithm, the problem with the unrealized potential collisions be-
tween close particles situated in a cell was resolved by using a de-
terministic algorithm for finding collision partners. However, the
realization of repeated collisions remained a source of stochastic
error unless they are explicitly avoided. Bird stated that lower val-
ues of separation of free paths (SOF), which is defined as a ratio of
mean collision separation to mean free path, largely self-validates
the accuracy of DSMC solutions [6]. However, it should be men-
tioned that this is a necessary but not a sufficient condition. So,
it should be noted that low SOF does not always guarantee a cor-
rect solution if it is not accompanied with avoiding of repeated
collision between particles [9,10]. As a remedy for this problem as
well for other problems associated with the NTC scheme such as
the so called “reminder” problem, i.e., non-integer reminder when
the number of selected particle pairs is calculated in the NTC for-
mula, it is suggested to use 7-10 particles per collision cell. In the
relaxation to equilibrium test case, Bird reported that the dupli-
cate collisions were about one percent of the total collisions when
there were about ten molecules per collision cell. With Decreasing
further the number of molecules per cell the number of repeated
collisions increases to two percent at four molecules per cell. With-
out suppressing duplicate collisions, the collision rate increases by
about 0.05% and the agreement with the theoretical equilibrium
rate is still satisfactory when there are ten or more simulated par-
ticles per collision cell. In this case, the duplicated collisions typi-
cally reduced the effective collision rate by about 1% [6]. However,
it should be noted that the effect of repeated collision should be
investigated for sensitive parameters in complex test cases in more
details. The suggested remedy of repeated collisions in the NTC
that is directly avoiding them, which means that one introduces a
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condition leading to a non-uniform distribution of selection prob-
abilities because for the first chosen pair one chooses randomly
among N(N — 1)/2 pairs of particles but the second choice is per-
formed from among N(N — 1)/2 — 1 pairs of particles etc. The ef-
fect is stronger if one keeps this direct collision control condition
within successive time steps. Evidently, this error is minor for a
large number of particles, but it is of considerable importance if
there are a few particles per cell [5,11].

Here, we provide a detailed investigation of the behavior of
the standard NTC scheme in the presence or absence of “succes-
sively repeated collisions.” The consequences of successively re-
peated collisions on the heat flux prediction of the Fourier heat
transfer problem are evaluated in the early slip regime, investigat-
ing the collisional and statistical parameters, as well as the heat
flux values predicted at presence or absence of duplicate collisions
in the classical NTC scheme. The effects of different parameters
such as number of particles, number of cells, time step, and level
of duplicated collisions on the heat flux of Fourier problem are ex-
amined in details.

2. NTC collision scheme

In the standard NTC scheme, the number of collision pairs, Npg;;
in the cell is calculated as [1]:

1 At
NPair = *FnNm<Nm>(UVR)maXV7 (1)
c

2

where both instantaneous, Ny, and average number, (N;;), of par-
ticles in the cell are employed for the determination of N The
recent variant of the NTC [6,8] uses the term Ny (Np — 1) instead
N (Np) in Eq. (1), i.e.,
Nosie = il (N = 1 (V) - @)

In the new relation (2) is taken into account the Poisson distri-
bution property leading to equality (N. (N; — 1)) = < N¢>2, which
was pointed out by Yanitsky [12] then reemphasized and utilized
in Eq. (1) by Stefanov [13], and also presented by Bird in [6,8].

Once selected, the particle pair is tested for the collision by
using the acceptance-rejection procedure. The acceptance-rejection
logic is set up on a probabilistic concept. For a chosen pair 1<(j,
Jj)<Nm, the collision occurs if the collision probability becomes
greater than a random number between 0 and 1 as:

D = (o VR)jj
Y (GVR)max

Considering a grid with a small number of particles per cell, the
conditions for accurate simulation using the NTC collision scheme
are violated frequently because the relative velocities of the few
particle pairs in a cell form a strongly degenerated probability
distribution function. This leads to an unacceptable increase in
the number of successively repeated collisions in cells. The post-
collision velocities obtained as a result of using n successively re-
peated elastic collisions are statistically distributed in the same
way as if they are achieved by the realization of only one colli-
sion of the chosen pair [5]. As a consequence, the major effect of
the NTC simulation with a small number of particles per cell is a
reduction in the local collision frequency, which converges to the
Boltzmann collision frequency only for a sufficient number of par-
ticles per cell [5].

