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a b s t r a c t

The objective of this study was to predict the irrigated and rainfed wheat output energy with three soft
computing models include Artificial Neural Network (MLP and RBF models) and Gaussian Process
Regression (GPR) for the first time, in Shahreza city, Isfahan province, Iran. Data were collected from an
extensive research on wheat farms, including 120 irrigated and 90 rainfed wheat farms (totally 210
questionnares) at three levels (small: < 2ha, medium: 2e4 ha and large: > 4ha) using with face to face
questionnaire method. Results of energy analysis showed that diesel fuel was the most influential factor
on energy consumption in irrigated wheat production and also for medium and large lands of rainfed
wheat production, but for small rainfed lands, total of fertilizers and poisons had the highest impact on
total energy consumption. Results of output modeling showed that ANN-RBF model is more accurate
than MLP-ANN and GPR models. RMSE and MAPE for irrigated and rainfed output modeling for ANN- RBF
were 63.12e72.30 MJ and 0.05e0.14%, respectively. The results of selecting the best spread factor (one of
the best parameters on RBF model performance) showed that for irrigated wheat with LM algorithm and
at training phase (irrigated-LM-training) and irrigated wheat with BR algorithm and at training phase
(irrigated-BR-training), this factor is equal to 7 and 4, respectively. The ANN-RBF model developed was
capable of predicting irrigated and rainfed wheat output energy under different land size and using input
energies.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Wheat (Triticum aestivum L.) is one of the oldest and most
cultivated agricultural crops and has the second rank after maize in
the world cereal output production. This plant is very important
because uses as a main food for more than half of the world's
people, therefore, should be considered as a strategic crop (Taki
et al., 2012a). Iran with 15.03 trillion tons of wheat production
was the 12th country among the biggest wheat producers in 2010.
(Khoshnevisan et al., 2013). Irrigated wheat covers only one-third
of the total wheat area, thus the bulk of the wheat crop depends
on rainfall. Most of the rainfed wheat crop is concentrated in the
west and northwestern regions of Iran. General reports show that
the Iran government, plans to improve irrigation by introducing
modern irrigation systems to 450000 ha of farmland. So the re-
searches on the innovative methods for increasing the wheat pro-
duction and also optimizing the input energy should be developed
and continued (Abdi et al., 2012).

Energy is one of the important elements in modern agriculture
as it depends deeply on fossil and other energy sources (Safa and
Samarasinghe, 2011). Energy consumption in agriculture has been
increasing in response to the limited supplies of arable land, pop-
ulation growth, changes in technology and an attention for higher
standards of living (Kizilaslan, 2009). In the other hands, energy
prediction and modeling is an interesting subject for engineers and
researchers who are concerned with energy consumption and
production with related to environmental hazards (Al-Ghandoor
et al., 2009). In the energy subject, a different range of models
have been used; from geological models in research on physical
resources to modeling future energy request (Safa et al., 2009).
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Nomenclature

ANN Artificial Neural Networks
RMSE Root Mean Squared Error
GHG greenhouse gas
MAPE Mean Absolute Percentage Error
R2 coefficients of determination
EF Model Efficiency
MLR Multiple Linear Regression
SFP Seed, Fertilizer and Pesticide
ANFIS Adaptive Neuro-Fuzzy Inference System
LM levenberg-Marquardt backpropagatio
RBF Radial Bias Function
BR Bayesian Regularization backpropagatio
MLP Multilayer Perceptron
OLS Orthogonal least square
GPR Gaussian Process Regression
GP Gaussian process
BB Basic Back-propagation
LCA Life Cycle Assessment
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During the past 15 years there has been an essential increase in
the interest on Artificial Neural Networks (ANN). The basis of ANN
modeling methods is biological neuron activities. (Pachepsky et al.,
1996; Taki et al., 2012b). In agricultural sector, a few scientists have
used ANN model to predict the future yield and energy of wheat
production. Khoshnevisan et al. (2013), presented ANN to predict
wheat production yield and (greenhouse gas) GHG emissions on
the basis of energy inputs for some region of Isfahan province, Iran.
Several ANNmodels were developed and the prediction accuracy of
them was evaluated using the statistical parameters. Results
showed that the ANNmodel with 11-3-2 structure was the best one
for predicting the wheat yield and GHG emissions. The coefficients
of determination (R2) of the best topology were 0.99 and 0.998 for
wheat yield and GHG emissions, respectively. Safa and
Samarasinghe (2011), developed ANN models for determining en-
ergy consumption in wheat production. They compared ANNs with
Multiple Linear Regression (MLR) and found that ANNs can predict
energy consumption better than MLR. Khoshnevisan et al. (2014)
developed an intelligent system based on Adaptive Neuro-Fuzzy
Inference System (ANFIS) for predicting wheat grain yield on the
basis of energy inputs in Fereydonshahr region, Iran. The results
illustrated that ANFIS model can predict the yield more precisely
than ANN. Nabavi-Pelesaraei et al. (2017) developed mathematical
models to optimize total energy consumption and environmental
pollution for paddy production. Optimization results indicated that
energy savings by employing mathematical models are 21.15%e
71.63%, respectively. They indicated that the enhancement of the
efficiency of paddy production is mainly in terms of toxins and
chemical fertilizers. All the prediction models focused on ANN and
MLR models and the results of these researches always concluded
that ANN models are good tools to solve the nonlinearity relation
between inputs and outputs of agricultural production and solve
the prediction equations.

With respect to above literature, there is a lack of study on
irrigated and rainfed wheat production in Shahreza city (one of the
important plains of wheat production in Iran). So, the main goals of
this study are to energy assessment and prediction of wheat pro-
duction at different farm size groups (small: < 2ha, medium:
2e4 ha and large: > 4 ha) and different irrigation system (irrigated
and rainfed) basis of input energy using ANN with two training
algorithm: Multilayer Perceptron (MLP) and Radial Bias Function
(RBF) and also a new soft computing model: Gaussian Process
Regression (GPR). Energy survey of wheat production in this region,
application of GPR model for the first time and using RBF learning
algorithem are the main novelity of this research. Therefore, in this
study, the above models are developed and qualitative parameters
are utilized to predict the models accuracy to estimate output en-
ergy for wheat production. The results of this research can help the
farmers to estimate total output energy (total yield) to choice a
good decision for marketing and other finicial subjects.
2. Methodology

2.1. Selection of case study region and data processing

The Isfahan province is located within 30e42� and 34-30� north
latitude and 49-36� and 55-32� east longitude. Shahreza is located
508 km south to Tehran city and about 80 km south west to Isfahan
city and Zard Kooh mountain chain runs from north-west to south-
east of the city, enjoying a cold climate. In this study, two wheat
farms were considerate; irrigated and rainfed. For each category,
three samples were selected, i. e small farms (<2 ha), medium
farms (2e4 ha) and large farms (>4 ha). The data were collected
from 120 irrigated and 90 rainfed wheat farms in Shahreza city in
Isfahan province using face to face questionnaire method for yield
period of 2014e2015. The questionnaire included several questions
about the use of various inputs (fuel, electricity, fertilizers, biocides,
etc.), the amount of land cultivated, wheat yield per year, total
working hours of labor over the total stages (from land preparation
to wheat harvest), total working hours of machinery and equip-
ment, etc. A brief summary of the sample questionnaire is provided
in Table 1.

