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In 2010, the second author and coworker introduced and studied the concept of
autonilpotent groups. In this paper, we investigate this concept from different point
of view, and prove some new results. In fact, in this new notion some of our results do
not hold in the nilpotent case.
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1. Introduction and Preliminaries

For each element x of a given group G, and an automorphism α of Aut(G),

[x, α] = x−1xα = x−1α(x),

is called the autocommutator of x and α. For all α1, . . . , αn ∈ Aut(G), one may
define the autocommutator [x, α1, α2, . . . , αn] inductively as follows:

[x, α1, . . . , αn] = [[x, α1, . . . , αn−1], αn], n ≥ 1.

Let G be any group, then

L(G) = {x ∈ G : [x, α] = 1, ∀α ∈ Aut(G)}
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and

K(G) = [G, Aut(G)] = 〈[x, α] : x ∈ G, α ∈ Aut(G)〉,
are called the absolute center and the autocommutator subgroup of G, respectively.
The concepts of absolute center and autocommutator subgroup of a group ascend
to the work of Baer [2]. Clearly, they are both characteristic subgroups and if the
automorphism α runs over the inner automorphisms, then one gets the center,
Z(G), and the commutator subgroup, G′, respectively. In 1994, Hegarty [6] proved
if G/L(G) is finite, then so is K(G).

Put G = K0(G) and K(G) = K1(G), then for n ≥ 1, we may define:

Kn(G) = [Kn−1(G), Aut(G)] = 〈[x, α1, . . . , αn] : x ∈ G, αi ∈ Aut(G)〉,
which is called the nth-autocommutator subgroup of G (see also [12] for more infor-
mation).

One can easily see that γn+1(G) ≤ Kn(G), n ≥ 1 and Kn(G) is the characteristic
subgroup of G. Also, Kn(G) = γn+1(G), when all the automorphisms αi’s run over
the inner automorphisms of G. Hence we obtain the following descending series
of G.

G = K0(G) ⊇ K(G) = K1(G) ⊇ K2(G) ⊇ · · · ⊇ Kn(G) ⊇ · · · ,
which we may call it the lower autocentral series of G. We also define

K(2)(G) = K(K(G)) = [K(G), Aut(K(G))]

and inductively,

K(n)(G) = K(K(n−1)(G)), n ≥ 2,

which is called the nth-autoderived subgroup of G (see also [10]). Clearly, if we
consider the inner automorphisms of G, we obtain the nth-derived subgroup, G(n)

of G and hence G(n) is contained in K(n)(G). It can be verified that for any natural
number n,

G(n) ≤ γn+1(G) ≤ Kn(G) ≤ K(n)(G). (1.1)

Moreover, put 〈1〉 = L0(G) and L(G) = L1(G) then for n ≥ 1, we define inductively

Ln(G) = {x ∈ G : [x, α1, . . . , αn] = 1, ∀αi ∈ Aut(G)}.
Clearly, Ln(G) is a characteristic subgroup and one obtains the following ascending
series of G,

〈1〉 = L0(G) ⊆ L(G) = L1(G) ⊆ L2(G) ⊆ · · · ⊆ Ln(G) ⊆ · · · .
By the above discussion, in 2013 (see [9]) we first introduced the notion of autonilpo-
tent group, as follows.

Definition 1.1. A group G is said to be autonilpotent (henceforth we denoted by
A-nilpotent) of class at most n if Ln(G) = G, for some natural number n.
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One can easily see that Ln(G) ≤ Zn(G) and so every A-nilpotent group is
nilpotent. Moreover, Ln(G) = G if and only if Kn(G) = 〈1〉. On the other hand,
in 2010 (see [12]) Parvaneh and Moghaddam defined that if K(n)(G) = 〈1〉 for
some natural number n, then the group G is called autosoluble. According to (1.1),
it is clear that the autosolubility of groups implies A-nilpotency, solubility and
nilpotency, while the converses are not valid, in general. For example, consider the
cyclic group Zp of odd prime order p then K(Zp) = Zp. Also, the symmetric group
S3 is soluble, which is not autosoluble.

One should note that the above definition of A-nilpotency implies autonilpo-
tency which has been defined in [12], while the converse does not hold. For example,
one can easily check that the Dihedral group of order 8, D8, is A-nilpotent as

L(D8) = {e, x2}, L2(D8) = {e, x, x2, x3}, L3(D8) = D8.

On the other hand, the definition of autonilpotency in [12] implies that

L2(D8)/L(D8) = L(D8/L(D8)) = L(Z2 × Z2) = 〈1〉.
Hence L2(D8) = L(D8), which implies that D8 is not autonilpotent group.

