FRAME FOR OPERATORS IN FINITE DIMENTIONAL HILBERT SPACE

Vahid Reza Morshedi* and Mohammad Janfada

Abstract

In this paper, we study frames for operators (K-frames) in finite dimentional Hilbert spaces and express the dual of K-frames. Some properties of K-dual frames are investigated. Furthermore, the notion of their oblique K-duals and some properties are presented.

2010 Mathematics subject classification: Primary 42C15, Secondary 42C30.
Keywords and phrases: K-frame; K-dual; oblique K-duals..

1. Introduction

Let $K \in B(\mathcal{H})$, the space of all bounded linear operators on a Hilbert space \mathcal{H}. A sequence $\left\{\varphi_{j}\right\}_{j \in \mathrm{~J}}$ is said to be a K-frame for \mathcal{H} if there exist constants $A, B>0$ such that

$$
\begin{equation*}
A\left\|K^{*} x\right\|^{2} \leq \sum_{j \in \mathcal{J}}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2} \leq B\|x\|^{2}, \quad(x \in \mathcal{H}) . \tag{1}
\end{equation*}
$$

We call A, B the lower and the upper K-frame bounds for $\left\{\varphi_{j}\right\}_{j \in J}$, respectively. If $K=I_{\mathcal{H}}$, then $\left\{\varphi_{j}\right\}_{j \in \mathbb{J}}$ is the ordinary frame. If only the right inequalitiy holds, then $\left\{\varphi_{j}\right\}_{j \in \mathbb{J}}$ is called a Bessel sequence. Suppose that $\Phi:=\left\{\varphi_{j}\right\}_{j \in J}$ is a K-frame for \mathcal{H}. The operator $T_{\Phi}: \mathcal{H} \rightarrow \ell^{2}(\mathbb{J})$ defined by $T_{\Phi}(x)=\left\{\left\langle x, \varphi_{j}\right\rangle\right\}_{j \in \mathbb{J}}$ is called the analysis operator. T_{Φ} is bounded and $T_{\Phi}^{*}: \ell^{2}(\mathbb{J}) \rightarrow \mathcal{H}$ is given by $T_{\Phi}^{*}\left(\left\{c_{j}\right\}_{j \in J}\right)=\sum_{j \in J} c_{j} \varphi_{j}$. T_{Φ}^{*} is called the pre-frame or synthesis operator. The operator $S_{\Phi}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $S_{\Phi}(x)=T_{\Phi}^{*} T_{\Phi}(x)=\sum_{j \in J}\left\langle x, \varphi_{j}\right\rangle \varphi_{j}$ is called the frame operator of Φ. Note that, frame operator of a K-frame is not invertible on \mathcal{H} in general, but it is invertible on the subspace $R(K) \subset \mathcal{H}$, that $R(K)$ is the range of K.

Given a positive integer N. Throughout this paper, we suppose that \mathcal{H}^{N} is a real or complex N-dimensional Hilbert space. By $\langle\cdot, \cdot\rangle$ and $\|$.$\| we denote the inner product on$ \mathcal{H}^{N} and its corresponding norm, respectively. Denote by P_{W} the orthogonal projection of \mathcal{H} onto a closed subspace $W \subseteq \mathcal{H}$.

[^0]
2. Finite \boldsymbol{K}-frames

In this section, we present K-frame theory in finite-dimensional Hilbert spaces.
Let $K \in B\left(\mathcal{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a family of vectors in \mathcal{H}^{N}. If $A\left\|K^{*} x\right\|^{2}=$ $\sum_{j=1}^{M}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2}$, then Φ is called an A-tight K-frame and if $\left\|K^{*} x\right\|^{2}=\sum_{j=1}^{M}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2}$, then Φ is called a tight K-frame. If $\left\|\varphi_{j}\right\|=1$ for all $j=1,2, \ldots, M$, this is an unit norm K-frame.

For an arbitrary K-frame, we obtain the optimal lower and upper K-frame bounds by eigenvalues of its frame operator.

Proposition 2.1. Let $0 \neq K \in B\left(\mathcal{H}^{N}\right)$. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for $R(K)$ with K-frame operator S_{Φ} with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{N}>0$. Then λ_{1} is the optimal upper K-frame bound and if $\lambda_{N} \neq 0$ then $\frac{\lambda_{N}}{\|K\|^{2}}$ is the optimal lower K-frame bound.

Now, we introduce a constructive method to extend a given frame to a tight K frame.

