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NON-ABELIAN TENSOR ANALOGUES OF

2-AUTO ENGEL GROUPS

Mohammad Reza R. Moghaddam and Mohammad Javad Sadeghifard

Abstract. The concept of tensor analogues of right 2-Engel elements in
groups were defined and studied by Biddle and Kappe [1] and Moravec [9].
Using the automorphisms of a given group G, we introduce the notion
of tensor analogue of 2-auto Engel elements in G and investigate their
properties. Also the concept of 2⊗-auto Engel groups is introduced and
we prove that if G is a 2⊗-auto Engel group, then G⊗Aut(G) is abelian.

Finally, we construct a non-abelian 2-auto-Engel group G so that its
non-abelian tensor product by Aut(G) is abelian.

1. Introduction

Let G and H be groups equipped with the actions of G on H and H on
G (both from the right), written as hg and gh for all g ∈ G and h ∈ H ,
respectively. It is always understood that a group acts on itself by conjugation.
As in [2, 3], all these actions must be compatible in the sense that

g′(h
g) = ((g′g

−1

)h)g, h′(gh) = ((h′h−1

)g)h,

for all g, g′ ∈ G and h, h′ ∈ H .
Considering the above compatibilities of groups actions, the non-abelian

tensor product G⊗H is the group generated by the symbols g ⊗ h, satisfying
the following relations:

gg′ ⊗ h = (gg
′

⊗ hg′

)(g′ ⊗ h),

g ⊗ hh′ = (g ⊗ h′)(gh
′

⊗ hh′

),

for all g, g′ ∈ G and h, h′ ∈ H . The concept of non-abelian tensor product
of groups was introduced by Brown and Loday in [3]. Brown, Johnson and
Robertson in [2] started the investigation of non-abelian tensor product as a
group theoretical object. As a special case, G ⊗ G is said to be the tensor
square of a group G.
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Recall that the set of all right n-Engel elements of a group G is defined
by Rn(G) = {g ∈ G | [g, nh] = 1, ∀h ∈ G}. Here [g, h] = g−1h−1gh,
[g1, . . . , gn, gn+1] = [[g1, . . . , gn], gn+1] and [g, nh] = [g, h, . . . , h

︸ ︷︷ ︸

n

]. It is shown

in [6] that R2(G) is a subgroup of G.
Using the non-abelian tensor square, the set of all right n⊗-Engel elements

of a group G is defined as follows:

R⊗

n (G) = {g ∈ G | [g, n−1h]⊗ h = 1⊗, ∀h ∈ G},

see also [1, 9]. The set of right n⊗-Engel elements has been studied by sev-
eral authors (see [1, 9, 11, 12]). Biddle and Kappe [1] proved that R⊗

2 (G) is
always a characteristic subgroup of G contained in R2(G). In [9], Moravec
determined some further information on R⊗

2 (G) and defined the concept of 2⊗-
Engel groups, which reads as G is a 2⊗-Engel group when [g, h]⊗h = 1⊗ for all
g, h ∈ G. He also showed that if G is a 2⊗-Engel group, then the non-abelian
tensor square G⊗G is abelian.

The automorphisms group of a given group G is denoted by Aut(G) and
inner automorphisms by Inn(G). In the present article, using the non-abelian
tensor product G ⊗ Aut(G), we introduce the concept of tensor analogue of
2-auto Engel elements in a group G and denote it by AR⊗

2 (G).

Definition. Let G be any group. Then

AR⊗

2 (G) = {g ∈ G | [g, α]⊗ α = 1⊗, ∀α ∈ Aut(G)}

is the set of 2⊗-auto Engel elements of G.

In Section 3, we show that AR⊗

2 (G) is a characteristic subgroup of G con-
tained in R⊗

2 (G) and give some of its properties. Also we introduce the notion
of 2⊗-auto Engel groups and prove that if G is a 2⊗-auto Engel group, then
G⊗Aut(G) is abelian.

2. Preliminary results

In this section we summarize some of the basic facts, which are needed for
the proofs of our main results.

