2-ENGELIZER SUBGROUP OF A 2-ENGEL TRANSITIVE GROUPS

Mohammad Reza R. Moghaddam and Mohammad Amin Rostamyari

Abstract

A general notion of χ-transitive groups was introduced by C. Delizia et al. in [6], where χ is a class of groups. In [5], Ciobanu, Fine and Rosenberger studied the relationship among the notions of conjugately separated abelian, commutative transitive and fully residually χ-groups.

In this article we study the concept of 2-Engel transitive groups and among other results, its relationship with conjugately separated 2-Engel and fully residually χ-groups are established. We also introduce the notion of 2-Engelizer of the element x in G and denote the set of all 2Engelizers in G by $E^{2}(G)$. Then we construct the possible values of $\left|E^{2}(G)\right|$.

1. Introduction

An element x of a group G is called a right Engel element, if for every $y \in G$, there exists a natural number $n=n(x, y)$ such that $\left[x,{ }_{n} y\right]=1$. If n can be chosen independent of y, then x is called a right n-Engel element or simply a bounded right Engel element. We denote the sets of all right Engel elements and bounded right Engel elements of G by $R(G)$ and $\bar{R}(G)$, respectively.

An element x of G is called a left Engel element, if for every $y \in G$, there exists a natural number $n=n(x, y)$ such that $\left[y,{ }_{n} x\right]=1$. If n can be chosen independent of y, then x is called a left n-Engel element or simply a bounded left Engel element. We denote the sets of all left Engel elements and bounded left Engel elements of G by $L(G)$ and $\bar{L}(G)$, respectively. For any positive integer n, a group G is called an n-Engel group, if $\left[x,{ }_{n} y\right]=\left[y,{ }_{n} x\right]=1$ for all $x, y \in G$.

A proper subset E of a group G is said to be n-Engel set, whenever $\left[x,{ }_{n} y\right]=$ $\left[y,{ }_{n} x\right]=1$ for all $x, y \in E$.

Let χ be a class of groups. Then a group G is residually χ if for every non-trivial element $g \in G$, there is a homomorphism $\phi: G \rightarrow H$, where H

[^0]is a χ-group such that $\phi(g) \neq 1$. Also a group G is fully residually χ if for finitely many non-trivial elements g_{1}, \ldots, g_{n} in G there exists a homomorphism $\phi: G \rightarrow H$ where H is a χ-group such that $\phi\left(g_{i}\right) \neq 1$ for all $i=1, \ldots, n$.
Definition 1.1. A subgroup H of a group G is called malnormal or conjugately separated, if $H \cap H^{x}=1$ for all $x \in G \backslash H$.

It is clear that the intersection of a family of malnormal subgroups of a given group G is again malnormal, which allows us to define the malnormal closure of a subgroup H of G. Clearly the intersection of all malnormal subgroups of G contains H is malnormal.

2. 2-Engel transitive groups

A group G is called a conjugately separated 2-Engel (henceforth CSE^{2}-group) if all of its maximal 2-Engel subgroups are malnormal. In the following, we discuss the notion of 2-Engel transitive group and then give its relationship with CSE^{2}-group and fully residually χ-groups.

Definition 2.1. (a) A group G is 2-Engel transitive (henceforth 2-ET), when $[x, y, y]=1$ and $[y, z, z]=1$ imply that $[x, z, z]=1$ for every non-trivial elements x, y, z in G.
(b) For a given element x of G, we call

$$
E_{G}^{2}(x)=\{y \in G:[x, y, y]=1,[y, x, x]=1\}
$$

to be the set of 2-Engelizer of x in G. The family of all 2-Engelizers in G is denoted by $E^{2}(G)$ and $\left|E^{2}(G)\right|$ denotes the number of distinct 2-Engelizers in G.