So we work with the above definition throughout this paper. We remark that
our definition of autonilpotency was given in [9] in 2013, and unfortunately the
authors in [11] used our definition without giving any references.

The following example reveals some of the properties of this new notion.

Example 1.1. (i) Any non-trivial autoabelian group is an A-nilpotent group of
class 1. It is emphasized that every non-trivial autoabelian group is isomorphic
to Z2. The trivial group is A-nilpotent of class 0.

(ii) One can easily check that

L(Z2) = Z2; L(Z3) = 〈1〉; L2(Z4) = Z4;

L(Z6) = {e, x3} and L2(Z6) = L(Z6).

Hence the cyclic groups of orders 2 and 4 are A-nilpotent and the ones of
orders 3 and 6 are not, while they are nilpotent in the usual sense.

(iii) Clearly, the symmetric group S3 is not nilpotent and it cannot be A-nilpotent
either. Since it is easily checked that L(S3) = 〈1〉.

(iv) It is easily checked that all cyclic groups of order 2n, n ≥ 1, are A-nilpotent,
while arbitrary cyclic groups are not A-nilpotent.

2. Some Properties of A-Nilpotent Groups

In this section, it is shown that some of the known results of nilpotent groups can
be carried over to A-nilpotent groups. We begin with some elementary facts about
the A-nilpotent groups.

Lemma 2.1. Let G be a non-trivial A-nilpotent group. Then its absolute center is
non-trivial.
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Proof. Since G is A-nilpotent, we must have Ln(G) = G. Clearly, n ≥ 1, otherwise
G is trivial. Hence L1(G) = L(G) 	= 〈1〉.

Remark 2.1. For each odd prime number p and n ≥ 1, the cyclic group of order
pn, Zpn , is not A-nilpotent since the absolute center of such a group is trivial.

Theorem 2.1. Let G be an A-nilpotent group with a non-trivial characteristic
subgroup N . Then N ∩ L(G) is non-trivial.

Proof. By the assumption G = Ln(G), for some non-negative integer n. So
there exists a least positive integer i such that N ∩ Li(G) 	= 〈1〉. Now, [N ∩
Li(G), Aut(G)] ⊆ N ∩ Li−1(G) = 〈1〉 and N ∩ Li(G) ≤ N ∩ L(G). Hence
N ∩ L(G) = N ∩ Li(G) 	= 〈1〉.

Corollary 2.1. A minimal characteristic subgroup of an A-nilpotent group is con-
tained in the absolute center of the group.

The automorphism groups of direct products of finite groups have been discussed
in many articles (see [3, 5] for more details). Considering these ideas, we have the
following results.

Theorem 2.2. If H and K are finite groups with coprime orders, then

Aut(H × K) ∼= Aut(H) × Aut(K).

Theorem 2.3. Let G1, G2, . . . , Gn be finite A-nilpotent groups with coprime orders.
Then G1 × G2 × · · · × Gn is also A-nilpotent.

Proof. The proof is obtained simply by using the above theorem and [10,
Lemma 2.1].

Clearly, the above results hold for the usual nilpotent groups. Now let G = H�K

be the semidirect product of a characteristic subgroup H by a subgroup K of G.
Then Curran in [4] proved that Aut(H � K) ∼= A, in which

A =

{(
α β

0 γ

)
: α ∈ Aut(H), γ ∈ Aut(K), β : K → H

}
,

where α, β and γ satisfy β(kk′) = β(k)β(k′)γ(k) and α(hk) = α(h)β(k)γ(k), for all
k, k′ ∈ K and h ∈ H .

In fact, he showed that any automorphism θ of G may be defined by θ(hk) =
α(h)β(k)γ(k), and θ(h) = α(h), for all h ∈ H and k ∈ K.

Using the result of Curran, we show that the semidirect product of A-nilpotent
groups is also A-nilpotent.

Theorem 2.4. Let G = H1 � H2 be the semidirect product of a characteristic
subgroup H1 by the subgroup H2. If H1 and H2 are both A-nilpotent, then so is G.
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Proof. Assume Km(H1) = Kn(H2) = 〈1〉, for some natural numbers m and n.
Then by the above discussion for every h1 ∈ H1, h2 ∈ H2 and θ ∈ Aut(G), we have

[h1h2, θ] = (h1h2)−1θ(h1h2)

= h2
−1h1

−1α(h1)β(h2)γ(h2)

= h2
−1h1

−1α(h1)h2h2
−1β(h2)h2h2

−1γ(h2)

= [h1, α]h2β(h2)h2 [h2, γ] ∈ K(H1)H1K(H2)

= H1K(H2).