The following propositions of [2] are needed:

Proposition 2.1 ([2, Proposition 2]). Let G and H be groups equipped with

compatible actions on each other. Then

(i) the groups G and H act on G⊗H so that

(g′ ⊗ h)g = g′g ⊗ hg, (g ⊗ h′)h = gh ⊗ h′h,

for all g, g′ ∈ G, h, h′ ∈ H.

(ii) There are group homomorphisms λ : G⊗H → G and λ′ : G⊗H → H

such that

(g ⊗ h)λ = g−1gh, (g ⊗ h)λ′ = h−1gh,
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for all g ∈ G and h ∈ H.

Proposition 2.2 ([2, Proposition 3]). Let G and H be groups equipped with

compatible actions on each other. Then for all g, g′ ∈ G and h, h′ ∈ H, the

following identities are satisfied:

(i) (g−1 ⊗ h)g = (g ⊗ h)−1 = (g ⊗ h−1)h;
(ii) (g′ ⊗ h′)g⊗h = (g′ ⊗ h′)[g,h];

(iii) g−1gh ⊗ h′ = (g ⊗ h)−1(g ⊗ h)h
′

;

(iv) g′ ⊗ h−1gh = (g ⊗ h)−g′

(g ⊗ h);

(v) g−1gh ⊗ h′−1g
′

h′ = [g ⊗ h, g′ ⊗ h′].

For a given group G, we define the action of G on Aut(G) given by αg =
αϕg = ϕ−1

g ◦ α ◦ ϕg and the action of Aut(G) on G given by gα = (g)α for all
g ∈ G, α ∈ Aut(G) and ϕg ∈ Inn(G).

In the following lemma, we show that the above actions are compatible.

Lemma 2.3. The above actions are well-defined and compatible.

Proof. Clearly the actions of G on Aut(G) and Aut(G) on G are well-defined.
Also for all α, β ∈ Aut(G), g, h ∈ G and ϕg ∈ Inn(G), we have

(h)β(gα) = (h)βϕ(g)α = (h)(ϕ−1
(g)α ◦ β ◦ ϕ(g)α)

= (g−1)α((g)αh(g−1)α)β(g)α

= (g−1(g)αβα−1(h)βα−1(g−1)αβα−1g)α

= ((g)αβ(h)β(g−1)αβ)α−1 ◦ ϕg ◦ α

= (h)(ϕ−1
g ◦ (α ◦ β ◦ α−1) ◦ ϕg)

α

= (h)((βα−1

)g)α.

Thus β(gα) = ((βα−1

)g)α. Also,

h(αg) = h(αϕg ) = (h)(ϕ−1
g ◦ α ◦ ϕg)

= g−1(g)α(h)α(g−1)αg

= ((ghg−1)α)g

= ((hg−1

)α)g.

This completes the proof. �

Remark 1. One notes that we may use all the identities for the non-abelian
tensor product G⊗Aut(G).

Lemma 2.4 ([7]). Let g and h be elements of a group G and α, β ∈ Aut(G).
Then the followings are held:

(i) [gh, α] = [g, α]h[h, α];

(ii) [g, α−1] = ([g, α]−1)α
−1

;
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(iii) [g−1, α] = ([g, α]−1)g
−1

;
(iv) [g, αβ] = [g, β][g, α]β;
(v) [g, α]β = [gβ , αβ ].

Following [7], the set of all right 2-auto Engel elements in a given group G

is defined as follows:

AR2(G) = {g ∈ G | [g,2 α] = [g, α, α] = 1, ∀α ∈ Aut(G)}.

Proposition 2.5 ([7, Lemma 3.2]). Let g be a right 2-auto Engel element and

α, β and γ be arbitrary automorphisms of a group G. Then

(i) gAut(G) = 〈gα | α ∈ Aut(G)〉 is abelian and its elements are right

2-auto Engel elements;
(ii) [g, α, β] = [g, β, α]−1;
(iii) [g, [α, β]] = [g, α, β]2;
(iv) [g, α, β, γ]2 = 1;
(v) [g, [α, β], γ] = 1.

The following corollary is an immediate consequence of Proposition 2.5(i).

