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Abstract
In this paper, we study frames for operators (K-frames) in finite dimentional Hilbert spaces and express
the dual of K-frames. Some properties of K-dual frames are investigated. Furthermore, the notion of their
oblique K-duals and some properties are presented.
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1. Introduction

Let K ∈ B(H), the space of all bounded linear operators on a Hilbert space H . A
sequence {φ j} j∈J is said to be a K-frame for H if there exist constants A, B > 0 such
that

A∥K∗x∥2 ≤
∑
j∈J
|⟨x, φ j⟩|2 ≤ B∥x∥2, (x ∈ H). (1)

We call A, B the lower and the upper K-frame bounds for {φ j} j∈J, respectively. If
K = IH , then {φ j} j∈J is the ordinary frame. If only the right inequalitiy holds, then
{φ j} j∈J is called a Bessel sequence. Suppose that Φ := {φ j} j∈J is a K-frame for H .
The operator TΦ : H → ℓ2(J) defined by TΦ(x) = {⟨x, φ j⟩} j∈J is called the analysis
operator. TΦ is bounded and T ∗

Φ
: ℓ2(J) → H is given by T ∗

Φ
({c j} j∈J) =

∑
j∈J c jφ j.

T ∗
Φ

is called the pre-frame or synthesis operator. The operator SΦ : H → H defined
by SΦ(x) = T ∗

Φ
TΦ(x) =

∑
j∈J⟨x, φ j⟩φ j is called the frame operator of Φ. Note that,

frame operator of a K-frame is not invertible on H in general, but it is invertible on
the subspace R(K) ⊂ H , that R(K) is the range of K.

Given a positive integer N. Throughout this paper, we suppose thatHN is a real or
complex N-dimensional Hilbert space. By ⟨·, ·⟩ and ∥.∥ we denote the inner product on
HN and its corresponding norm, respectively. Denote by PW the orthogonal projection
ofH onto a closed subspace W ⊆ H .
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2. Finite K-frames

In this section, we present K-frame theory in finite-dimensional Hilbert spaces.
Let K ∈ B(HN) and Φ = {φ j}Mj=1 be a family of vectors in HN . If A∥K∗x∥2 =∑M

j=1 |⟨x, φ j⟩|2, then Φ is called an A-tight K-frame and if ∥K∗x∥2 = ∑M
j=1 |⟨x, φ j⟩|2,

then Φ is called a tight K-frame. If ∥φ j∥ = 1 for all j = 1, 2, ...,M, this is an unit norm
K-frame.

For an arbitrary K-frame, we obtain the optimal lower and upper K-frame bounds
by eigenvalues of its frame operator.

Proposition 2.1. Let 0 , K ∈ B(HN). Let Φ = {φ j}Mj=1 be a K-frame for R(K) with
K-frame operator SΦ with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λN > 0. Then λ1 is the optimal
upper K-frame bound and if λN , 0 then λN

∥K∥2 is the optimal lower K-frame bound.

Now, we introduce a constructive method to extend a given frame to a tight K-
frame.

Theorem 2.2. Let K ∈ B(HN). Let Φ = {φ j}Mj=1 be a frame for HN . Assume
that the frame operator SΦ has the eigenvalues {λ j}Nj=1, ordered as λ1 ≥ λ2 ≥
... ≥ λN > 0. Let {e j}Nj=1 be a corresponding eigenbasis. Then the collection
{Kφ j}Mj=1 ∪ {

√
λ1 − λ j Ke j}Nj=2 is a λ1-tight K-frame forHN .

In the following proposition, we express two inequality of A-tight K-frames.

Proposition 2.3. (i) If Φ = {φ j}Mj=1 is an A-tight K-frame forHN , then

max
j=1,2,...,M

∥φ j∥2 ≤ A∥K∥2.

(ii) If Φ = {φ j}Mj=1 is an unit norm A-tight K-frame forHN , then

A∥K∥2N ≥ M.

In the last part of this section, we study conditions under which a linear combina-
tion of two K-frames is K-frame too.

Definition 2.4. Let K ∈ B(HN) and Φ = {φ j}Mj=1 and Ψ = {ψ j}Mj=1 be K-frames for
HN . Φ and Ψ are called strongly disjoint if R(TΦ) ⊥ R(TΨ), where TΦ and TΨ are the
analysis operators of the sequences Φ and Ψ, respectively.

Theorem 2.5. Suppose that K ∈ B(HN) and Φ = {φ j}Mj=1 andΨ = {ψ j}Mj=1 are strongly
disjoint tight K-frames for HN . Also, assume that A, B ∈ B(HN) are operators such
that AKK∗A∗ + BKK∗B∗ = IN×N , then {AΦ + BΨ} is a K-frame forHN . In particular,
if KK∗ = 1

2(|α|2+|β|2) IN×N , then {αΦ + βΨ} is a K-frame forHN .
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3. Dual of K-frame
In this section, we introduce the concept of K-dual of K-frames in HN and its

properties are discussed. Also, the oblique K-dual is investigated.