As an example consider $Q_{16}=\left\langle a, b: a^{8}=1, a^{4}=b^{4}, b^{-1} a b=a^{-1}\right\rangle$, the Quaternion group of order 16 and take the element b in Q_{16}. Then one can easily check that the 2-Engelizer set of b is as follows:

$$
E_{Q_{16}}^{2}(b)=\left\{1, a^{2}, a^{4}, a^{6}, b, a^{2} b, a^{4} b, a^{6} b\right\}
$$

The following lemma is useful for our further investigations.
Lemma 2.2. Let G be a 2-ET group. Then 2-Engelizer of each non-trivial element of G is 2-Engel set.
Proof. Let G be a 2-Engel transitive group, then $[x, y, y]=1$ and $[y, z, z]=1$ imply $[x, z, z]=1$ for all non-trivial elements x, y, z in G. Clearly using the definition, for $y, z \in E_{G}^{2}(x)$, it follows that $[z, y, y]=1$ and $[y, z, z]=1$. Thus $E_{G}^{2}(x)$ is 2-Engel set.

We remark that for the identity element e of G, we have $G=E_{G}^{2}(e)$ and hence $G \in E^{2}(G)$. Clearly in general, the 2-Engelizer of each non-trivial element of an arbitrary group G does not form a subgroup. The following example shows our claim.

Example 2.3. Let G be a finitely presented group of the following form:

$$
\begin{array}{r}
G=\left\langle a_{1}, a_{2}, a_{3}, a_{4}: a_{3}^{3}=a_{4}^{3}=1,\left[a_{1}, a_{2}\right]=1,\left[a_{1}, a_{3}\right]=a_{4},\right. \\
\left.\left[a_{1}, a_{4}\right]=1,\left[a_{2}, a_{3}\right]=1,\left[a_{2}, a_{4}\right]=a_{2},\left[a_{3}, a_{4}\right]=1\right\rangle .
\end{array}
$$

Using GAP [7] implies that G is an infinite group. One can easily check that G is not 2-ET, as $\left[a_{2}, a_{1}, a_{1}\right]=1$ and $\left[a_{1}, a_{4}, a_{4}\right]=1$, while $\left[a_{2}, a_{4}, a_{4}\right]=a_{2}$. Moreover, $E_{G}^{2}\left(a_{1}\right)$ is not a subgroup of G, since it is easily calculated that $a_{2}, a_{3} \in E_{G}^{2}\left(a_{1}\right)$ but $a_{2} a_{3} \notin E_{G}^{2}\left(a_{1}\right)$.

Here, we state an interesting property of 2-Engel transitive groups.
Proposition 2.4. Let G be a 2-ET group. Then $x^{E_{G}^{2}(x)}$ is nilpotent of class at most 3, for every non-trivial element x of G.
Proof. Note that $x^{E_{G}^{2}(x)}=\left\langle x^{y}: y \in E_{G}^{2}(x)\right\rangle$. Now, for every $y \in E_{G}^{2}(x)$;

$$
\left[x^{y}, x\right]=[x[x, y], x]=[x, y, x]=1
$$

On the other hand $\left[x^{y}, x, x\right]=1$ and $\left[x, x^{z}, x^{z}\right]=1$ imply that $\left[x^{y}, x^{z}, x^{z}\right]=1$, as G is 2-ET. Hence $x^{E_{G}^{2}(x)}$ is 2-Engel group and so nilpotent of class at most 3.

Now, we discuss the condition under which the 2-Engelizer of each non-trivial element of G is a subgroup.
Theorem 2.5. Let G be an arbitrary group. Then the set of each 2-Engelizer of a non-trivial element in G forms a subgroup if and only if the group $x^{E_{G}^{2}(x)}$ is abelian for all non-trivial element x of G.