Theorem 2.2. Let $K \in B\left(\mathcal{H}^{N}\right)$. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a frame for \mathcal{H}^{N}. Assume that the frame operator S_{Φ} has the eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{N}$, ordered as $\lambda_{1} \geq \lambda_{2} \geq$ $\ldots \geq \lambda_{N}>0$. Let $\left\{e_{j}\right\}_{j=1}^{N}$ be a corresponding eigenbasis. Then the collection $\left\{K \varphi_{j}\right\}_{j=1}^{M} \cup\left\{\sqrt{\lambda_{1}-\lambda_{j}} K e_{j}\right\}_{j=2}^{N}$ is a λ_{1}-tight K-frame for \mathcal{H}^{N}.

In the following proposition, we express two inequality of A-tight K-frames.
Proposition 2.3. (i) If $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is an A-tight K-frame for \mathcal{H}^{N}, then

$$
\max _{j=1,2, \ldots, M}\left\|\varphi_{j}\right\|^{2} \leq A\|K\|^{2}
$$

(ii) If $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is an unit norm A-tight K-frame for \mathcal{H}^{N}, then

$$
A\|K\|^{2} N \geq M
$$

In the last part of this section, we study conditions under which a linear combination of two K-frames is K-frame too.

Definition 2.4. Let $K \in B\left(\mathcal{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ be K-frames for \mathcal{H}^{N}. Φ and Ψ are called strongly disjoint if $R\left(T_{\Phi}\right) \perp R\left(T_{\Psi}\right)$, where T_{Φ} and T_{Ψ} are the analysis operators of the sequences Φ and Ψ, respectively.

Theorem 2.5. Suppose that $K \in B\left(\mathcal{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ are strongly disjoint tight K-frames for \mathcal{H}^{N}. Also, assume that $A, B \in B\left(\mathcal{H}^{N}\right)$ are operators such that $A K K^{*} A^{*}+B K K^{*} B^{*}=I_{N \times N}$, then $\{A \Phi+B \Psi\}$ is a K-frame for \mathcal{H}^{N}. In particular, if $K K^{*}=\frac{1}{2\left(|\alpha|^{2}+|\beta|^{2}\right)} I_{N \times N}$, then $\{\alpha \Phi+\beta \Psi\}$ is a K-frame for \mathcal{H}^{N}.

3. Dual of K-frame

In this section, we introduce the concept of K-dual of K-frames in \mathcal{H}^{N} and its properties are discussed. Also, the oblique K-dual is investigated.
Definition 3.1. If $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a K-frame for \mathcal{H}^{N}, a sequence $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is called a K-dual frame for Φ if

$$
\begin{equation*}
K x=\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j}, \quad\left(x \in \mathcal{H}^{N}\right) . \tag{2}
\end{equation*}
$$

The systems $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ are referred to as a K-dual frame pair.
Proposition 3.2. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a tight K-frame for \mathcal{H}^{N}. Then $\operatorname{Tr}(K)=$ $\sum_{j=1}^{M}\left\langle\varphi_{j}, \psi_{j}\right\rangle$, where $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is a K-dual of $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$.

In the following theorem, we characterize the scalar sequences $v=\left\{v_{j}\right\}_{j=1}^{M}$ for which there exists a K-dual pair of frames $\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\left\{\psi_{j}\right\}_{j=1}^{M}$ such that $v_{j}=\left\langle\varphi_{j}, \psi_{j}\right\rangle$ for all $j=1,2, \ldots, M$.
Theorem 3.3. Let $K \in B\left(\mathcal{H}^{N}\right)$ and $v=\left\{v_{j}\right\}_{j=1}^{M} \subset \mathbb{C}$ with $M>\operatorname{dim}(R(K))=\operatorname{rank}(K)$ be given. Suppose that there exist K-dual frame pairs $\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\left\{\psi_{j}\right\}_{j=1}^{M}$ for \mathcal{H}^{N} such that $v_{j}=\left\langle\varphi_{j}, \psi_{j}\right\rangle$ for all $j=1,2, \ldots, M$. Then there exists a tight K^{*}-frame $\left\{\theta_{j}\right\}_{j=1}^{M}$ and a corresponding dual frame $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{M}$ for \mathcal{H}^{N} such that $v_{j}=\left\langle\theta_{j}, \gamma_{j}\right\rangle$ for all $j=1,2, \ldots, M$. Furthermore $\operatorname{Tr}(K)=\sum_{j=1}^{M} v_{j}$.

In the following result we characterize K-duals of a K-frame.
Proposition 3.4. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for \mathcal{H}^{N}. Then $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is a K-dual for Φ if and only if $R\left(T_{\Phi}\right) \perp R\left(T_{\Theta}\right)$, where T_{Θ} is the analysis operator of the sequence $\Theta=\left\{\theta_{j}\right\}_{j=1}^{M}=\left\{\psi_{j}-K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}\right\}_{j=1}^{M}$.