The objective farms were randomly selected from the rural
communities in the research region. The sample size was calculated
based on the derivation of Neyman technique as presented by Eq.
(1) (Taki et al., 2012c):

n ¼
P

NsPs
N2D2 þPNsP2s

(1)

where n is the required sample size; N is the number of total
population; Ns is the number of the population in the s stratifica-

tion; Ps is the standard deviation in the s stratification, P2s is the

variance in the s stratification, D2 is equal to d2

z2; d is the precision,

(x� X) (5%) is the permissible error and z is the reliability coeffi-
cient (1.96, which represents 95% reliability). Thus the sample size
was found to be 120 irrigated and 90 rainfed wheat farms. Table 2
shows the summary of the sampling wheat farms according to size
and type of them.

To survey energy consumption in the production of various
agricultural products, it should be revealed whether the energy
consumption value covers the stages of production and supply. For
this reason, a clear boundary for the production system should be
defined and the energy consumption value for the total activities
done within the determined boundary of the production system
should be achieved. In this study, these activities comprise tillage
and land preparation, all activities during the growing season
resulting in increased product yield including fertilization, spray-
ing, etc., and activities that lead to energy consumption for the
eventual wheat harvest (Taki et al., 2013). Energy consumption
beyond the system boundaries, such as for processing after harvest,
is not calculated in this study. Also, this research has considered
only the energy applied in wheat production, without calculating
the natural sources of energy (radiation, wind, rain, etc.). In the



Table 1
A brief summary of the sample questionnaire (Nabavi-Pelesaraei et al., 2016).

Questionnaire No: …
Data: 2015/ … / …
The total area under cultivation (ha): …
Duration of the production: …
Crop yield per hectare (kg): …
Number of fixed labors: …
Number of daily labors: …
Daily working hours: …
Machinery operation used: …
Types of machinery used: …
Total weight of machinery per year (kg): …
Total diesel consumption (L): …
Types of chemical fertilizers: …
Total weight of chemical fertilizers from each type (kg): …
Types of chemical biocides: …
Total weight of biocides from each type (kg): …
Total weight of FYM use (kg): …

Table 2
Summery of wheat farms types and number of sampling for each one.

Type of wheat farms Small (<2 ha) Medium (2e4 ha) Large (>4 ha)

Irrigated wheat farms 50 40 30
Rainfed wheat farms 20 40 30
Total 70 80 60
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agriculture sector, the input and output energy sources are limited
and all have standard energy coefficients. Accordingly, the energy
amount of each input and output can be calculated by multiplying
the physical amount with the energy coefficient. In this research,
the energy input coefficients were achieved from literature, which
are given in Table 3. These coefficients are fixed and not related to
product type. For example, human labor and diesel fuel in the
production of various products are of the same nature and have
constant coefficients for the conversion to their energy consump-
tion equivalents. Thus, the difference in energy consumption for
agricultural production is the input value. For this reason, deter-
mining the energy consumption for wheat production using stan-
dard coefficients shows a certain pattern of energy consumption in
wheat production. It also enables comparing the results with other
studies using standard energy coefficients for the calculation of
energy consumption.

The energy requirements of the inputs and outputs are calcu-
lated by multiplying the quantity of each item (unit ha1) with their
energy equivalents (MJunit1) from Table 3. For calculating the
epitomized energy in machinery section, it was assumed that the
Table 3
Energy coefficients of different inputs used and output in wheat production.

Inputs

1.Human labor Man
Woman

2.Chemical fertilizer and farmyard manure N
P2O5

K2O
farmyard manure

3.Chemical poison Pesticides
Herbicide

4.Agricultural machinery Tractor
Implement and machinery
Combine and mower

5. Seed Improved seed or hybrid
General seed

6.Diesel fuel
7.Electricity
energy consumed for the production of the tractors and other
agricultural equipments be amortized during their economic life
time (Taki et al., 2012c); so, the machinery input energy was
calculated using the following Eq (Abdi et al., 2013):

ME ¼ G�MP� t
T

(2)

where ME is the machinery energy per unit area (MJ ha�1); G is the
machine mass (kg); MP is the production energy of machine (MJ
kg�1); t is the time that machine used per unit area (h ha�1) and T is
the economic life time of machine (h).

The energy equivalent of human labor is the muscle power used
in field operations of crop production. Pesticides and chemical
fertilizers energy equivalents means the energy consumption for
producing, packing and distributing the materials and they are
given on an active ingredient basis. Farmyardmanure is regarded as
a source of nutrients, so the energy equivalent of farmyard manure
is equated with that of mineral fertilizer equivalents corresponding
to the fertilization effect of the applied manure. Also, the energy
sequestered in diesel fuel mean their heating value (Enthalpy) and
the energy needed to make their energy available directly to the
farmers. Moreover, the seed energy is the energy used in the pro-
duction of a crop and the grain energy is the gross energy content
determined from laboratory bomb calorimeter tests (Bahrami et al.,
2011). The energy equivalent of water for irrigation input means
indirect energy of irrigation consist of the energy consumed for
manufacturing the materials for the dams, canals, pipes, pumps,
and equipment as well as the energy for constructing theworks and
building the on-farm irrigation (Ranjbar et al., 2013).
2.2. Artificial neural network

ANNs are regarded as an analytical method of simulating system
performance and were inspired by the principles of data processing
in the brain. The method relies on experimental data used to ‘train’
the ANN so that it can precisely predict system performance (Najafi
et al., 2009). Prior to any ANN training process with the trend free
data, the data must be normalized over the range of [0, 1]. For ANN
models, this is necessary for the neurons' transfer functions,
because a sigmoid function is calculated and consequently these
can only be performed over a limited range of values. If the data
used with an ANN are not scaled to an appropriate range, the ANN
will not converge on training or it will not produce meaningful
results.

