

FRAME FOR OPERATORS IN FINITE DIMENTIONAL HILBERT SPACE

VAHID REZA MORSHEDI* and MOHAMMAD JANFADA

Abstract

In this paper, we study frames for operators (K-frames) in finite dimentional Hilbert spaces and express the dual of K-frames. Some properties of K-dual frames are investigated. Furthermore, the notion of their oblique K-duals and some properties are presented.

2010 Mathematics subject classification: Primary 42C15, Secondary 42C30.

Keywords and phrases: K-frame; K-dual; oblique K-duals...

1. Introduction

Let $K \in \mathcal{B}(\mathcal{H})$, the space of all bounded linear operators on a Hilbert space \mathcal{H} . A sequence $\{\varphi_j\}_{j\in\mathbb{J}}$ is said to be a K-frame for \mathcal{H} if there exist constants A, B > 0 such that

$$A||K^*x||^2 \le \sum_{i \in \mathbb{J}} |\langle x, \varphi_j \rangle|^2 \le |B||x||^2, \quad (x \in \mathcal{H}).$$
 (1)

We call A, B the lower and the upper K-frame bounds for $\{\varphi_j\}_{j\in\mathbb{J}}$, respectively. If $K = I_{\mathcal{H}}$, then $\{\varphi_j\}_{j\in\mathbb{J}}$ is the ordinary frame. If only the right inequalitiy holds, then $\{\varphi_j\}_{j\in\mathbb{J}}$ is called a Bessel sequence. Suppose that $\Phi := \{\varphi_j\}_{j\in\mathbb{J}}$ is a K-frame for \mathcal{H} . The operator $T_{\Phi}: \mathcal{H} \to \ell^2(\mathbb{J})$ defined by $T_{\Phi}(x) = \{\langle x, \varphi_j \rangle\}_{j\in\mathbb{J}}$ is called the analysis operator. T_{Φ} is bounded and $T_{\Phi}^*: \ell^2(\mathbb{J}) \to \mathcal{H}$ is given by $T_{\Phi}^*(\{c_j\}_{j\in\mathbb{J}}) = \sum_{j\in\mathbb{J}} c_j \varphi_j$. T_{Φ}^* is called the pre-frame or synthesis operator. The operator $S_{\Phi}: \mathcal{H} \to \mathcal{H}$ defined by $S_{\Phi}(x) = T_{\Phi}^* T_{\Phi}(x) = \sum_{j\in\mathbb{J}} \langle x, \varphi_j \rangle \varphi_j$ is called the frame operator of Φ . Note that, frame operator of a K-frame is not invertible on \mathcal{H} in general, but it is invertible on the subspace $R(K) \subset \mathcal{H}$, that R(K) is the range of K.

Given a positive integer N. Throughout this paper, we suppose that \mathcal{H}^N is a real or complex N-dimensional Hilbert space. By $\langle \cdot, \cdot \rangle$ and $\|.\|$ we denote the inner product on \mathcal{H}^N and its corresponding norm, respectively. Denote by P_W the orthogonal projection of \mathcal{H} onto a closed subspace $W \subseteq \mathcal{H}$.

^{*} speaker

2. Finite *K*-frames

In this section, we present *K*-frame theory in finite-dimensional Hilbert spaces.

Let $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ be a family of vectors in \mathcal{H}^N . If $A||K^*x||^2 = \sum_{j=1}^M |\langle x, \varphi_j \rangle|^2$, then Φ is called an A-tight K-frame and if $||K^*x||^2 = \sum_{j=1}^M |\langle x, \varphi_j \rangle|^2$, then Φ is called a tight K-frame. If $||\varphi_j|| = 1$ for all j = 1, 2, ..., M, this is an unit norm K-frame.

For an arbitrary K-frame, we obtain the optimal lower and upper K-frame bounds by eigenvalues of its frame operator.

Proposition 2.1. Let $0 \neq K \in B(\mathcal{H}^N)$. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a K-frame for R(K) with K-frame operator S_{Φ} with eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_N > 0$. Then λ_1 is the optimal upper K-frame bound and if $\lambda_N \neq 0$ then $\frac{\lambda_N}{\|K\|^2}$ is the optimal lower K-frame bound.

Now, we introduce a constructive method to extend a given frame to a tight *K*-frame.

Theorem 2.2. Let $K \in B(\mathcal{H}^N)$. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a frame for \mathcal{H}^N . Assume that the frame operator S_{Φ} has the eigenvalues $\{\lambda_j\}_{j=1}^N$, ordered as $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N > 0$. Let $\{e_j\}_{j=1}^N$ be a corresponding eigenbasis. Then the collection $\{K\varphi_j\}_{j=1}^M \cup \{\sqrt{\lambda_1 - \lambda_j} Ke_j\}_{j=2}^N$ is a λ_1 -tight K-frame for \mathcal{H}^N .