Corollary 2.6. Let G be a group, g ∈ AR2(G) and α, β ∈ Aut(G). Then

[[g, α], [g, β]] = 1.

Theorem 2.7 ([7, Theorem 3.2]). The set of all right 2-auto Engel elements

of a given group forms a characteristic subgroup.

3. Main results

The main goal of this section is to study the tensor analogues of right 2-auto
Engel elements of a given group G. So we define the set of all 2⊗-auto Engel
elements as follows:

AR⊗

2 (G) = {g ∈ G | [g, α]⊗ α = 1⊗, ∀α ∈ Aut(G)}.

We remind that [g, α] = g−1(g)α = g−1gα is the autocommutator elements
of g ∈ G and α ∈ Aut(G), see also [5]. The subgroups K(G) = 〈[g, α] |
g ∈ G, α ∈ Aut(G)〉 and L(G) = {g ∈ G | [g, α] = 1, ∀α ∈ Aut(G)} are
the autocommutator subgroup and the absolute centre of G, respectively. (see
[5, 8, 10], for more information.)

The following properties of AR⊗

2 (G) are useful for our further investigations.

Lemma 3.1. The set of all 2⊗-auto Engel elements of a given group G contains

L(G) and is contained in the set of 2-auto Engel elements of G.

Proof. It is obvious that L(G) is a subset of AR⊗

2 (G). Now, by Proposi-
tion 2.1(ii), there exists a homomorphism θ : G ⊗ Aut(G) → K(G) given by
(g ⊗ α)θ = [g, α], which gives the claim. �

Lemma 3.2. Let G be a group. Then

(i) (g ⊗ α)−1 = g ⊗ α−1;
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(ii) ([g, β]⊗ α)([g, α] ⊗ β) = 1⊗;
(iii) [g, α]⊗ ϕg = 1⊗,

for all g ∈ AR⊗

2 (G) and α, β ∈ Aut(G).

Proof. (i) Proposition 2.2(iii) implies that 1⊗ = [g, α]⊗α = (g⊗α)−1(g⊗α)α.
Thus (g ⊗ α)−1 = g ⊗ α−1, by Proposition 2.2(i).

(ii) Using part (i), we have g ⊗ β−1α = (g ⊗ (β−1α)−1)−1. By a simple
calculation we obtain

((g ⊗ β)−1(g ⊗ β−1)−α)−1 = (g ⊗ α)−1(g ⊗ α−1)−β .

Hence, by Proposition 2.2(iii), ([g, β]⊗ α)−1 = ([g, α]⊗ β).
(iii) Clearly 1⊗ = [g, ϕgα]⊗ ϕgα, which gives [g, α]⊗ ϕg = 1⊗. �

Lemma 3.3. Let g ∈ AR⊗

2 (G) and α, β ∈ Aut(G). Then [g, α]β ⊗ α = 1⊗.

Proof. Using Lemma 2.4(iv), we have

1⊗ = ([g, β]⊗ αβ)[g,α]
β

([g, α]β ⊗ αβ),

or
1⊗ = ([g, β]⊗ α)[g,α]β([g, α]β ⊗ β)([g, α]β ⊗ α)β .

As g ∈ AR⊗

2 (G), we observe that [g, α] acts trivially on α. Also using Lemma
3.1 and Corollary 2.6, one notes that [g, α] acts trivially on [g, β]. Hence we
obtain

1⊗ = ([g, β]⊗ α)β([g, α]β ⊗ β)([g, α]β ⊗ α)β .

Finally, by Lemma 3.2(ii), the above equation reduces to 1⊗ = [g, α]β ⊗ α,
which proves the claim. �

Biddle and Kappe in [1] proved that R⊗

2 (G) is a characteristic subgroup of
G. Now we are in a position to show that AR⊗

2 (G) is also a characteristic
subgroup of the group G.

Theorem 3.4. For a given group G, the set of all 2⊗-auto Engel elements is

a characteristic subgroup of G.