In the standard NTC scheme, the second particle is selected ran-
domly without extra consideration. But in the scheme avoiding re-
peated collision, an additional condition is taken into account: the
second particle should differ from the last particle, which hit the
first before. Here is assumed that a repeated collision means that
the same pair of particles experiences collisions in one or several

> Ranf (3)

successive time steps without occurrence of collisions with other
particles. Based on that, whenever a collision occurs between two
particles, the particles are allowed to collide again with each other
if at least one of them collides to a third particle or collides with a
solid boundary. Otherwise, a new collision of them is not permit-
ted again during the simulation.

The hypothesis of molecular chaos assumed in the derivation of
the Boltzmann equation is valid if the probability of repeated col-
lisions is negligibly small [7,11]. Otherwise, statistical correlations
will be presented in the solutions. Thus, the occurrence of the re-
peated collisions is a source of stochastic errors in the NTC scheme.

In previous works, avoiding duplicated collisions were per-
formed via a list of partners of the last n collisions made for each
molecule. Hence, the collision of molecules A and B was consid-
ered as repeated if the list of molecule A contains molecule B and
the list of molecule B contains molecule A [7]. The parameter n
is usually selected by the user. In the current work, we set n =1
[14] to evaluate the effect of avoiding the recollision of the last col-
lision partners for each molecule in all simulation cases considered
in this study. After reflecting each molecule from a surface, the list
for that molecule is reset.

Different collisional parameters were considered to examine the
effect of avoiding duplicated collision in the Fourier problem, i.e.
heat flux, collision frequency, the ratio of accepted collisions to se-
lected pairs, repeated collisions ratio, and mean collision separa-
tion. The net heat flux to the wall is calculated from the net energy
exchanged with the wall by the incident and reflected molecules as
follows [1]:

1 r
au=25 2% @)
w -

The equilibrium collision rate per molecule is given theoreti-

cally (CFy,) by [1]:

0.5 1-w
_ 2 jTKBTref T
CEy = 4nd (m T (5)

CF represents the numerical collision frequency that is calcu-
lated by the division of the number of collisions in each cell N,y
on the execution time, and half of the mean particle numbers per
cell as follows:
el ®)
(Nm)Time

The parameter CF* is the ratio of the numerical CF to its theo-
retical value—that is the equilibrium state—it should have a mag-
nitude close to unity. The heat transfer problem considered in this
investigation is under conditions close to linear assumption corre-
sponded to small relative temperature gradient values. This allows
using CF* as a meaningful criterion for accuracy check.

The level of duplicated collisions in each cell is called as “Suc-
cessive Collisions Ratio (SCR)":

CF =

Ndu
SCR = -2 (7)
Ncol
The normalized mean collision separation is as:
SOF = L/fs, (8)

where A is the local mean free path in the cell. The values of SOF
much smaller than the unity reflects a suitable collision quality [6].
Probability distribution functions for relative velocity of collision
pairs, the number of collisions, and the number of particles in the
cell are considered in this paper. The probability distribution func-
tion of an arbitrary parameter 9 is defined as fy, where:

Tfﬁdﬁ =1 (9)
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Fig. 1. Geometry of the Fourier flow.
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Fig. 2. Heat flux values obtained by the classic NTC scheme; considering different
number of particles per cell and different cell numbers; At =0.1t;.

3. Results and discussion

The Fourier problem, i.e., the heat transfer through a rarefied
gas confined between two infinite parallel walls separated by a dis-
tance L at different temperatures, as shown in Fig. 1, is considered
here for evaluation of the repeated collision effects. Hard sphere
argon gas (m=6.63 x 10726kg, d =3.658 x 10~1°m, w = 0.5) at
the average temperature of 273.15K and pressure of 266.6Pa is
considered. The wall is located at L=1mm, cold and hot walls are
at Te = Tref — ATw/2 and T, = Ty + ATw/2, where AT, =100K.
Based on this condition, the plate distances is approximately 42
times of the average mean free path, i.e., Kn = 0.024. The simula-
tion test case has been selected based on the work of Gallis et al.
[15-17], and our results were compared with their NTC results. The
converged value of the heat flux for this simulation is reported as
1512 W/m?2 [17-19]. In all simulations, collisional cell size and time
step are set in such a way that to be much smaller than the local
mean free path (A) and mean collision time, respectively.