In the following proposition, we express two inequality of A-tight K-frames.

Proposition 2.3. (i) If $\Phi = \{\varphi_j\}_{j=1}^M$ is an A-tight K-frame for \mathcal{H}^N , then

$$\max_{j=1,2,...,M} \|\varphi_j\|^2 \le A\|K\|^2.$$

(ii) If $\Phi = \{\varphi_j\}_{j=1}^M$ is an unit norm A-tight K-frame for \mathcal{H}^N , then

$$A||K||^2N\geq M.$$

In the last part of this section, we study conditions under which a linear combination of two *K*-frames is *K*-frame too.

Definition 2.4. Let $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ be K-frames for \mathcal{H}^N . Φ and Ψ are called strongly disjoint if $R(T_{\Phi}) \perp R(T_{\Psi})$, where T_{Φ} and T_{Ψ} are the analysis operators of the sequences Φ and Ψ , respectively.

Theorem 2.5. Suppose that $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ are strongly disjoint tight K-frames for \mathcal{H}^N . Also, assume that $A, B \in B(\mathcal{H}^N)$ are operators such that $AKK^*A^* + BKK^*B^* = I_{N \times N}$, then $\{A\Phi + B\Psi\}$ is a K-frame for \mathcal{H}^N . In particular, if $KK^* = \frac{1}{2(|\alpha|^2 + |\beta|^2)}I_{N \times N}$, then $\{\alpha\Phi + \beta\Psi\}$ is a K-frame for \mathcal{H}^N .

3. Dual of *K*-frame

In this section, we introduce the concept of K-dual of K-frames in \mathcal{H}^N and its properties are discussed. Also, the oblique K-dual is investigated.

Definition 3.1. If $\Phi = \{\varphi_j\}_{j=1}^M$ is a K-frame for \mathcal{H}^N , a sequence $\Psi = \{\psi_j\}_{j=1}^M$ is called a K-dual frame for Φ if

$$Kx = \sum_{j=1}^{M} \langle x, \psi_j \rangle \varphi_j, \ (x \in \mathcal{H}^N).$$
 (2)

The systems $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ are referred to as a K-dual frame pair.

Proposition 3.2. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a tight K-frame for \mathcal{H}^N . Then $Tr(K) = \sum_{j=1}^M \langle \varphi_j, \psi_j \rangle$, where $\Psi = \{\psi_j\}_{j=1}^M$ is a K-dual of $\Phi = \{\varphi_j\}_{j=1}^M$.

In the following theorem, we characterize the scalar sequences $v = \{v_j\}_{j=1}^M$ for which there exists a K-dual pair of frames $\{\varphi_j\}_{j=1}^M$ and $\{\psi_j\}_{j=1}^M$ such that $v_j = \langle \varphi_j, \psi_j \rangle$ for all j = 1, 2, ..., M.

Theorem 3.3. Let $K \in B(\mathcal{H}^N)$ and $v = \{v_j\}_{j=1}^M \subset \mathbb{C}$ with M > dim(R(K)) = rank(K) be given. Suppose that there exist K-dual frame pairs $\{\varphi_j\}_{j=1}^M$ and $\{\psi_j\}_{j=1}^M$ for \mathcal{H}^N such that $v_j = \langle \varphi_j, \psi_j \rangle$ for all j = 1, 2, ..., M. Then there exists a tight K^* -frame $\{\theta_j\}_{j=1}^M$ and a corresponding dual frame $\Gamma = \{\gamma_j\}_{j=1}^M$ for \mathcal{H}^N such that $v_j = \langle \theta_j, \gamma_j \rangle$ for all j = 1, 2, ..., M. Furthermore $Tr(K) = \sum_{j=1}^M v_j$.

In the following result we characterize *K*-duals of a *K*-frame.

Proposition 3.4. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a K-frame for \mathcal{H}^N . Then $\Psi = \{\psi_j\}_{j=1}^M$ is a K-dual for Φ if and only if $R(T_{\Phi}) \perp R(T_{\Theta})$, where T_{Θ} is the analysis operator of the sequence $\Theta = \{\theta_j\}_{j=1}^M = \{\psi_j - K^*S_{\Phi}^{-1}P_{S_{\Phi}(R(K))}\varphi_j\}_{j=1}^M$.

Oblique dual frames in finite dimentional Hilbert space were studied in [5]. In the last part of this section, we study this notion for *K*-frames.

