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A classical result of Schur states that if the central quotient G/Z(G) of a group G is
finite, then the commutator subgroup G′ is also finite. In this paper we introduce the

notion of central autocommutator subgroup of a given group G. We study this concept
and give some new results concerning the central kernel subgroup of G, which was
first introduced by F. Haimo in 1955. More precisely, the analogue of Schur’s result is
proved. We also construct some upper bounds for the order of central kernel and central
autocommutator subgroups of G in terms of the order of central kernel quotient of G.
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1. Introduction

Let G be a finite group then the autocommutator of the element g ∈ G and the
automorphism α in Aut(G) is defined to be

[g, α] = g−1gα = g−1α(g).

Using this definition, the subgroup

K(G) = 〈[x, α] : x ∈ G, α ∈ Aut(G)〉
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is called the autocommutator subgroup of G. The concept of autocommutator sub-
group has been already studied in [4]. Also

L(G) = {x ∈ G : [x, α] = 1, ∀α ∈ Aut(G)},
is called the autocenter of G. Clearly if α runs over the inner automorphisms of G,
then K(G) and L(G) will be the commutator subgroup, G′, and the center, Z(G),
of G, respectively. One notes that, K(G) and L(G) are characteristic subgroups of
G (see [3, 4] for more information).

In 1904, Schur [6] proved that for any group G, if G/Z(G) is finite then so
is G′. In 1994, Hegarty [3] showed that if G/L(G) is finite, then K(G) and the
automorphism group Aut(G) are both finite.

In 1955, Haimo [2] introduced the following subgroup of a given group G, which
we denote it by Lc(G),

Lc(G) = {x ∈ G : [x, α] = 1, ∀α ∈ Autc(G)},
where Autc(G) is the central automorphism group of G, and it is the set of all
automorphisms α in Aut(G) for which [x, α] ∈ Z(G), for all x ∈ G.

We call Lc(G) the central kernel of G and clearly it is a characteristic subgroup
of G and contains L(G). We may also define the central autocommutator subgroup
of G as follows:

Kc(G) = 〈[x, α] : x ∈ G, α ∈ Autc(G)〉.
It is easy to check that Kc(G) is a central characteristic subgroup of G, which is
contained in K(G). Moreover, put 〈1〉 = Lc0(G) and Lc(G) = Lc1(G) then for
n ≥ 1, we may define inductively

Lcn(G) = {x ∈ G : [x, α1, . . . , αn] = 1, ∀αi ∈ Autc(G)}.
Clearly, Lcn(G) is a characteristic subgroup of G and one obtains the following
ascending series of G,

〈1〉 = Lc0(G) ⊆ Lc(G) = Lc1(G) ⊆ Lc2(G) ⊆ · · · ⊆ Lcn(G) ⊆ · · · .
One should note that the above series is slightly different and more general than
the one given in [2]. Note that our construction does not give [2]. So we work with
the above definition throughout the rest of the paper.

One of our goals in this paper is to prove the analogue of Schur’s result. We
also construct upper bounds for the orders of Kc(G) and Autc(G) in terms of the
order of G/Lc(G).

2. Preliminaries

Having the definition of Lc(G) of a given group G, we may define

AutLc(G) = {α ∈ Autc(G) : [x, α] ∈ Lc(G), ∀x ∈ G}
which is a normal subgroup of Autc(G).
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Lemma 2.1. For any group G, if G/Lc(G) is finite, then so is Autc(G)/AutLc(G).

Proof. Clearly every central automorphism α ∈ Autc(G) induces an automorphism
α : G/Lc(G) → G/Lc(G) given by

α(xLc(G)) = α(x)Lc(G).

Now the correspondence α �→ α is a homomorphism from Autc(G) into
Autc(G/Lc(G)) and the kernel of this homomorphism is AutLc(G), which gives
the assertion.

Here we state the following fact of [5], which is useful in proving our next result.

Dicman’s Lemma. Let {x1, . . . , xn} be a finite normal subset of a group G, where
|xi| is finite for each 1 ≤ i ≤ n. Then X = 〈x1, . . . , xn〉 is a finite normal subgroup
of G and |X | ≤ ∏n

i=1 |xi|.

Proof. See [5, 14.5.7].

The following lemma is very useful in our further investigations.

Lemma 2.2. Let the factor group G/Lc(G) be finite. Then the subgroup Kc(G)
of the group G is finite if and only if Autc(G) is finite if and only if AutLc(G) is
finite.