The most commonly employed method of normalization
Unit Energy equivalent (MJ unit�1) Reference

h 1.96 Ranjbar et al., 2013
h 1.57
kg 47.1 Taki et al., 2012c
kg 15.8
kg 9.28
kg 0.3
kg 101.2 Ranjbar et al., 2013
kg 238
kg year 93.61 Abdi et al., 2012
kg year 62.7
kg year 87.63
kg 25 Abdi et al., 2013
kg 15.7
L 47.8 Ranjbar et al., 2013
kWh 10.59 Taki et al., 2012b
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involves mapping the data linearly over a specified range, whereby
each value of a variable x is transformed as follows (Rohani et al.,
2011):

xn ¼ x� xmin
xmax � xmin

� ðrmax � rminÞ þ rmin (3)

where x is the original data, xn the normalized input or output
values, xmax and xmin are themaximum andminimumvalues of the
concerned variable, respectively. rmax and rmin an correspond to the
desired values of the transformed variable range. A range of 0.1e0.9
is appropriate for the transformation of the variable onto the sen-
sitive range of the sigmoid transfer function.
2.2.1. MLP algorithm
MLP is a feed-forward layered network with one input layer, one

output layer, and some hidden layers. Every node computes a
weighted sum of its inputs and passes the sum through a soft
nonlinearity. The soft nonlinearity or activity function of neurons
should be non-decreasing and differentiable. In this research, two
transfer functions were used; hyperbolic tangent sigmoid transfer
function (Taki et al., 2016a):

fðqÞ ¼ 1
1þ e�q

(4)

And log-sigmoid transfer function:

fðqÞ ¼ 2
1þ e�2q

� 1 (5)

The network is in charge of vector mapping, i.e. by inserting the
input vector, xq the networkwill answer through the vector zq in its
output (for q ¼ 1;2; :::; Q). The aim is to adapt the parameters of
the network in order to bring the actual output zq close to the
corresponding desired output dq (for q ¼ 1;2; :::; Q). Training al-
gorithm is based on minimization of a suitable error cost function
(Taki et al., 2016b). In this research, Basic Back-propagation (BB)
algorithm with two training roles (levenberg-Marquardt back-
propagation and bayesian regularization backpropagation) was
employed. No transfer function was used for the first layer. For the
hidden layers the sigmoid functions were used, and for the output
layer a linear transfer functionwas applied as desired for estimating
problems.
2.2.2. RBF algorithm
One type of ANN is the radial basis function (RBF) neural

network, which uses radial basis functions as activation functions.
This ANN is a linear combination of radial basis functions. RBF
networks form a special architecture of neural networks that pre-
sent important advantages compared to other neural network
types, including simpler structure and faster learning algorithms
(Iliyas et al., 2013). RBF is a feed-forward neural network model
with good performance and it has already proven its universal
approximation ability with no local minima problem (Iliyas et al.,
2013). An RBF has a single hidden layer. Each node of the hidden
layer has a parameter vector called center. This center is used to
compare with the network input vector to produce a radially
symmetrical response. Responses of the hidden layer are scaled by
the connection weights of the output layer and then combined to
produce the network output. For a single output, where the outputs
of the nonlinear activation are combined linearly with the weight
vector (b) of the output layer, ym can be calculated (Iliyas et al.,
2013):
ym ¼
XM
i¼0

bi4i (6)

In which bi is the joint weighted value of the ith basis function.
Themost commonly used radial base is the Gaussian function given
as (Haykin, 2009):

4iðxÞ ¼ exp

 
� kx� cik

s2i

2
!

(7)

where ci and si are center and spread of the ith RBF node.
Training the radial basis function neural network is done in two

steps. In the first step centers are selected from the training data
(without training) or constructed by clustering the training data.
The second step is basically a linear estimation of one weighting
vector using ordinary least squares. RBF is an interpolating
network. It can be built using all the available training points, or it
can be built using reduced number of points. The selection of
centers can then be performed by clustering the training data.
There are three types of learning strategies used in selecting RBF
centers; fixed randomly selected centers, self-organized center
selection, and supervised selection of centers. A number of training
algorithms have been developed for training of RBF networks.
Orthogonal least square (OLS) (Taki et al., 2016a) techniques are
self-organized technique, and have been employed to select centers
so that adequate and efficient RBF network can be obtained. The
OLS uses gram-Schmidt algorithm for center selection and center
updating of RBF network, while adaptive gradient descent pro-
cedure, described in Haykin (2009), was used to adapt the weights.
The network parameters are found such that they minimize a cost
function:

minJ ¼
XQ
i¼1

�
jymi � ydij2

�
(8)

where Q is the number of training pattern, while ym and yd are the
network output and desire target output, respectively.

In this study, two algorithms for ANN model were used as
below: Bayesian regulation backpropagatio (BR) and Levenberg-
Marquardt backpropagation (LM). The main problem with imple-
menting regularization is setting the correct values for the objec-
tive function parameters. The Bayesian framework for neural
networks is based on the probabilistic interpretation of network
parameters. That is, in contrast to conventional network training
where an optimal set of weights is chosen by minimizing an error
function, the Bayesian approach involves a probability distribution
of network weights. As a result, the predictions of the network are
also a probability distribution (Sorich et al., 2003; Xu et al., 2006). In
the training process, a common performance function is used for
computing the distance between real and predicted data. This
function can be expressed as follows (Kayri, 2016):

F ¼ EDðDju;MÞ ¼ 1
N

Xn
i¼1

�bt i � ti
�2

(9)

here, ED is the mean sum of squares of the network error; D is the
training set with input-target pairs. M is a neural network archi-
tecture that consists of a specification of the number of layers, the
number of units in each layer, and the type of activation function
performed by each unit. ED is a criterion for early stopping to avoid
over fitting; it is used in MATLAB for many training algorithms.
Therefore, early stopping for regularization seems to be a very
crude method for complexity control (Mackay, 1996; Kayri, 2016).
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However, although the early stopping regularization can reduce the
variance it increases the bias. Both can be reduced by BR (Kelemen
and Liang, 2008). In a BR network, the regularization adds an
additional term and then an objective function to penalize large
weights that may be introduced in order to obtain smoother
mapping. In this case, a gradient-based optimization algorithm is
preferred for minimizing the objective (Gianola et al., 2012; Okut
et al., 2013):

F ¼ bEDðDju;MÞ þ aEW ðujMÞ (10)

where, EWðujMÞ is EW ¼ 1
n
Pn

i¼1u
2
j , the sum of squares of network

weights, a and b, are hyperparameters that need to be estimated
function parameters. The last term, aEWðujMÞ is called weight
decay and a is also known as the decay rate. If a ≪ b then the
training algorithm will make the errors smaller. If a [ b, training
will emphasize weight size reduction at the expense of network
errors, thus producing a smoother network response (Shaneh and
Butler, 2006).