Proof. Clearly AR⊗

2 (G) is a characteristic set. We show that AR⊗

2 (G) is closed
under the inverse and product. Assume g is any element of AR⊗

2 (G), which is
also in AR2(G). Hence 1 = [g, ϕgα, ϕgα], for all α ∈ Aut(G) and ϕg ∈ Inn(G).
This implies that [g, α, ϕg] = 1, using Lemma 2.4(iv). Now, by Lemma 2.4(iii)
and using the previous identity, we obtain [g−1, α] = [g, α]−1. So by Proposition
2.2(i), we have

[g−1, α]⊗ α = [g, α]−1 ⊗ α = ([g, α]⊗ α)−[g,α]−1

= 1⊗,

which implies that g−1 ∈ AR⊗

2 (G). By Lemma 2.4(i) and using the rules of
non-abelian tensor product, we obtain

[gh, α]⊗ α = ([g, α]ϕh ⊗ α)[h,α],

for all g, h ∈ AR⊗

2 (G) and α ∈ Aut(G). Hence, Lemma 3.3 gives the proof. �
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If A is a subset of Aut(G), we may define the auto-tensor centralizer of A
in G as follows:

C⊗

G (A) = {g ∈ G : g ⊗ α = 1⊗, ∀α ∈ A}.

It is easy to check that C⊗

G (A) is a subgroup of G. The following proposition

gives some useful properties of AR⊗

2 (G), which are needed in proving Theorem
3.8.

Proposition 3.5. Let G be a group. Then for all α, β, γ ∈ Aut(G), g ∈
AR⊗

2 (G) and n ∈ Z,

(i) [g, α] ∈ C⊗

G (αAut(G));
(ii) g−1 ⊗ α = (g ⊗ α)−1;
(iii) [g, α]n ⊗ β = ([g, α]⊗ β)n;
(iv) g ⊗ αn = (g ⊗ α)n;
(v) [g, α]⊗ [β, γ] = 1⊗;
(vi) g ⊗ [α, β] = ([g, α]⊗ β)2.

Proof. (i) It is obvious, by using Lemma 3.3.
(ii) By Proposition 2.2(i, iii) and Lemma 3.2(i, iii), we have g−1 ⊗ α =

(g ⊗ α−1)ϕ
−1
g and hence we conclude that g−1 ⊗ α = (g ⊗ α)−1.

(iii) It suffices to assume that n > 0. By Lemma 3.2(ii) we observe that
[g, α]n ⊗ β = ([g, α] ⊗ β)([g, α]n−1 ⊗ β). Hence the claim follows by induction
on n.

(iv) Using Proposition 2.2(iii), we have

g ⊗ αβ = (g ⊗ β)(g ⊗ α)([g, α]⊗ β).

Now, g ⊗ αn = (g ⊗ α)n is obtained by induction on n.
(v) Note that Lemma 3.2(ii) implies that the elements of the form a ⊗ α

commute, for all a ∈ gAut(G) and α ∈ Aut(G). By considering the identity
[g, α]⊗ βγ = ([g, βγ]⊗ α)−1, we obtain

([g, α]⊗ γ)([g, α]⊗ β)γ = ([g, γ]⊗ α)−[g,β]γ ([g, β]⊗ [γ−1, α−1]α)−γ .

Finally, Proposition 2.2(iii, v) imply that [g, α]⊗ [β, γ] = 1⊗.
(vi) Using parts (i) and (ii), Proposition 2.2(iii), Lemma 3.2(i) and the

identity g ⊗ αβ = (g ⊗ β)(g ⊗ α)([g, α] ⊗ β) give the claim as follows:

g ⊗ [α, β] = (g ⊗ αβ)(g ⊗ α−1β−1)

= ([g, α]⊗ β)([g, α−1]⊗ β−1)

= ([g, α]⊗ β)2. �

An immediate consequence of Proposition 3.5 is the following characteriza-
tion of AR⊗

2 (G).

Corollary 3.6. For any group G,

AR⊗

2 (G) = {g ∈ G : [g, α] ∈ C⊗

G (αAut(G)), for all α ∈ Aut(G)}.
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It is known that gG is abelian, for each element g ∈ R2(G). Also Moravec in
[9], proves that if g ∈ R⊗

2 (G), then the normal closure (g⊗h)G⊗G is an abelian
group for all h ∈ G.