3.1. Classical NTC scheme (without a procedure of avoiding repeated
collisions)

In the current section, we investigate the effect of repeated
collisions on the standard NTC scheme using Bird’s DSMC1 code.
Compared to Ref. [17], we report simulations with a smaller num-
ber of particles per each cell. Fig. 2 shows the variation of heat flux
versus the number of particles in cell for different cell numbers
(N¢). The results are compared with those of Rader et al. [17] at a
time step of 7ns which is equivalent to 0.1 x t;. For (Ny,) greater
than 10, there is a linear relation between heat flux and (Np)~!.

Operator () means the average values in the computational do-
main. Decreasing (Np,) below 10 leads to an underestimation of the
predicted heat flux from the linear relation. Dashed-dotted lines
indicate linear extrapolation based on Rader et al. results reported
for large (Np). As it is seen, a decrease in the cell number leads to
an increase in the predicted heat flux. The increase in the number
of particles increases heat flux for cases of N. =50, 100, but it de-
creases heat flux for case N.=400. We justify this behavior in the
rest of the paper.

Fig. 3 demonstrates the distribution of SCR values for various
(Nm) and N values. Using a lower number of particles leads to
a higher rate of repeated collisions. It is evident that the fewer
is the number of particles, the lower are the choices for selec-
tion of collision partner. Moreover, at the same time step, SCR is
higher for larger cell sizes, i.e., smaller N.. Larger cell sizes accom-
panied with a small time step permits the particles to remain a
longer time in the same cell, which increases the probability of re-
peated collisions. Fig. 3-a shows that SCR could increase to 15-21%
if a coarse cell (N.=50) and a small number of particles per cell
({Nm) = 2) is utilized. The figure shows that in the case of N, =50,
there is an increase in the SCR from the cold wall towards the hot
one. This is in accordance with the theoretical probability evalua-
tion of the repeated collision given by Stefanov [5], i.e., repeated
collision are of an order of O(P;/Nc). As most of the high-speed
particles are accumulated near the hot wall, and gas density is
lower there, and repeated collisions are more probable near the
hot wall.

Fig. 4 reports the distribution of collision frequency ratio for a
various number of particles per cell and cell numbers of 50 and
400. Collision frequency ratio is higher than unity for lower parti-
cle and smaller cell numbers. According to the figure, CF* depends
on the number of particles even at a fixed cell size. In the case of
small cell and particle numbers, CF* increases from cold towards
the hot wall. This is due to the appearance of the particle num-
ber in the denominator of Eq. (6). Our results show that there are
less number of particles near the hot side of the geometry, see
Fig. 5. Moreover, the slope of CF* is higher for the lower number of
cells.

Probability distribution functions for the number of particles
and collision number are shown in Fig. 5 for N. =50, (Np) =
5, At =0.1t,. The results are obtained for three cells in the com-
putational domain, i.e. adjacent to the cold wall, middle, and ad-
jacent to the hot wall. The symbols correspond to DSMC simula-
tions, and lines indicate analytical Poisson distribution given for a
phenomenon with N occurrence as follows:

A
P(N) = e ) (10)

According to Fig. 5, the probability function for the number of
particles and collision number in a cell suitably follow the Poisson
distribution. It is also observed that the most probable values of
particle number and collision number are higher for the adjacent
cell to the cold wall. The accumulation of particles near the cold
wall follows the density gradient. In a steady state condition, the
temperature and density gradients have opposite signs in order to
fulfill the equation of state. The distribution of number of collisions
also shows that number of collision is smaller on the hot side. This
behavior is due to lower number of particles there.

Fig. 6 shows the probability function distributions for relative
velocity of accepted collision pairs. For a lower number of particles,
i.e., (Nm) = 2 the probability of the most probable value of the rel-
ative velocity is slightly lower, while there is a slightly larger prob-
ability for higher relative velocities. This means that the chance of
acceptance of collision pair is slightly higher at a lower number
of particles. This could be a partial reason of higher CF* at lower
(Nm).
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(lines) and DSMC simulations (symbols); Ne = 50, (Np,) =5, At =0.1¢,.

Fig. 7 investigates the effect of number of particles per cell on
different parameters, i.e., normalized heat flux, mean collision sep-
aration, fraction of repeated collision, and collision frequency ra-
tio. The investigation is performed for various cell numbers of 50,
100, and 400. Normalized heat flux decreases and approaches to
unity as the number of particles increases in N. =50 and N, =100
cases. In the case of N.=400, the normalized heat flux increases
as (Np) increases up to 10, after that it decreases slightly and ap-

proaches to unity. This observation indicates that the heat flux ex-
hibits a mixed behavior with respect to the (Ny;) at a sufficiently
large number of cells, i.e., it overpredicts the limiting value at a
lower (Np) and underpredicts at a higher (Ny). For detection of
the reason for this behavior, the variation of the other collisional
parameters reported in Fig. 7 should be considered.