After the data are taken with the Gaussian additive noise
assumed in target values, the posterior distribution of the ANN
weights can be updated according to Bayes’ rule:

PðujD;a; b;MÞ ¼ PðDju; b;MÞ$Pðuja;MÞ
PðDja; b;MÞ (11)

Therefore, the BR includes a probability distribution of network
weights and the network architecture can be identified as a prob-
abilistic framework (Sorich et al., 2003). In Equation (6), D is the
training sample and the prior distribution of weights is defined as:

Pðuja;MÞ ¼
�

a
2p

�m
2
exp

n
� a

2u
0u
o
M is the particular ANN used and w

is the vector of networks weights. Pðuja;MÞ states our knowledge
of weights before any data is collected, PðDju; b;MÞ is the likelihood
function which is the probability of the occurrence, giving the
network weights. In this Bayesian framework, the optimal weights
should maximize the posterior probability PðujD;a;P;MÞ. Maxi-
mizing the posterior probability of w is equivalent to minimizing
the regularized objective function (F ¼ bED þ aEu):

Pða; bjD;MÞ ¼ PðDja; b;MÞ$Pða; bjMÞ
PðDj;MÞ (12)

According to Mackay (1996) it is:

PðDja;b;MÞ ¼ PðDjw;b;MÞ$Pðwja;MÞ
PðwjD;a;b;MÞ ¼ ZFða; bÞ

ðp=bÞn=2ðp=aÞm=2

(13)

where n and m are the number of observations and total number of
network parameters, respectively. Equation (13) (Laplace approxi-
mation) produces the following equation:

ZFða; bÞf
���HMAP

����1
2 exp

�
� F
�
uMAP

��
(14)

where HMAP is the Hessian matrix of the objective function and
MAP stands for maximum a posteriori. The Hessian matrix can be
approximated as:

H ¼ J0J (15)

where J is the Jacobian matrix that contains first derivatives of the
network errors with respect to network parameters. J calculated by:
J ¼

2666666666666666664

ve1ðuÞ
vu1

ve1ðuÞ
vu2

:::
ve1ðuÞ
vun

ve2ðuÞ
vu1

ve2ðuÞ
vu2

:::
ve2ðuÞ
vun

:

:

:

:

:

:

:::

:

:

:

veNðuÞ
vu1

veNðuÞ
vu2

:::
veNðuÞ
vun

3777777777777777775

(16)

The Gauss-Newton approximation versus the Hessian matrix
ought to be used if the LM algorithm is employed to replace the
minimum of F (Shaneh and Butler, 2006), an approach that was
proposed by (Mackay, 1996). In LM, algorithm parameters at l
iteration are updated as:

ulþ1 ¼ u0 �
h
JT J þ mI

i�1
JTe (17)

where m is the Levenberg's damping factor. m is adjustable for each
iteration and leads to optimization. It is a popular alternative to the
Gauss-Newton method of finding the minimum of a function
(Souza, 2015).

A typical MLP (for irrigated wheat) and RBF network (for rainfed
wheat) configurations are shown in Fig. 1. For RBF model,
levenberg-Marquardt backpropagation and bayesian regularization
backpropagation algorithem were used for training. A typical
flowchart of MLP and RBF neural network for prediction of irrigated
and rainfed wheat production and all the analytical process is
shown in Fig. 2.

2.3. Gaussian process regression model (GPR)

GPR works under the probabilistic regression framework, which
takes as input a training data set D ¼ fðyn;xnÞ ; n ¼ 1;2;3; :::;Ng
of N pairs of vector input xnÎR

L
and noisy scalar output yn, and

constructs a model that generalizes well to the distribution of the
output at unseen input locations. The noise in the output models
uncertainty due to factors external to x, such as truncation or
observation errors. Here we assume that noise is additive, zero-
mean, stationary and normally distributed, such that:

y ¼ fðxÞ þ ε; ε»N
�
0; s2noise

�
(18)

where s2noise is the variance of the noise (Wan and Sapsis, 2017). The
primary idea behind GPR is to use a Gaussian process (GP) to
represent f, referred to as latent variables. The input x plays the role
of indexing these latent variables such that any finite collection
ffðx1Þ; ::: ; fðxkÞg with unique indices follow a consistent Gaussian
distribution. In this way, we limit ourselves to only looking at
functions whose values correlate with each other in a Gaussian
manner. In Bayesian framework, this is equivalent to putting a GP
prior over functions. Due to the consistency requirement, we are
able to make inference on function values corresponding to unseen
inputs conveniently using a finite set of training data.

A major advantage for using the Gaussian prior assumption is
that functions can be conveniently specified by a mean function
m(x) and a covariance function kðx;x0Þ:

mðxÞ ¼ E½f ðxÞ�; kðx; x0Þ ¼ E½ðf ðxÞ �mðxÞÞðf ðx0Þ �mðx0ÞÞ� (19)

where E½:� denotes expectation. The form of the mean function is



Fig. 1. A typical MLP (A) and RBF (B) network configurations for prediction of irrigated
and rainfed wheat output energy (Iliyas et al., 2013).