Definition 3.5. Let \mathcal{U} and \mathcal{W} be two subspaces of \mathcal{H}^N and suppose that $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ are in \mathcal{H}^N and $\mathcal{W} = span\{\varphi_j : j = 1, 2, ..., M\}$, $\mathcal{U} = span\{\psi_j : j = 1, 2, ..., M\}$. The sequence $\Psi = \{\psi_j\}_{j=1}^M$ is an oblique K-dual frame of the K-frame $\Phi = \{\varphi_j\}_{j=1}^M$ on \mathcal{W} if $Kx = \sum_{j=1}^M \langle x, \psi_j \rangle \varphi_j$, for all $x \in \mathcal{W}$.

In the following two propositions a characterization of the oblique K-dual frames pair.

Proposition 3.6. Suppose that W is a subspace of \mathcal{H}^N and sequences $\Phi = \{\varphi_j\}_{j=1}^M$, $\Psi = \{\psi_j\}_{j=1}^L$ and $\Gamma = \{\gamma_j\}_{j=1}^L$ in \mathcal{H}^N satisfy that $span(\Phi \cup \Gamma) = W$. Then the following statements are equivalent:

- (i) $\Phi \cup \Psi$ is an oblique K-dual frame of $\Phi \cup \Gamma$ on W.
- (ii) For any $x \in \mathcal{W}$, $(K S_{\Phi})x = \sum_{j=1}^{L} \langle x, \psi_j \rangle \gamma_j$.

Proposition 3.7. If $\Psi = \{\psi_j\}_{j=1}^M$ is an oblique K-dual frame of $\Phi = \{\varphi_j\}_{j=1}^M$ on W and Φ is K-minimal, then the oblique K-dual frame of Φ on W is unique in the sense that if $\Gamma = \{\gamma_j\}_{j=1}^M$ is another oblique K-dual frame of Φ , then $\psi_j = \gamma_j$, j = 1, ..., M, where Ψ , Γ are restricted in W.

Here, we state that if Φ is a K-frame for R(K), then we can make an oblique K-dual frame of algebraic multiplicity of $\{\varphi_j\}_{j=1}^M \cup \{e_j\}_{j\neq j_0}$ where $\{e_j\}_{j=1}^d$ is an orthonormal eigenbasis of the frame operator S_{Φ} with associated eigenvalues $\{\lambda_j\}_{j=1}^d$.

Theorem 3.8. Let $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ be a K-frame for W = R(K) with dimW = d. Also, let $\{e_j\}_{j=1}^d$ be an orthonormal eigenbasis of the frame operator S_{Φ} with associated eigenvalues $\{\lambda_j\}_{j=1}^d$. Then for any eigenvalue $0 \neq \lambda_{j_0}$, the sequence $\{\frac{1}{\sqrt{\lambda_{j_0}}}K^*\varphi_j\}_{j=1}^M \cup \{\frac{(\lambda_{j_0}-\lambda_j)^{\frac{1}{3}}}{\sqrt{\lambda_{j_0}}}K^*e_j + K^*\gamma_j\}_{j:j\neq j_0}$, is an oblique K-dual frame of $\{\frac{1}{\sqrt{\lambda_{j_0}}}\varphi_j\}_{j=1}^M \cup \{\frac{(\lambda_{j_0}-\lambda_j)^{\frac{2}{3}}}{\sqrt{\lambda_{j_0}}}e_j\}_{j:j\neq j_0}$ on W, where $\{\gamma_j\}_{j_0\neq j=1}^d \subset \mathcal{H}^N$ satisfies

$$\sum_{j_0 \neq j=1}^d \langle x, K^* \gamma_j \rangle e_j = 0, \ (x \in \mathcal{W}).$$

References

- [1] O. Christensen, A. M. Powell, and X. C.Xiao, A note on finite dual frame pairs, *Proc. Amer. Math. Soc.*, (2012), 3921-3930.
- [2] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston, (2008).
- [3] D. HAN AND D. LARSON, frames, Bases and group representations, Mem. Amer. Math. Soc., (2000).
- [4] X. XIAO, Y. ZHU AND L. GĂVRUŢA, Some properties of K-frames in Hilbert spaces, *Results*. *Math.*, (2013) 1243-1255.
- [5] X. C. XIAO, Y. C. ZHU AND X. M. ZENG, Oblique dual frames in finite-dimensional Hilbert spaces, *Int. J. Wavelets Multiresolut. Inf. Process*, (2013).

VAHID REZA MORSHEDI,

Department of Pure Mathematics, Ferdowsi University of Mashhad,

Mashhad, Iran

e-mail: va_mo584@mail.um.ac.ir

Mohammad Janfada,

Department of Pure Mathematics, Ferdowsi University of Mashhad,

Mashhad, Iran

e-mail: janfada@um.ac.ir