Definition 3.1. If Φ = {φ j}Mj=1 is a K-frame for HN , a sequence Ψ = {ψ j}Mj=1 is called
a K-dual frame for Φ if

Kx =
M∑
j=1

⟨x, ψ j⟩φ j, (x ∈ HN). (2)

The systems Φ = {φ j}Mj=1 and Ψ = {ψ j}Mj=1 are referred to as a K-dual frame pair.

Proposition 3.2. Let Φ = {φ j}Mj=1 be a tight K-frame for HN . Then Tr(K) =∑M
j=1⟨φ j, ψ j⟩, where Ψ = {ψ j}Mj=1 is a K-dual of Φ = {φ j}Mj=1.

In the following theorem, we characterize the scalar sequences ν = {ν j}Mj=1 for
which there exists a K-dual pair of frames {φ j}Mj=1 and {ψ j}Mj=1 such that ν j = ⟨φ j, ψ j⟩
for all j = 1, 2, ...,M.

Theorem 3.3. Let K ∈ B(HN) and ν = {ν j}Mj=1 ⊂ C with M > dim(R(K)) = rank(K)
be given. Suppose that there exist K-dual frame pairs {φ j}Mj=1 and {ψ j}Mj=1 forHN such
that ν j = ⟨φ j, ψ j⟩ for all j = 1, 2, ..., M. Then there exists a tight K∗-frame {θ j}Mj=1

and a corresponding dual frame Γ = {γ j}Mj=1 for HN such that ν j = ⟨θ j, γ j⟩ for all
j = 1, 2, ...,M. Furthermore Tr(K) =

∑M
j=1 ν j.

In the following result we characterize K-duals of a K-frame.

Proposition 3.4. Let Φ = {φ j}Mj=1 be a K-frame forHN . Then Ψ = {ψ j}Mj=1 is a K-dual
for Φ if and only if R(TΦ) ⊥ R(TΘ), where TΘ is the analysis operator of the sequence
Θ = {θ j}Mj=1 = {ψ j − K∗S −1

Φ
PSΦ(R(K))φ j}Mj=1.

Oblique dual frames in finite dimentional Hilbert space were studied in [5]. In the
last part of this section, we study this notion for K-frames.

Definition 3.5. LetU andW be two subspaces ofHN and suppose that Φ = {φ j}Mj=1

and Ψ = {ψ j}Mj=1 are in HN and W = span{φ j : j = 1, 2, ...,M}, U = span{ψ j :
j = 1, 2, ...,M}. The sequence Ψ = {ψ j}Mj=1 is an oblique K-dual frame of the K-frame
Φ = {φ j}Mj=1 onW if Kx =

∑M
j=1⟨x, ψ j⟩φ j , for all x ∈ W.

In the following two propositions a characterization of the oblique K-dual frames
pair.

Proposition 3.6. Suppose thatW is a subspace of HN and sequences Φ = {φ j}Mj=1,
Ψ = {ψ j}Lj=1 and Γ = {γ j}Lj=1 inHN satisfy that span(Φ ∪ Γ) =W. Then the following
statements are equivalent:

(i) Φ ∪ Ψ is an oblique K-dual frame of Φ ∪ Γ onW.
(ii) For any x ∈ W, (K − SΦ)x =

∑L
j=1⟨x, ψ j⟩γ j.
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Proposition 3.7. If Ψ = {ψ j}Mj=1 is an oblique K-dual frame of Φ = {φ j}Mj=1 onW and
Φ is K-minimal, then the oblique K-dual frame of Φ onW is unique in the sense that
if Γ = {γ j}Mj=1 is another oblique K-dual frame of Φ, then ψ j = γ j, j = 1, ...,M, where
Ψ, Γ are restricted inW.

Here, we state that if Φ is a K-frame for R(K), then we can make an oblique K-
dual frame of algebraic multiplicity of {φ j}Mj=1∪{e j} j, j0 where {e j}dj=1 is an orthonormal
eigenbasis of the frame operator SΦ with associated eigenvalues {λ j}dj=1.

Theorem 3.8. Let K ∈ B(HN) and Φ = {φ j}Mj=1 be a K-frame for W = R(K) with
dimW = d. Also, let {e j}dj=1 be an orthonormal eigenbasis of the frame operator
SΦ with associated eigenvalues {λ j}dj=1. Then for any eigenvalue 0 , λ j0 , the

sequence { 1√
λ j0

K∗φ j}Mj=1 ∪ {
(λ j0−λ j)

1
3√

λ j0

K∗e j + K∗γ j} j: j, j0 , is an oblique K-dual frame of

{ 1√
λ j0

φ j}Mj=1 ∪ {
(λ j0−λ j)

2
3√

λ j0

e j} j: j, j0 onW, where {γ j}dj0, j=1 ⊂ HN satisfies

d∑
j0, j=1

⟨x,K∗γ j⟩e j = 0, (x ∈ W).
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