Fig. 2. Procedure of modeling and process of data preparing in the ANN (MLP and RBF)
models.
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important only in unobserved region of the input space and usually
set to zero. The properties of the process are then entirely dictated
by the covariance function, which is by definition symmetric and
positive semi-definite when evaluated at any pair of points in the
input space (Rasmussen and Williams, 2005). The covariance
function typically contains a number of free parameters called
hyper parameters which define the prior distribution on f(x). The
most commonly used is the squared exponential covariance
function:

kðx; x0Þ ¼ q1 exp
�kx� x0k

2q2

�
(20)

where, k:k is a norm defined on the input space. Note that this
covariance function decays rapidly when evaluated at increasingly
distant pairs of input x and x0, indicating weak correlations be-
tween f(x) and fðx0Þ. (q1) is a hyper parameter specifying the
maximum allowable covariance. (q2) is a strictly positive hyper
parameter defining rate of decay in correlation as points become
farther away from each other. Another hyper parameter (q3) which
is not expressed explicitly in (Eq. (19)), is used to represent the
unknown variance s2noise of Eq. (18). The hyper parameters
fq1;q2;q3g are grouped together as a vector (q) treated as the
realization of a random vector (Q). The realization that is most
coherent with the data set is selected using training data and then
used to make predictions. Assuming that the hyper parameters are
known, inference is easily made. Denoting the vector of training
latent variables by f and the vector of test latent variables by f�we
have the following joint Gaussian distribution:

pðf ; f�Þ ¼ N
�
0;
	
Kf ;f K�;f
Kf ;� K�;�


�
(21)

K is the symmetric covariance matrix whose ijth entry is the
covariance between the ith variable in the group denoted by the
first subscript and the jth variable in the group denoted by the
second subscript (* is used in place of f* for short), computed using
covariance function kð:; :Þ in Eq. (21) and corresponding hyper pa-
rameters (Wan and Sapsis, 2017). The prediction framework is
shown in Fig. 3.
The sample size used in this study was 120 irrigated and 90

rainfed wheat farms. Embedded energies (including human labor,
total chemical fertilizers with seed and poisons, diesel fuel, irriga-
tionwater andmachinery for irrigated farms and all of above inputs
except of irrigation water for rainfed farms) were chosen as inputs
while total wheat grains was selected as output of the three soft
computing models. For MLP, RBF and GPR models, a computer code
developed in MATLAB software.
2.4. Performance evaluation criteria

To evaluate the performance of a model some criteria have been
used from the literature. These criteria include: Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error (MAPE), and Model
Efficiency (EF). This statistical parameters are defined as follows:
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MAPE ¼ 1
n

Xn
j¼1

�����dj � pj
dj

������ 100 (22)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

�
dj � pj

�2r
(23)

EF ¼¼

Pn
j¼1

�
dj � d

�2 �Pn
j¼1

�
pj � dj

�2
Pn
j¼1

�
dj � d

�2 (24)

where dj is the ith component of the desired (actual) output for the
jth pattern; pj is the component of the predicted (fitted) output

produced by the network for the jth pattern; d and p are the average
of the whole desired (actual) and predicted output and n is the
number of variable outputs. A model with the smallest RMSE,
MAPE and largest EF is considered to be the best (Taki et al., 2016b).
3. Results and discussion

3.1. Results of energy consumption

Table 4 shows a summary of energy consumption (MJ ha�1) in
three sizes of wheat farm in Shahreza region. Total energy con-
sumption as inputs during irrigated and rainfed wheat production
and also output energy were 23406, 9351 and 90528, 44131
38 MJ ha�1, respectively.

The share of each input on total energy output is shown in Fig. 4.
As it can show, in all farm types, diesel fuel has the highest impact
on energy output except small rainfed farms (<2 ha-rainfed). In
those farms, because of small lands, total chemical fertilizer and
poisons had the highest impact on total output energy.
Khoshnevisan et al. (2013) reported that total input energy for
wheat production in Isfahan province (Fereydunshahr city) were
80.4, 79.29 and 81.11 GJ ha�1 for small (<1 ha), medium (1e3 ha)
Fig. 3. The prediction framework based on the GPFR model (Liu et al., 2013).
and large (>3 ha) farms that this results are very higher than our
results but the authors did not explain about this fact. In that
research, electricity and chemical fertilizer had the most important
effects on output energy (49% and 29% respectively). In a similar
study, Safa et al. (2009) reported that total input energy for irri-
gated and rainfed (dry) wheat production in New Zealand were
25.6 and 17.45 GJ/ha�1. In that research, chemical fertilizer and
electricity played the most important role in irrigated farms output
with 10.19 and 3.43 GJ/ha�1. In Shahreza city, some of farmers used
diesel fuel engines for water pumping and so we calculated that
energy for diesel fuels, so the result of diesel fuel consumption in
this research is more than other researches. In this region, because
of increasing of drought period and also existing of deep wells,
farmers have to use much energy for water extraction. Similar re-
sults were reported by Abdollahpour and Zaree (2009). They
showed that total input and output energy for irrigated wheat
production was 25.67 and 21.01 GJ/ha�1 at west of Iran (Kerman-
shah province). In another study in Iran, reported by Tabatabaeefar
et al. (2009), the least energy consumed for wheat production was
8.8 MJkg�1 in no-till fields and 11.8 MJkg�1 in fields with mold-
board plow plus roller plus drill. They reported that energy
consumed for tillage using moldboard plow plus roller plus drill
was 32.5% of the total energy. Taghavifar and Mardani (2015) re-
ported that total energy input and output for wheat production in
west Azerbaijan, Iran, were 30626.4 and 53480.4 MJha�1, respec-
tively. It was disclosed that the greatest shares of input energy with
11984 MJha�1 and 6824.2 MJha�1 corresponded to the diesel fuel
and Nitrogen, respectively.

The results of this study revealed that in irrigated large farms
(up to 4 ha), total input energy was higher than small farms but the
total output energy in small farms was higher than large farms. This
fact shows that using of technology was not effective in wheat
farms and will be worse by increasing the area of lands. This fact is
not novel because we know that this problem. After White Revo-
lution in 1963e1978, farm lands were divided between farmers and
so the area of lands were small than last. Now, we consuming en-
ergy more than needing of standard wheat production but we
cannot harvest equal output energy. One of the good (best) ideas for
solving this problem is using of cooperative company for using of
total capital of farmers for culturing in large lands. The government
should invest in this subject and especially by increasing in drought
period in this region; this problem can show other hazards such as
increasing in final price of crops and some of social problems
(migration and dispute). The results illustrated that the consump-
tion of electricity and chemical fertilizers was high for wheat pro-
duction in the region. The accurate utilization of chemical fertilizers
and application of new electrical pumps for water pumping can
improve the energy use efficiency without any dramatic decline in
profitability or yield. Table 5 shows the total energy consumption
only for operation. As it can show, by changing the farm sizing
(small to large), the total machinery energy consumption will in-
crease. This table can complete the above claim about farm sizing in
this region and maybe at total farm lands of Iran. Some researchers
reported similar results (Ghorbani et al., 2011; Beheshti Tabar et al.,
2010; Singh et al., 1999). In recent years, due to the highly mech-
anized agricultural system in Iran, increasing in total fuel and ma-
chinery energy consumption is a sensaible fact.