Proof. Let $y \in E_{G}^{2}(x)$. Then one can easily see that

$$
\begin{aligned}
{\left[y^{-1}, x, x\right]=\left[[x, y]^{y^{-1}}, x\right] } & =\left[[x, y]\left[x, y, y^{-1}\right], x\right] \\
& =\left[[x, y][x, y, y]^{-y^{-1}}, x\right] \\
& =[x, y, x]=1
\end{aligned}
$$

and also

$$
\begin{aligned}
{\left[x, y^{-1}, y^{-1}\right]=\left[[y, x]^{y^{-1}}, y^{-1}\right] } & =\left[[y, x]\left[y, x, y^{-1}\right], y^{-1}\right] \\
& =\left[[y, x][y, x, y]^{-y^{-1}}, y^{-1}\right] \\
& =\left[y, x, y^{-1}\right]=[y, x, y]^{-y^{-1}}=1
\end{aligned}
$$

Thus $y^{-1} \in E_{G}^{2}(x)$.
Now, for every $y, z \in E_{G}^{2}(x)$ we have;

$$
\begin{aligned}
{[y z, x, x] } & =\left[[y, x]^{z}[z, x], x\right] \\
& =\left[[y, x]^{z}, x\right]^{[z, x]}[z, x, x] \\
& =[[y, x][y, x, z], x]^{[z, x]} \\
& =[y, x, z, x]^{[z, x]} .
\end{aligned}
$$

Clearly, using Witt identity and the same technique in the proof of Theorem 7.13 in [8], we may have $[y, x, z, x]=1$ if and only if $x^{E_{G}^{2}(x)}$ is abelian. Similarly, $[x, y z, y z]=1$ and the proof is complete.

The proof of the following lemma is a routine argument by using Zorn's Lemma.

Lemma 2.6. Every 2-Engel subgroup H of a given group G is contained in a maximal 2-Engel subgroup.

The following fact is needed in proving our main result.
Proposition 2.7. Let G be a CSE^{2}-group. Then every non-trivial 2-Engel normal subgroup of G is maximal.
Proof. Let G be a CSE^{2}-group and K a non-trivial 2-Engel normal subgroup of G. Then by Lemma $2.6, K$ is contained in a maximal 2-Engel subgroup M of G. Let $1 \neq k \in K$, then for each $x \in G$ we have $k^{x} \in M$. Since G is CSE^{2}, it follows that M is malnormal and therefore $x \in M$. Thus $G=M$, which implies that K is maximal.

Using the above proposition, we obtain the following useful result.
Corollary 2.8. Let G be a CSE^{2}-group. Then every 2-Engel normal subgroup of G is equal to the second centre of G.

Lemma 2.9. Let χ be a class of groups such that each non-2-Engel group $H \in \chi$ is CSE^{2}-group. Let N be a 2-Engel normal subgroup of a non-2-Engel residually χ-group G. Then N is contained in the second centre of G.
Proof. Let $G \in \chi$, then by the assumption G is CSE^{2} and therefore by Corollary 2.8, every 2-Engel normal subgroup of G is equal to the second centre of G. Now let N be a 2-Engel normal subgroup of a non-2-Engel residually χ-group G so that N is not contained in the second centre of G. Then there exist elements $n \in N$ and $g_{1}, g_{2} \in G$ such that $\left[n, g_{1}, g_{2}\right]=x \neq 1$, say. Since G is residually χ, there exists a normal subgroup N_{x} of G such that $G / N_{x} \in \chi$ and $x \notin N_{x}$. Clearly $N N_{x} / N_{x}$ is a non-trivial 2-Engel normal subgroup of G / N_{x}. Then $N N_{x} / N_{x}=Z_{2}\left(G / N_{x}\right)$ and this contradicts that $x \notin N_{x}$. Therefore N is contained in the second centre of G.

Remark 2.10. Let G be a 2-ET and non 2-Engel group, then it is clear that $Z_{2}(G)=1$. So it follows from the above lemma that any normal 2-Engel subgroup of G must be trivial.

Now we study the relationship between the non 2-Engel $\mathrm{CSE}^{2}, 2$-ET and fully residually χ-groups.