The following corollary gives a similar result for 2⊗-auto Engel elements.

Corollary 3.7. Let g ∈ AR⊗

2 (G). Then the normal closure (g ⊗ α)G⊗Aut(G)

is an abelian group for every α ∈ Aut(G).

Proof. Let g ∈ AR⊗

2 (G). We know that there exists a homomorphism ϕ :
G ⊗ Aut(G) → K(G) given by (g′ ⊗ α′) 7→ [g′, α′]. Hence by Propositions
2.2(ii, v) and 3.5(v),

[(g ⊗ α), (g ⊗ α)(g
′
⊗α′)] = [(g ⊗ α), (g ⊗ α)ϕ(g′

⊗α′)]

= [(g ⊗ α), (g[g
′,α′] ⊗ α[g′,α′])] = 1⊗.

This proves the result. �

Moravec in [9] shows that if G is a 2⊗-Engel group, then the non-abelian
tensor product G⊗G is abelian and C⊗

G (g) is a normal subgroup of G, for each
g ∈ G. We say a group G is 2⊗-auto Engel group if [g, α] ⊗ α = 1⊗, for all
g ∈ G and α ∈ Aut(G).

Using [7], we conclude that the cyclic groups of orders 2 and 4 are the only
non-trivial abelian 2-auto-Engel groups. Hence one can easily calculate that
they are the only abelian 2⊗-auto Engel groups.

Now we are in a position to prove the following:

Theorem 3.8. Let G be a 2⊗-auto Engel group. Then

(i) G⊗Aut(G) is abelian;
(ii) C⊗

G (α) is a characteristic subgroup of G.

Proof. (i) Using Propositions 2.2(v) and 3.5(v), we have

[g ⊗ α, h⊗ β] = [g, α]⊗ [ϕh, β] = 1⊗,

for all g, h ∈ G and α, β ∈ Aut(G).
(ii) It is clear that C⊗

G (α) is a subgroup of G. Then by Lemma 3.2(ii), for

each g ∈ C⊗

G (α) and α, β ∈ Aut(G),

gβ ⊗ α = g[g, β]⊗ α = (g ⊗ α)[g,β]([g, β]⊗ α)

= ([g, α]⊗ β)−1

= 1⊗.

Hence C⊗

G (α) is a characteristic subgroup of G. �

In the following example we give a non-abelian 2-auto-Engel group G, for
which G⊗Aut(G) is abelian.
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Example. Let G = (Z4 ⋊Z4)⋊Z4 be the semidirect products of cyclic group
of order 4, which is the group (64, 68) in the GAP small groups library [4].
Using GAP, one can check that the centre and the group of automorphisms of
G are both elementary abelian 2-groups. Hence, by Proposition 3.1 in [7], the
group G is a purely non-abelian 2-auto-Engel group. Now by Corollary 3.7 in
[7], K(G) ≤ Z(G) and Aut(G) = Autc(G), where Autc(G) is the group of all
central automorphisms of G. These automorphisms fix the central factor group
of G element-wise, equivalently they commute with inner automorphisms of G.
Hence, by Propositions 2.1(i) and 2.2(ii),

(g ⊗ α)−1(g′ ⊗ α′)(g ⊗ α) = (g′ ⊗ α′)[g,α]

= g′[g,α] ⊗ α′[g,α]

= g′ ⊗ α′,

for all g, g′ ∈ G and α, α′ ∈ Aut(G). Thus the non-abelian tensor product
G⊗Aut(G) is abelian.

Finally, using GAP one can check that G = (Z4 ⋊ Z4) ⋊ Z4 and H =
(Z4 ×Z4 ×Z2)⋊Z2 are the smallest non-abelian 2-auto-Engel groups of order
64. For more descriptions of these groups see [7]. We remark that by Lemma
3.1, AR⊗

2 (G) is contained in AR2(G) and using Theorem 3.8 if the group G is
a 2⊗-auto Engel, then G⊗ Aut(G) is abelian. Hence we strongly believe that
G and H are both 2⊗-auto Engel groups.
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