Proof. Suppose that G/Lc(G) is finite, then Autc(G)/AutLc(G) is also finite. Thus
it is enough to show that Kc(G) is finite if and only if AutLc(G) is finite. Let Kc(G)
be finite and α ∈ AutLc(G), define α∗ : G/Lc(G) → Lc(G) given by

α∗(xLc(G)) = [x, α],

for all x ∈ G. It is clear that α∗ is a homomorphism. The correspondence α �→ α∗

is an injection from AutLc(G) into the set A = {α∗ |α ∈ AutLc(G)}. If AutLc(G)
is infinite then the set A is also infinite and we have infinite number of elements
of the form [x, α], for each α ∈ Autc(G) and x ∈ G. This implies that Kc(G) is
infinite, which is a contradiction.

Now let AutLc(G) be finite, then one can easily see that Autc(G) and the set
B = {[x, α] : x ∈ G, α ∈ Autc(G)} are both finite. Moreover, if |G/Lc(G)| = n,
then for every element x ∈ G we have xn ∈ Lc(G). Thus for all α ∈ Autc(G) we
may write

[x, α]n = [xn, α] = 1.

Hence the set B consists of only elements of finite order and by Dicman’s Lemma,
Kc(G) is also finite.
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3. Main Results

The purpose of this section is to prove the following analogue of Schur’s theorem.
Also we derive some upper bounds for |Autc(G)| and |Kc(G)|.
Theorem 3.1. If G/Lc(G) is finite, then so are Kc(G) and Autc(G).

Proof. By Lemma 2.2 it is sufficient to show that if G/Lc(G) is finite then
AutLc(G) is finite. Assume the contrary and AutLc(G) is infinite, then Lemma
2.1 implies that G/Lc(G) is infinite which gives a contradiction.

In the following we construct upper bounds for |Autc(G)| and |Kc(G)| in terms
of |G/Lc(G)|.
Theorem 3.2. Let |G/Lc(G)| = n then

(i) |Autc(G)| ≤ n! d[log2n],

(ii) |Kc(G)| ≤ nn([log2n]×n! d[log2n]), where d is the minimum number of generators
of Lc(G).

Proof. (i) If |G/Lc(G)| = n, then Autc(G)/AutLc(G) is isomorphic to a subgroup
of the symmetric group Sn. Thus

|Autc(G)| ≤ n! |AutLc(G)|.
Now using the argument as in the proof of Lemma 2.2, it implies that |AutLc(G)| ≤
|A|. However, each homomorphism α∗ in A must map a generator of G/Lc(G) into
a generator of Lc(G). Also a group of order n has less than or equal to [log2n]
minimum number of generators (see [7, p. 48]). Therefore |Autc(G)| ≤ n! d[log2n],
where d is the minimum number of generators of Lc(G).

(ii) Let {x1, x2, . . . , xr} be a generating set for Kc(G). Note that every generator
of Kc(G) has the form [gj, αk], where gj ∈ G and αk ∈ Autc(G). On the other
hand, [gj , αk]n = [gn

j , αk] = 1. Thus the order of each generator xi dividing n for
all 1 ≤ i ≤ r. Since every element of Kc(G) has order dividing n, Dicman’s Lemma
implies that |Kc(G)| ≤ nnr.

Note that for every α ∈ Autc(G), the set of autocommutators {x−1xα = [x, α] :
x ∈ G} has at most n elements and 〈[x, α] : x ∈ G〉 can be generated by at most
the minimum number of generators of G/Lc(G). As d(G/Lc(G)) = [log2n], we have

r ≤ [log2n] × |Autc(G)|.
Hence, the inequality (i) implies that r ≤ [log2n] × n! d[log2n], where d is the mini-
mum number of generators of Lc(G). Thus

|Kc(G)| ≤ nn([log2n]×n! d[log2n]).

Now the question arises that whether the converse of Theorem 3.1 is also true?
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In the following we give a complete answer to this question.

Theorem 3.3. If Kc(G) and Autc(G) are both finite, then so is G/Lc(G).

Proof. For any automorphism α ∈ Autc(G), let CG(α) = {g ∈ G : [g, α] = 1} be
the centralizer of α in the group G. Assume Kc(G) and Autc(G) are both finite,
then the index [G : CG(α)] is finite for each α ∈ Autc(G), as Kc(G) is finite. On the
other hand, Lc(G) =

⋂
CG(α) for every α ∈ Autc(G), which is a finite intersection.

Hence G/Lc(G) is finite.

Remark 3.4. Fournelle in [1] showed that for any prime number p, there is an
infinite non-abelian group G such that Aut(G) is an uncountable elementary abelian
p-group. Thus there exists a group G for which Kc(G) is finite, while G/Lc(G) is
infinite (see [1, Examples 1–3]). So we cannot remove the finiteness hypothesis of
Autc(G) in the above theorem.