Theoretically, the mean separation between two random points
in a unit-size 1-D cell is 0.333333 [15]. However, mean collision
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Fig. 6. Probability distribution functions for relative velocity of collision pairs; At =0.1t;.

separation changes with reducing (Ny) due to the repeated col-
lision effects. Variations of non-dimensional mean collision sepa-
ration (SOF) versus (Np) are shown in Fig. 7. It is well observed
that SOF increases as (Np) decreases. However, the effect of (Np)
is negligible for N, =400. This indicates that at a sufficiently high
number of cells, SOF is approximately independent on (Np). De-
creasing number of particles down to (Np) =2 leads to an addi-
tional 6%, 4%, and 0.15% growth in SOF (with respect to the ex-
pected theoretical value corresponding to a large number of parti-
cles per cell, i.e., case with (Np) = 102) for N. =50, 100, and 400,
respectively. Therefore, lower values of (N;;) and N, increase SOF.
Increasing SOF means that collisions have been performed by far-
ther particles. This leads to an overprediction of the heat flux.

Decreasing (Np;) leads to increase in successive (repeated) col-
lision ratio (SCR) up to 20%, 13%, and 4% for N. =50, 100, and 400,
respectively. Fig. 7 shows that SCR continuously increases as (Np)
decreases. The repeated collisions constitute a considerable portion
of collisions at a lower number of particles. This leads to a wrong
heat transfer prediction at a lower(Ny). Fig. 7 illustrates that as the
number of particles decreases up to 2, collision frequency grows
1.1%, 1.1% and 0.8% with respect to the theoretical value in Eq (6),
for N =50, 100, and 400, respectively. According to Fig. 7, collision
frequency ratio mainly depends on the number of particles, and it
significantly increases if there are a few particles per cell.

It was observed in Fig. 2 that the heat flux has a mixed behav-
ior for the case with N. =400, while there are the same CF varia-
tions (with respect to the (Ny,)) for different cell numbers. There-
fore, the origin of the diverse behavior of heat flux in this case is
the competition between SOF effects and SCR effects due to varia-
tions of particle numbers in the cell. As (Np,) decreases, the heat
flux goes up due to the collisions between more distant particles
and at the same time tends to decrease due to the ineffective col-
lisions resulting from successively repeated collisions. In the cases
of N.=50 and 100, the additive effect of collisions between far-
ther particles is dominant in all range of (Np,) variations, and heat
flux increases due to the decrease of (Ny). But in the case of a
sufficient number of cells (N. =400), the additive effect of farther
particle collisions is dominant up to {(Np) = 10, thereafter that sub-
tractive effect of repeated collisions becomes dominant. Therefore,
in the case of N.=400, the heat flux first increases as (Np) de-
creases up to (Np) = 10 and after that decreases with the further
reduction of (Np).

Fig. 8 illustrates the effect of mean collision separation and re-
peated collisions on the resulted heat flux for three considered cell

sizes. As it is seen, SOF strongly affects the heat flux in a such
way that lower SOF values leads to a normalized heat flux closer to
unity. However, there are variations in heat flux at approximately
constant SOF which is due to the variations in SCR and CF* values.
The heat flux increases with the SCR decrease in cases of N, =400,
while it decreases with the SCR decrease for other cell sizes. Ac-
tually, in the cases of N, =50 and 100, the heat flux increases due
to the increase of CF. In general, one could conclude that lower
(Nm) values lead to higher SCR, which decreases the effective heat
exchange, and a higher CF, which increases the heat flux. The com-
petition between these effects leads to mixed behavior of obtained
heat flux in Fourier problem versus the number of particles. In the
case of N.=50 and 100, the effect of CF is dominant. But in the
presence of a suitable cell size, the effect of SCR is dominant in the
realization of heat flux behavior versus the number of particles.

Fig. 9 shows the variations of heat flux obtained by classical
NTC method with respect to the number of particles per cell for
different cell numbers and time steps. The results are compared
with those of Rader et al. [17] (solid lines) obtained for At = 0.1T;.
As it is seen, with the decrease in the number of particles for all
cell numbers and time steps, the additive effect of farther-particles
collision is dominant against the subtractive effect of the repeti-
tive collisions on the heat flux. Hence, heat flux increases as the
number of particles per cell decreases. The time step increment
has an additive effect on heat flux. It will be discussed in follow-
ing figures. Fig. 10 repeats the calculations performed in Fig. 9 for
the NTC scheme using Eq. (2) instead of Eq. (1). The figure indi-
cates that where an appropriate time step is applied, heat flux is
reduced if Eq. (2) is used.