The results of Table 5 show that, harvesting is the main part at
the consuming of total energy at machinery operation. At har-
vesting section, combine has the main share than other machin-
eries. It can prove above claim about land sizing, again. Using of big
machinery such as combine at small farms can increase total energy
consumption. In the other hands, using of labors at small farms can
increase the final price of crop. For better showing of this subject,
future studies should focus on relation between energy



Table 4
Energy inputs and output for wheat production (MJha�1).

Item Irrigated wheat farms Rainfed wheat farms

Small (<2 ha) Medium (2
e4 ha)

Large (>4 ha) Small (<2 ha) Medium (2
e4 ha)

Large (>4 ha)

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Inputs Machinery 658 198 838 241 825 196 311 81 412 157 486 171
Water for irrigation 3187 3514 4538 4527 5464 4683 0 0 0 0 0 0
Human labor 203 114 187 92 128 79 143 79 103 72 47 53
Diesel fuel 6519 1529 7640 2091 7216 1739 3689 561 4302 1107 4438 1021
Total chemical Fertilizer 5544 871 5210 958 6335 923 3769 844 3177 826 2850 666
Pesticides 97 102 440 126 460 86 80 101 86 101 87 58
Herbicides 371 199 156 80 148 91 214 242 249 240 269 239
Fungicides 42 53 80 54 62 53 58 34 48 38 58 40
Seed 4857 3021 4680 3155 4335 2662 1080 839 1095 318 1003 558
Total input energy 21478 e 23769 e 24973 e 9344 e 9472 e 9238 e

Inputs Average of input energy (for each farm type) 23406 9351
Output Output energy (Grain þ straw) 95864 44531 94170 38668 81551 35587 54947 14180 45761 19958 31685 13600
Output Average of output energy (for each farm type) 90528 44131

Fig. 4. Share of all inputs for irrigated and rainfed wheat production at different farm size.
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consumption, final price of wheat production and sizing of farm
lands.

3.2. Evaluation soft computing models

Because of diversity and dispersion of management methods
and climatic conditions on the farms, the data sets of energy from
them are very different and the standard deviations are very
changeable. This makes it impossible to use regression models for
energy modeling. The classical regression methods are based on
statistical hypotheses, including the normality of the data set.
Therefore, the nature of the energy data set has led researchers to
use soft computing methods such as artificial neural networks. An
important advantage of soft calculation methods is learning the
behavior of output variations according to how input changes
without taking into account statistical assumptions. So in this
research, soft computing methods including MLP, RBF and GPR
were used. MLP has been used in most studies (Taki et al., 2012c;
Khoshnevisan et al., 2013; Nabavi-Pelesaraei et al., 2016) and RBF
is also used in some sources (Taki et al., 2016a; Najafi et al., 2009)
for energy modeling. But so far, based on available information, the
GPRmodel has not been used for this purpose. Therefore, one of the
objectives of this research is to introduce GPR and compare these
three methods together. The limitation of these methods (esti-
mated models) is their validity in the range of variations of the
studied variables. Therefore, in order to have a global model, we
need to have a complete data set in order to help the modeling of
output energy for each product. Therefore, the most important
limitation of these models is the lack of a guarantee of outsourcing.
This is unthinkable due to lack of access to the entire statistical
community.

Two algorithms (BR and LM) for ANN model were used. BR is a
mathematical process which converts a nonlinear regression into a
statistical issue in the form of series regression. The LM algorithm is
a curve-fitting method and the most highly used optimization al-
gorithm that applies the minimum of a several function which is
considered as the sum of squares of the errors among the function
and the measured data parts (Taki et al., 2016a). For transfer
function, logsig and the tansig were used. These methods are very
popular and applicable and many researches were used them. For
MLP model, we analyzed this method with different hidden layers.
The results of this analysis is shown in Fig. 5.
Table 5
Energy consumption (MJha�1) based on operations in wheat production.

Machinery Irrigated wheat farms

Small (<2 ha) Medium (2
e4 ha)

Large (>

Mean Std Mean Std Mean

Tractor 256 100 254 72 250
Moldboard plough 42 11 43 16 42
Dick plough 5 11 9 17 12
Field cultivator 17 9 15 9 13
Disk Hiller 3 3 4 7 4
Ditcher 1 2 1 2 3
Land Leveler 1 6 9 14 14
Grain drill 3 10 15 19 12
Combinat 0 0 1 9 3
Broadcaster (seeder) 2 5 3 7 6
Broadcaster (fertilizer) 3 9 11 17 20
Boom-type sprayer 12 11 17 12 20
Combine 205 211 372 182 404
Mower 27 32 9 22 4
Baler 8 27 31 47 8
Stationary Thresher 73 68 43 43 32
Total 658 198 838 241 847
The results of MLP model showed that the best transfer function
and learning algorithm are hyperbolic tangent sigmoid and
bayesian regularization backpropagation, respectively. The number
of neurons in hidden layer for irrigated and rainfed models pre-
diction, are 21 and 17, respectively.

The second model is RBF-ANN. Hidden size (Number of neurons
in the hidden layer), spread parameter and learning algorithm are
the effective factor for RBF efficiency. So, the next step for RBF
model is selecting the best number of neurons in hidden layer and
also determining the spread factor. In this case, the output of i-th
hidden unit with center mi and spread si is given as follows
(Esmaeili and Mozayani, 2009):

fiðxÞ ¼ fðkx� mik; sÞ ¼ e

 
kx�mik2

2s2
i

!
;ci (25)

Training an RBF network consists of finding the values for these
parameters, such that the overall approximation or classification
error is reduced. The values chosen for the centers and the spread of
the radial functions have a great effect on the generalization abil-
ities of the network. Many algorithms have been proposed for
finding the centers of an RBF network in literature such as: random
subset selection, various clustering algorithms such as K-means and
vector quantization, sequential growing and most recently a
training algorithm inwhich the locations and the number of hidden
units are tried to be optimized using particle swarms. In all of these
works the spread of the radial functions of the hidden units are set
either to a fixed value or a value obtained using heuristic methods
(Esmaeili and Mozayani, 2009). In this research, the best spread
factor with the best number of hidden layer was selected. Fig. 6
shows the results of this analysis. Analysis of selection the best
spread factor and hidden size was done for training and testing
section. As it can be seen from Fig. 6, the interactions between
spread factor and hidden size can be effective on RBF performance.
The best combined of these factors (spread factor and hidden size)
can be seen with dash line at Fig. 6.