Theorem 3.5. Let G be any group with |Kc(G)| = n and |Autc(G)| = m. Then
∣
∣
∣
∣

G

Lc(G)

∣
∣
∣
∣ ≤ nm.

Proof. For all g ∈ G and α ∈ Autc(G)

gα = g[g, α] ∈ gKc(G).

Thus for each centralizer of α in G, the size of the factor group G/CG(α) has
cardinality no larger than |Kc(G)|. It follows that

∣
∣
∣
∣

G

CG(α)

∣
∣
∣
∣ ≤ |Kc(G)|.

On the other hand, Lc(G) =
⋂

α∈Autc(G) CG(α) and hence Poincarés lemma implies
that

∣
∣
∣
∣

G

Lc(G)

∣
∣
∣
∣ ≤

∣
∣
∣
∣

G

CG(α1)

∣
∣
∣
∣ × · · · ×

∣
∣
∣
∣

G

CG(αm)

∣
∣
∣
∣

≤ |Kc(G)| × · · · × |Kc(G)| = |Kc(G)|m = nm.

One can easily check that the central automorphisms of a group G fix the
commutator subgroup G′ elementwise, and hence G′ ⊆ Lc(G). This shows that
G/Lc(G) is abelian and if Lc(G) is trivial, then G is abelian.

Lemma 3.6. G = Lc2(G) if and only if G/Lc(G) ∼= Z2.

Proof. Let G = Lc2(G) and x ∈ G \Lc(G), then [x, α, β] = 1 for all α, β ∈
Autc(G). We remind that β fixes [x, α] and on the other hand every abelian
group has a nontrivial automorphism which sends every element to its inverse.
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Also [xLc(G), ᾱ, β̄] = Lc(G), for all ᾱ, β̄ ∈ Autc(G/Lc(G)). Thus, β̄([xLc(G), ᾱ]) =
[xLc(G), ᾱ]−1 = [xLc(G), ᾱ], which implies that ᾱ(x2Lc(G)) = x2Lc(G), and so
all central automorphisms of G/Lc(G) are trivial. As G/Lc(G) is abelian, it has a
central automorphism θ, such that θ(xLc(G)) = x−1Lc(G) = xLc(G) and so x2 ∈
Lc(G). Hence G/Lc(G) is an elementary abelian 2-group with exp(G/Lc(G)) = 2.
If G/Lc(G) ∼= Z2 × Z2 there is a nontrivial central automorphism and hence
G/Lc(G) ∼= Z2. The proof of the converse is obvious.

Theorem 3.7. Let G = Lcn(G) and x ∈ G, then x2n−1 ∈ Lc(G), n ≥ 2.

Proof. If n = 2, Lemma 3.6 implies that x2 ∈ Lc(G). Proceed by induction on n

and assume the result holds for n = k. Now let x ∈ Lck+1(G), then [x, α] ∈ Lck
(G),

for every α ∈ Autc(G). Then the induction hypothesis implies that [x, α]2
k−1 ∈

Lc(G). Thus for each β ∈ Autc(G),

[[x, α]2
k−1

, β] = 1 ⇒ [x2k−1
, α, β] = 1.

Hence x2k−1 ∈ Lc2(G) and so x2k ∈ Lc(G).

Corollary 3.8. Let G = Lcn(G), then G/Lcn−1(G) ∼= Z2 and exp(Lcn(G)/Lc(G))
divides 2n−1.

Theorem 3.9. Let G = Lc2(G), then Autc(G) is an elementary abelian 2-group
and Autc(G) = AutLc(G).

Proof. Let G = Lc2(G), then the definition of AutLc(G) implies that Autc(G) =
AutLc(G). Also G = Lc(G) ∪ lLc(G) and for every x ∈ G \Lc(G) there exists
lx ∈ Lc2(G) such that x = llx. For every α ∈ Autc(G),

α(x) = α(llx) = α(l)α(lx) = α(l)l−1x = [α, l]x.

On the other hand, l2 ∈ Lc(G) and [α, l] ∈ Z(G) ∩ Lc(G). Thus

α2(x) = α(α(l)lx) = α2(l)lx = [α2, l]x = [α, l2]x = x.

Moreover, for each α, β ∈ Autc(G) and x ∈ G,

[x, αβ] = [x, β][x, α] = [x, α][x, β] = [x, βα] ⇒ αβ(x) = βα(x).

Hence Autc(G) is an elementary abelian 2-group.
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