Fig. 11 reports the variations of average repeated collision ratio
SCR for different cell numbers, particles per cell, and time steps. As
expected, the decrease in the number of particles and number of
cells leads to an increase in the number of duplicated collisions. An
interesting result is obtained considering the time step variation. In
the NTC scheme, the decrease of time step leads to a reduction of
the maximum number of selected collision pairs in a collision cell.
One should also expect a reduction in the fraction of repeated col-
lisions. However, for a given particle pair the collision probability
is determined by the acceptance-rejection rule with the probabil-
ity given by Eq. (3) that does not depend on time step. Thus, the
chance of a repeated collision of a twice chosen pair in the NTC
algorithm does not decrease with the reduction of the time step.
This explains the similar levels of repeated collisions shown in

(a)-(c).



H. Akhlaghi et al./Computers and Fluids 161 (2018) 23-32 29
L1} =
13F 1 i
’ e N0 — N, =100 1.00
\ © W
y LosF
. 1L.2r \ “j 0,08 0 N._=400
1.05} '
1.1 PN
1.02}
T A 0.96}
1.0 . ' - - . .
10° 10' 10° 10° 10" 10° 10° 10' 10°
(N_) (N (N
0.295 = 0144} 4 0.03478}
\\ —a—— N_=50 — N, =100
0290 |
\ 0.03476
% \ 0.142r 0 N_=400
“o285t L \
\ 0.03474}
0.140¢ \
0.280 | M
N NN 0.03472}
: ' 0.138 - - . .
10° 10' 107 10° 10" 10 10° 10" 10°
(N_) (N (N
021 0.15 '
. 0.04}
s N_=100
0.14} 0.10f |
4 3
S \ 0.02}
0.07} 0.05} N
0.00 : 0.00 : — 0.00 :
10° 10! 10 10° 10! 10 10° 10' 10°
(N,.) (N ) (N
1.012 - 1.012 . .
5 1.008}
N ) A N_=100
1.008 | 1.008} |
" 1.005} N 400
@)
1.004 | 1.004F -
1.002}
1.000 ¢ 1.000} [ S Y
0 " " 5 — — 0.999 —
10 10 10 10 10 10 10 10
(N, (N_)

Fig. 7. Number of particles effects on heat flux, mean collision separation, duplicate collision ratio, and collision frequency; At =0.1t;.
3.2. Avoiding repeated collisions

To investigate the consequences of avoiding repeated collisions,
we reconsider the simulation test case reported in Fig. 9 for the
NTC scheme but with no possibility of successively repeated col-

10°

(N,

lision in the Bird’s DSMC1 code. We directly avoided repeated
collision using the procedure already discussed in the paper and
employed in DS2V code [6]. The heat flux results are demon-
strated in Fig. 12. Comparison between Figs. 9 and 12 indicates
that the avoidance of repeated collisions considerably reduces the
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Fig. 10. Heat flux values obtained from the classic NTC scheme but using Eq. (2); considering different number of particles, cell numbers of 50 ((I), 100 (A), 400 (O), and

time steps of (a) At =0.01¢t,, (b) At =0.1¢t;, and (c) At =t;.

predicted heat flux. This leads to a closer estimation of the heat
flux especially in the case of a higher cell number and lower time
steps (dashed-dotted lines and filled circles in Fig. 12-a,b). In the
cases with At = 0.1T,, N, =400, the heat flux decreases as (Np)
decreases. This is similar to the behavior detected in Fig. 2 for
N:=400 and (Np) less than 10.

To highlight the effect of duplicated collisions, we considered a
case with N.=50, (Np,) =2 where a high rate of duplicated col-
lision ratio was observed. From probability distribution functions
for relative velocity of colliding particles and number of collisions,
it is found out that the avoidance of duplicate collisions decreases
the mean relative velocity of the collided pairs and hence reduces
the probability for acceptance of the collision. This observation
is in accordance with the probability analysis of Ref. [5] which
showed that repeated collisions are most probable for particles
with higher relative velocity. Therefore, an average number of col-
lisions diminishes. Also, according to Eq. (3), the collision proba-
bility is lower for lower values of Vi. As reported by Gallis et al.
[15], the theoretical average mean collision separation in classical

NTC scheme, i.e., the average distance between two colliding par-
ticles, is equal to 1/3 times of the collisional cell size. However,
in the absence of the duplicated collisions, it increases by 5% in
the present case. This higher MCS values leads to farther-particles
collisions. These farther-particle collisions detected in Fig. 13 could
be the reason for a higher heat flux prediction reported in
Fig. 8.