Mostly at this situation, correlation of determination (R2) will be
increased with the number of hidden layers. For irrigated wheat, 17
neurons were selected for both of LM and BR algorithm but for
rainfed wheat, 19 and 21 neurons were selected for LM and BR al-
gorithm, respectively. The results of selecting the best spread factor
Rainfed wheat farms

4 ha) Small (<2 ha) Medium (2
e4 ha)

Large (>4 ha)

Std Mean Std Mean Std Mean Std

81 143 32 153 46 140 39
22 40 11 44 13 42 12
18 0 0 0 0 0 0
10 18 2 17 5 16 4
2 0 0 0 0 0 0
2 0 0 0 0 0 0
19 0 0 0 0 0 0
15 0 0 0 0 0 0
11 0 0 0 0 0 0
10 15 3 17 3 18 4
17 0 0 27 13 21 6
6 20 7 15 5 19 6
158 298 99 341 62 370 80
16 51 10 49 11 49 10
22 0 0 0 0 0 0
33 48 12 50 13 40 8
196 633 81 713 157 715 171



Fig. 5. Changing in R2 by different hidden layer size (a: Irrigated, LM-Logsig, b: Irrigated, LM-Tansig, c: Irrigated, BR- Logsig, d: Irrigated, BR-Tansig, e: Rainfed, LM-Logsig, f: Rainfed,
LM-Tansig, g: Rainfed, BR-Logsig, h: Rainfed, BR-Tansig).
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show that for irrigated wheat with LM algorithm and at training
phase (irrigated-LM-training) and irrigated wheat with BR algo-
rithm and at training phase (irrigated-BR-training), this factor is
equal to 7 and 4, respectively.

The next step for RBF model is selecting the best learning al-
gorithm between LM and BR. The result of this analysis was shown
in Fig. 7. As it can be seen, the BR algorithm is more accurate than
LM. Between the BR and LM training methods, the BR obtained the
highest correlation of determination in terms of predictive ability.
Similarly, Okut et al. (2011), proved that the BR training algorithm
was the most effective method in terms of predictive ability. Okut
et al. (2013) investigated the predictive performance of BR and
scale conjugate gradient training algorithms. In that study, they
found that the BR gave slightly better performance, but not
significantly so. In many studies (Saini, 2008; Ticknor, 2013), the BR
training algorithm has given either moderate or the best perfor-
mance in terms of comparison with other training algorithms. BR-
ANNs have some important advantages, such as choice and
robustness of model, choice of validation set, size of validation
effort, and optimization of network architecture (Burden and
Winkler, 2008). Bayesian methods can solve the overfitting prob-
lem effectively and complex models are penalized in the Bayesian
approach. In contrast to conventional network training, where an
optimal set of weights is chosen by minimizing an error function,
the Bayesian approach involves a probability distribution of
network weights (Wayg et al., 2005). This, combined with its
advantage of having the potential ability to capture nonlinear re-
lationships, means it can be used in quantitative studies to provide
a robust model.

The third model is GPR. For more comparison, the results of all
three models (MLP-RBF and GPR) to predict irrigated and rainfed
wheat production output energy are shown in Table 6. As it can
showMAPE and RMSE factors for RBFmodel is very lower thanMLP
and GPR models. In another hands, EF factor for RBF is higher than
MLP and GPR. The GPR method was not applied at any similar
literature to predict output energy for agriculture production until
now. Application of GPR model in this research is an exactly new
one, but as the results can show, this model can predict the output
energy similar to MLP model and not higher than RBF. So it is
recommended to use this model for other crop productions and



Fig. 6. Changing in R2 by different hidden layer size (a: Irrigated, Lm-training phase, (b): Irrigated, Lm-test phase, (c): Irrigated, Br, training phase, f(d): Irrigated, Br-test phase, (e):
Rainfed, Lm-training phase, (f): Rainfed, Lm-test phase, (g): Rainfed, Br-training phase, (h): Rainfed, Br-test phase).

M. Taki et al. / Journal of Cleaner Production 172 (2018) 3028e30413038
estimated the ability of this soft computing model. At this time, the
results of this model cannot compare with any similar models.

The so called t-test was used to compare the means of both
series of data (original and predicted) for all three models. It was
also assumed that the variance of both samples could be considered
equal. The obtained p values were greater than the threshold
(0.05); hence the null hypothesis cannot be rejected in this case.
The variance was analyzed using the F-test. Here, a normal distri-
bution of samples was assumed. Again, the p values confirm the
null hypothesis in all cases (p > 0.13). Finally, the Kolmogor-
oveSmirnov test also confirmed the null hypothesis. From statistical
point of view, again, the p values confirm the null hypothesis in all
cases.

As shown in Fig. 8, energy consumption estimated by the RBF-
ANN accounted for 99% of the actual variability in energy use in
validation and training data of irrigated and rainfed wheat pro-
duction, respectively. Correlation between the observed and pre-
dicted energy consumption was very high for both training and
testing phase. Therefore, this network has been able to explain the
relationship between inputs and outputs witt high accuracy and
have a good capability.

Fig. 9 shows the actual and predicted values (estimated by the
best selected RBF-ANN model) for irrigated and rainfed wheat
production. As it can be seen, the line of actual and predicted data
was coinciding. Many researchers had good results from ANN
models for prediction of output energy, yield and other complex
function of agricultural productions. Khoshnevisan et al. (2013)
developed ANN to prediction of output energy and greenhouse



Fig. 7. Comparison between LM and BR algorithm for training and testing the network
(a: Irrigated wheat, b: Rainfed wheat).

Fig. 8. Cross-Correlation of predicted and actual values of wheat output energy with Br
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gas (GHG) emissions for wheat production in Fereydunshahr, Isfa-
han. The results of modeling showed that the ANN model with 11-
3-2 LM structure was the best one for predicting the wheat yield
and GHG emissions. The coefficients of determination (R2) of the
best topology were 0.99 and 0.998 for wheat yield and GHG
emissions, respectively. Pahlavan et al. (2012) reported that amodel
consisted of an input layer with seven neurons, two hidden layers
with 20 neurons in each one and one neuron in the output layer
was the best one for predicting basil production in Isfahan province
of Iran. Safa and Samarasinghe (2011), developed an ANN model
based on a modular neural network with two hidden layers that
can predict energy consumption based on farm conditions (size of
crop area), social factors (farmers’ education level), and energy
inputs (N and P use, and irrigation frequency). Their results showed
the ability of ANN model to predict energy consumption in wheat
production using heterogeneous data. In another study, an ANN
model with a 13-4-2 LM structure was developed to model energy
consumption and GHG emissions of orange production in Guilan
Table 6
Performance of the best MLP-RBF and GPR topology with for prediction of irrigated and