Theorem 2.11. Let χ be a class of groups such that each non 2-Engel χ-group is CSE^{2} and G be a non 2-Engel and residually χ-group. Then
(i) G is a CSE^{2}.
(ii) If G is a 2-Engel transitive, then G is fully residually χ-group.

Proof. (i) Let G be a non 2-Engel group. Then there exist $x, y \in G$ such that $[x, y, y] \neq 1$. On the other hand, there is a normal subgroup N of G, for which $[x, y, y] \notin N$ and $G / N \in \chi$, as G is residually χ. Clearly, $x, y \notin N$ and G / N is non 2-Engel. Hence G / N is CSE^{2} and so every maximal 2-Engel subgroup in G / N is malnormal. Suppose M / N is a maximal 2-Engel subgroup of G / N. Then $\frac{M}{N} \cap\left(\frac{M}{N}\right)^{g N}=N$, for all $g N \in \frac{G}{N} \backslash \frac{M}{N}$. This implies that $M \cap M^{g}=1$ for every $g \in G \backslash M$, and hence G is CSE^{2}.
(ii) Let G be a 2 -ET, non 2 -Engel and residually χ-group. Then we show that G is fully residually χ. In order to do this, we prove that for given non-trivial elements g_{1}, \ldots, g_{n} in G there is a normal subgroup N such that g_{1}, \ldots, g_{n} are not in N and $G / N \in \chi$. This is equivalent to showing that given non-trivial elements $g_{1}, \ldots, g_{n} \in G$ there exists a non-trivial element $g \in G$ such that for any normal subgroup N of G if $g \notin N$, then $g_{i} \notin N$ for $i=1, \ldots, n$. We proceed by induction on n. This is true for $n=1$, as G is residually χ. Now assume the result holds for $n-1$, if $\left[g_{n}^{x}, g, g\right]=1=\left[g, g_{n}^{x}, g_{n}^{x}\right]$ for any $x \in G$. Then by 2 Engel transitivity, the normal closure g_{n}^{G} is 2-Engel and hence by Remark 2.11 it is trivial, but g_{n} is in g_{n}^{G}, which is non-trivial. Therefore either $\left[g_{n}^{x}, g, g\right] \neq 1$ or $\left[g, g_{n}^{x}, g_{n}^{x}\right] \neq 1$, for some $x \in G$. Then either of the latest commutators is not in some normal subgroup N of G. This follows that $g_{1}, \ldots, g_{n} \notin N$, which gives the proof.

In 1967, B. Baumslag [3] introduced the notion of fully residually free groups and proved that a residually free group is fully residually free if and only if it is commutative transitive. A group G is commutative transitive, if $[x, y]=1$ and $[y, z]=1$ implies that $[x, z]=1$ for nontrivial elements x, y, z in G.

Here we show that Baumslag's theorem is also true in the case of 2-Engel transitive groups.

Theorem 2.12. Let G be a residually free group. Then G is fully residually free if and only if G is 2-Engel transitive.

Proof. Let G be a fully residually free group. Assume $[x, y, y]=[y, z, z]=1$, for every non-trivial elements $x, y, z \in G$. We must show that $[x, z, z]=1$. If $[x, z, z] \neq 1$, there exists a homomorphism $\phi: G \rightarrow F$, where F is a free group and

$$
\phi([x, z, z])=[\phi(x), \phi(z), \phi(z)] \neq 1, \phi(x) \neq 1, \phi(y) \neq 1, \phi(z) \neq 1
$$

Hence, $\phi([x, y, y]) \neq 1$ and $\phi([y, z, z]) \neq 1$ in F, which contradict the assumptions that $[x, y, y]=1$ and $[y, z, z]=1$ in G. Thus G is 2 -ET.