Oblique dual frames in finite dimentional Hilbert space were studied in [5]. In the last part of this section, we study this notion for K-frames.
Definition 3.5. Let \mathcal{U} and \mathcal{W} be two subspaces of \mathcal{H}^{N} and suppose that $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ are in \mathcal{H}^{N} and $\mathcal{W}=\operatorname{span}\left\{\varphi_{j}: j=1,2, \ldots, M\right\}, \mathcal{U}=\operatorname{span}\left\{\psi_{j}:\right.$ $j=1,2, \ldots, M\}$. The sequence $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is an oblique K-dual frame of the K-frame $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ on \mathcal{W} if $K x=\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j}$, for all $x \in \mathcal{W}$.

In the following two propositions a characterization of the oblique K-dual frames pair.

Proposition 3.6. Suppose that \mathcal{W} is a subspace of \mathcal{H}^{N} and sequences $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$, $\Psi=\left\{\psi_{j}\right\}_{j=1}^{L}$ and $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{L}$ in \mathcal{H}^{N} satisfy that $\operatorname{span}(\Phi \cup \Gamma)=\mathcal{W}$. Then the following statements are equivalent:
(i) $\Phi \cup \Psi$ is an oblique K-dual frame of $\Phi \cup \Gamma$ on \mathcal{W}.
(ii) For any $x \in \mathscr{W},\left(K-S_{\Phi}\right) x=\sum_{j=1}^{L}\left\langle x, \psi_{j}\right\rangle \gamma_{j}$.

Proposition 3.7. If $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is an oblique K-dual frame of $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ on \mathcal{W} and Φ is K-minimal, then the oblique K-dual frame of Φ on \mathcal{W} is unique in the sense that if $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{M}$ is another oblique K-dual frame of Φ, then $\psi_{j}=\gamma_{j}, j=1, \ldots, M$, where Ψ, Γ are restricted in \mathcal{W}.

Here, we state that if Φ is a K-frame for $R(K)$, then we can make an oblique K dual frame of algebraic multiplicity of $\left\{\varphi_{j}\right\}_{j=1}^{M} \cup\left\{e_{j}\right\}_{j \neq j_{0}}$ where $\left\{e_{j}\right\}_{j=1}^{d}$ is an orthonormal eigenbasis of the frame operator S_{Φ} with associated eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{d}$.
Theorem 3.8. Let $K \in B\left(\mathcal{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for $\mathcal{W}=R(K)$ with $\operatorname{dim} \mathcal{W}=d$. Also, let $\left\{e_{j}\right\}_{j=1}^{d}$ be an orthonormal eigenbasis of the frame operator S_{Φ} with associated eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{d}$. Then for any eigenvalue $0 \neq \lambda_{j_{0}}$, the sequence $\left\{\frac{1}{\sqrt{\lambda_{j_{0}}}} K^{*} \varphi_{j}\right\}_{j=1}^{M} \cup\left\{\frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{1}{3}}}{\sqrt{\lambda_{j_{0}}}} K^{*} e_{j}+K^{*} \gamma_{j}\right\}_{j: j \neq j_{0}}$, is an oblique K-dual frame of $\left\{\frac{1}{\sqrt{\lambda_{j_{0}}}} \varphi_{j}\right\}_{j=1}^{M} \cup\left\{\frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{2}{3}}}{\sqrt{\lambda_{j_{0}}}} e_{j}\right\}_{j: j \neq j_{0}}$ on \mathcal{W}, where $\left\{\gamma_{j}\right\}_{j_{0} \neq j=1}^{d} \subset \mathcal{H}^{N}$ satisfies

$$
\sum_{j_{0} \neq j=1}^{d}\left\langle x, K^{*} \gamma_{j}\right\rangle e_{j}=0,(x \in \mathcal{W})
$$

References

[1] O. Christensen, A. M. Powell, and X. C.Xiao, A note on finite dual frame pairs, Proc. Amer. Math. Soc., (2012), 3921-3930.
[2] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston, (2008).
[3] D. Han and D. Larson, frames, Bases and group representations, Mem. Amer. Math. Soc., (2000).
[4] X. Xiao, Y. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces, Results. Math.,(2013) 1243-1255.
[5] X. C. Xiao, Y. C. Zhu and X. M. Zeng, Oblique dual frames in finite-dimensional Hilbert spaces, Int. J. Wavelets Multiresolut. Inf. Process, (2013).

Vahid Reza Morshedi,

Department of Pure Mathematics, Ferdowsi University of Mashhad,
Mashhad, Iran
e-mail: va_mo584@mail.um.ac.ir
Моhammad Janfada,
Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
e-mail: janfada@um.ac.ir

[^0]: * speaker