Thus K(G) ⊆ H1K(H2). By induction argument, we conclude that Kn(G) ⊆
H1Kn(H2) = H1. Now, we have

Kn+1(G) = [Kn(G), Aut(G)] ⊆ [H1, Aut(G)] ⊆ K(H1).

Using induction argument, we have

Kn+m(G) ⊆ Km(H1) = 〈1〉.
Thus G is an A-nilpotent group of class at most n + m.

Clearly, the Dihedral group D8 = Z4 � Z2 is an example for the above theorem.

3. Autocenter-by-Autosoluble Groups

In [1], the concept of Engel set is introduced and the nilpotency property of groups
generated by a finite Engel set is studied. In this section, we concentrate on the
A-nilpotency property of groups without using Engel set. Let P and Q be some
group properties, then we remind that G is said to be P-by-Q group, if there exists
a normal subgroup N of G such that N ∈ P and G/N ∈ Q.

Theorem 3.1. An autocenter-by-autosoluble group G is A-nilpotent.

Proof. Let N be an autocenter subgroup of G such that G/N is autosoluble. Then
there exists a positive integer m such that K(m)(G/N) = 1G/N . Thus (1.1) implies
that Km(G/N) = 1G/N .

On the other hand, K(G)N/N ⊆ K(G/N). Therefore K(G/N) = 1G/N implies
that K(G) ⊆ N . Clearly by induction on m we obtain Km(G)N/N ⊆ Km(G/N) =
1G/N . Hence Km(G) ⊆ N and as N ⊆ L(G),

Km+1(G) = [Km(G), Aut(G)] ⊆ [N, Aut(G)] = 〈1〉.
Therefore G is A-nilpotent of class at most m + 1.

According to the inequalities (1.1) and the above theorem, we have the following
corollary.

Corollary 3.1. (a) Let G be an autocenter-by-autoabelian group. Then G is A-
nilpotent of class 2.
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(b) Let G be an autocenter-by-(A-nilpotent) group of class n. Then G is A-nilpotent
of class at most n + 1.

(c) Let G be an autocenter-by-autometabelian group. Then G is A-nilpotent of
class 3.

Note that subgroups and homomorphic images of A-nilpotent groups are not
necessarily A-nilpotent. In general, there are no relations between the automor-
phisms of a subgroup of a given group and the automorphisms of the whole group.
For example S3/A3

∼= Z2, thus S3/A3 is A-nilpotent, while S3 is not A-nilpotent.
Also the Dihedral group D8 is A-nilpotent, but Z2 × Z2 cannot be A-nilpotent as
L(Z2 × Z2) = 〈1〉. However, in this context there are several articles in which they
discussed the relation of automorphisms of groups and their subgroups and gave
the connections under some conditions (see [8, 13, 15] for more information).

Finally, we state and prove some interesting results about the subgroups and
homomorphic images of A-nilpotent groups.

Theorem 3.2. For a characteristic subgroup N of a given group G, if N and G/N

are both A-nilpotent, then so is G.

Proof. Suppose that there exist positive integers r and s such that Kr(G/N) =
1G/N and Ks(N) = 〈1〉. Clearly, K(G)N/N ⊆ K(G/N) and by induction on r

one gets Kr(G)N/N ⊆ Kr(G/N) = 1G/N and hence Kr(G) ⊆ N . Let [k, α] be
an arbitrary generator of Kr+1(G) = [Kr(G), Aut(G)]. One can easily see that
[k, α|N ] ∈ [N, Aut(N)], so Kr+1(G) ⊆ K(N). By induction on s we have Kr+s(G) ⊆
Ks(N) = 〈1〉. Thus G is an A-nilpotent of class at most r + s.

Theorem 3.3. Let N be a proper characteristic subgroup of a given group G with
G/N is A-nilpotent of class r. If N ∩ Kr(G) = 〈1〉, then G is A-nilpotent.

Proof. Similar to the argument in the proof of the above theorem, one can easily
see that Kr(G)N/N ⊆ Kr(G/N). Now, as N ∩ Kr(G) = 〈1〉, we have

Kr(G)
N ∩ Kr(G)

∼= Kr(G)N
N

⊆ Kr

(
G

N

)
= 1G/N .

Hence Kr(G) = 〈1〉, which gives the A-nilpotency of G.
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