Fig. 14 shows the variations of normalized heat flux with the
simulation time step for different cell numbers and numbers of
particles at absence of duplicated collisions. The heat flux varia-
tion at low time steps is negligible, but it is significant at large
time steps increasing dramatically the heat flux. The same trends
were observed by the classical NTC. In the absence of duplicated
collisions, increase in the heat flux due to higher time steps is less
compared to the case with duplicated collisions. It is due to this
fact that collision frequency significantly decreases at high time
steps in the absence of duplicated collisions; See Fig. 15. Mean-
while, in the case of classical NTC, the CF approximately remains
equal to theoretical value. The main reason for the reduction of CF
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Fig. 15. Variation of collision frequency ratio versus time step for NTC scheme
avoiding the successively repeated collisions; considering different cell numbers of
50 (solid lines), 100 (dashed lines), 400 (dashed-dotted lines) and particles per cell
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Fig. 14. Variation of heat flux values versus time step for NTC scheme avoiding
the successively repeated collisions; considering different cell numbers of 50 (solid
lines), 100 (dashed lines), 400 (dashed-dotted lines) and particles per cell of 10 (),
40 (A\), 100 (*).
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in the absence of duplicate collision is lower relative velocities of
collision pairs as discussed in the results shown in Fig. 12.

4. Conclusions

The effects of successive duplicated collisions and their avoid-
ance on the DSMC calculations by using NTC collision scheme were
detected and discussed in details in the case of Fourier heat trans-
fer problem. It was shown that in addition to collision separation
and collision frequency, the percentage of repeated collisions also
plays an essential role in the accuracy of DSMC simulations. Our
investigations indicated that the direct avoidance of duplicate colli-
sions decreases the chance of acceptance of collisions of pairs with
higher relative velocities. As the NTC probability depends on rela-
tive velocity, this prevention reduces the average collision probabil-
ity, and consequently, decreases the collision frequency. This effect
increases critically for the accuracy of heat transfer calculations
when the number of particles in a cell decreases to several. There-
fore, avoiding successively duplicate collisions in NTC may lead to
underprediction of heat flux in simulations with a small number of
particles. As shown for the classical NTC scheme, a lower number
of particles at fixed cell size leads to a higher collision separation,
and consequently, to an increase of the predicted heat flux. How-
ever, in fine grid cases, i.e., for sufficiently small collision separa-
tion values, a very low number of particles results in a consider-
able percentage of duplicated collisions. Duplicated collisions have
no effective role in the heat transfer as they count as an effec-
tive one collision, therefore; heat flux reduces. For higher SOF val-
ues, the additive effect of farther-molecules collisions prevails the
subtractive effect of duplicated collisions and consequently heat
flux increases as the total number of particles decreases. This is a
mixed behavior of heat flux in the Fourier problem with respect to
the particle numbers. This mixed behavior could also be detected
in the NTC scheme with avoidance of duplicated collisions. At suf-
ficiently small SOF values, the heat flux decreases as the number
of particles decreases due to a significant reduction of the colli-
sion frequency. At higher SOF values, the heat flux increases as
the number of particles decreases, however; the slope of heat flux
curve is less than that of the standard NTC scheme. The direct
prevention of repeated collisions introduces additional errors in
the standard NTC scheme when the number of particles per each
cell is small. In this case, the collision procedure may check many
times the same pair that previously was rejected. Next time the
routine can choose the same pair and check it until a collision is
realized. Using the direct prevention procedure, a conditional prob-
ability with removing from consideration some pairs destroys the
correct random choice of pairs and the non-uniformity of selection
probability distribution becomes significant. Moreover, the direct
prevention of repeated collisions will eventually result in selecting
pairs with smaller relative velocities, that have a lower chance for
acceptance. The consequence is a deviation from the correct col-
lision probability, defined in the Boltzmann equation, what leads

to an incorrect collision frequency, and respectively, to an incor-
rect heat flux in DSMC calculations using NTC scheme with small
number of particles in cells.
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