MLPa

Train Test Total

RMSE (MJ) Irrigated 9458 14525 10666
Rainfed 5573 7577 6015

MAPE (%) Irrigated 11 12 11
Rainfed 12 23 14

EF Irrigated 0.93 0.83 0.92
Rainfed 0.86 0.74 0.84

p-value (Mean) Irrigated 0.97 0.50 0.81
Rainfed 0.99 0.78 0.92

p-value (std) Irrigated 0.71 0.32 0.51
Rainfed 0.42 0.11 0.17

p-value (Distribution) Irrigated 0.96 0.94 0.94
Rainfed 0.77 0.54 0.74

a Best topology for MLP model was 5-17-1 and 4-21-1 for irrigated and rainfed wheat
Province (Nabavi-Pelesaraei et al., 2016). According to the results
the ANN can model yield and GHG emissions based on energy in-
puts for the horticultural crops of Guilan Province with high ac-
curacy and low error.

For RBF model, the sensitivity analysis was applied to select the
effective input parameters. Table 7 shows the results of this anal-
ysis. As it can see, all the inputs are effective and cannot be
removed. These inputs are the main parameters and can change the
output energy. For ANN models, it is common because the output
results are much related to the number of data. If we want to select
the ineffective parameters based on Table 7, for rainfed wheat
production, the arrangement of input parameters is: fuel, ma-
chinery, SFP (Seed, Fertilizer and Pesticide) and human labor. For
rainfed wheat production, the above results are very common
because the main fuel consumption is in irrigated production and
farmers use it for water pumping at this region. The results of
rainfed wheat production output energy.

RBF GPR

Train Test Total Train Test Total

49.91 99.79 63.12 8981 13705 10104
67.28 90.14 72.30 6890 8153 7153
0.04 0.07 0.05 10.53 12.12 10.85
0.12 0.19 0.14 15.19 24.18 16.94
0.999 0.999 0.999 0.94 0.85 0.92
0.999 0.999 0.999 0.78 0.70 0.77
0.999 0.999 0.999 1.00 0.42 0.74
0.999 0.999 0.999 1.00 0.65 0.85
0.999 0.999 0.999 0.8 0.39 0.62
0.999 0.999 0.999 0.36 0.11 0.13
0.999 0.999 0.999 0.96 0.94 0.99
0.999 0.999 0.999 0.45 0.54 0.46

production with Br training algorithm.

algorithm for testing and training step (a: Irrigated wheat, b: Rainfed wheat).



Fig. 9. Comparison between actual and predicted value with Br algorithm (a: Irrigated
wheat, b: Rainfed wheat).
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sensitivity analysis for irrigated wheat production show that hu-
man labor can affect the output results in this type of farming.

Prediction of crop yield especially strategic plants such as wheat
has always been an interesting research area to agro meteorolo-
gists, as it is important in national and international economic
programming. Dry farming crop production, apart from relation-
ship to the genetic of cultivator, adaphic terms, effect of pests and
pathology and weeds, the management and control quality during
the growing season and etc. is severely depend to climatic events
and can be different in a region. The results of this study showed
that application of ANN tool can make models easier and more
accuracy from complex natural systems with many inputs. The
design of RBF network showed that this model can be used to es-
timate crop production in long or short term and also with enough
and useful data for each area. Furthermore using ANNs can find the
most effective factors on crop yield. Therefore some factors that
their measurements are difficult and are not cost effective can be
ignored. For future research, it is recommended to using dissimilar
variables, such as farm conditions and social factors that can
Table 7
Results of sensitivity analysis for removing the ineffective variables to predict irrigated a

Rainfed All input
All exclude Machinery
All exclude Human labor
All exclude Seed, Fertilizer and Pesticide
All exclude Fuel

Irrigated All input
All exclude Machinery
All exclude Water
All exclude Human labor
All exclude Seed, Fertilizer and Pesticide
All exclude Fuel
improve the ability of decision makers to look at the problem from
different perspectives. Also, increasing the number of samples and
used some additional variables for a longer period of time (at least
10 years), can help analyze trends in energy consumption in agri-
cultural production and in different lands with different conditions.
Also, using Life Cycle Assessment (LCA) can evaluate total envi-
ronmental pollutions for wheat production in this region and helps
farmers to recognize the importance of energy management. Total
results of this study can be useful for farmers and governments to
estimate the yield of crops before harvesting. So, pricing, marketing
and various export policies can be adopted.
4. Conclusion

Summary of conclusions and recommendations can be stated as
follows:

1. The average of total input and output energy for irrigated and
rainfed wheat production were calculated as 23406-90528
MJha-1 and 9351e44131 MJha-1, respectively. Diesel fuel was
the main factor affected on energy consumption for irrigated
wheat production and also for medium and large lands of
rainfed wheat production, but for small rainfed lands, total of
fertilizers and poisons had the highest impact on total energy
consumption. Also, the results showed that using of technology
was not effective inwheat farms andwill be worse by increasing
in farm sizing. The results of this study revealed that with
respect to the current technological level and agricultural
knowledge of the farmers, cultivation in the large farms (>4 ha)
can be a good solution to reduce the amount of total energy
consumption, increasing the output production and also final
income.

2. Results of output energy modeling showed that ANN-RBFmodel
is more accurate than MLP-ANN and GPR models. RMSE and
MAPE for irrigated and rainfed output modeling by ANN- RBF
were 63.12e72.30 MJ and 0.05e0.14%. The results showed that
the best spread factor for irrigatedwheat with LM algorithm and
at training phase (irrigated-LM-training) and irrigated wheat
with BR algorithm at training phase (irrigated-BR-training), was
equal to 7 and 4, respectively.

3. It can be inferred from the results that wheat irrigated farming
systems in the studied area are significant production methods
which are highly efficient and recommendable strategies on the
view of energy-related factors. Future researches should apply
energy analysis in various low and high input systems along
with long term economical, environmental and societal analysis
which further explain the suitability and compatibility of pro-
duction system for establishing sustainable development.
nd rainfed wheat output energy by RBF-ANN topology with Br training algorithm.

RMSE MAPE EF

72.30 0.14 0.99
3002 5.22 0.96
7850 18.52 0.72
7023 13.97 0.78
1287 1.93 0.99
63.12 0.05 0.99
4084 3.02 0.99
2526 2.45 0.99
4921 4.67 0.98
3020 3.10 0.99
3163 2.63 0.99
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