Conversely, without loss of generality we may assume that G is non-abelian. Also if G is non 2-Engel and residually free, then the result holds by Theorem 2.11(ii). Now, let G be a non-abelian 2-Engel residually free group. Then $[x, y, y]=1$ for all x, y in G and for some non-trivial elements $x_{0}, y_{0} \in G$, we have $\left[x_{0}, y_{0}\right] \neq 1$. Hence there is a homomorphism $\phi: G \rightarrow F$, where F is a
free group such that $\phi\left(\left[x_{0}, y_{0}\right]\right) \neq 1$. Thus

$$
\phi\left(\left[x_{0}, y_{0}\right]\right)=\left[\phi\left(x_{0}\right), \phi\left(y_{0}\right)\right] \neq 1 \Rightarrow \phi\left(x_{0}\right) \neq 1, \phi\left(y_{0}\right) \neq 1
$$

On the other hand, since F is free we must have $\phi\left(\left[x_{0}, y_{0}, y_{0}\right]\right) \neq 1$ in F, which contradicts that $\left[x_{0}, y_{0}, y_{0}\right]=1$ in G. Therefore G is not 2 -Engel and the required result is obtained from Theorem 2.11(ii), when we take χ to be the class of all free groups.

3. The number of 2 -Engelizers

As in the previous section, $E^{2}(G)$ denotes the set of all 2-Engelizers in the group G. Now for a given group G, one may ask about the size of $E^{2}(G)$. So our goal in this section is to study the possible values of $\left|E^{2}(G)\right|$. Note that in this section, we assume that the 2-Engelizer of each element of G is a subgroup. Indeed $x^{E_{G}^{2}(x)}$ is abelian, for every non-trivial element x of G.

One can easily check that G is 2-Engel group if and only if $\left|E^{2}(G)\right|=1$. Moreover, $Z_{2}(G) \subseteq \cap_{x \in G} E_{G}^{2}(x)$.

Lemma 3.1. A group G is the union of 2-Engelizers of all elements of $G \backslash Z_{2}(G)$, that is to say $G=\cup_{x \in G \backslash Z_{2}(G)} E_{G}^{2}(x)$.

Proof. Clearly, $\cup_{x \in G \backslash Z_{2}(G)} E_{G}^{2}(x) \subseteq G$. By the definition, if $g \in Z_{2}(G)$, then $g \in E_{G}^{2}(x)$ for every $x \in G$ and hence $g \in \cup_{x \in G \backslash Z_{2}(G)} E_{G}^{2}(x)$. In the case $g \in G \backslash Z_{2}(G)$, then clearly $g \in E_{G}^{2}(g)$ and so

$$
g \in \cup_{x \in G \backslash Z_{2}(G)} E_{G}^{2}(x)
$$

Therefore $G \subseteq \cup_{x \in G \backslash Z_{2}(G)} E_{G}^{2}(x)$ and the proof is complete.
Lemma 3.2. A group G can not be written as the union of two proper subgroups of G.

Proof. Suppose H and K are two proper subgroups of G such that $G=H \cup K$. Let $x \in H \backslash K$ and $y \in K \backslash H$. If $x y \in H$, then $x^{-1} x y=y \in H$, which gives a contradiction. Similarly, $x y$ can not be in K and hence the claim is proved.

Using the above lemmas we prove the following:
Theorem 3.3. Let G be any group. Then $\left|E^{2}(G)\right| \geq 4$.
Proof. Using Lemma 3.1, the group G is the union of its proper 2-Engelizers, i.e., $G=\cup_{x \in G \backslash Z_{2}(G)} E_{G}^{2}(x)$. If $\left|E^{2}(G)\right|=1$, then G is 2-Engel, which contradicts the assumption. If $\left|E^{2}(G)\right|=2$, then G is the proper subgroup of itself, which is impossible. Assume $\left|E^{2}(G)\right|=3$. Then $E^{2}(G)=\left\{G, E_{G}^{2}(x), E_{G}^{2}(y)\right\}$, where $E_{G}^{2}(x)$ and $E_{G}^{2}(y)$ are proper 2-Engelizers of G. Therefore $G=E_{G}^{2}(x) \cup$ $E_{G}^{2}(y)$, which contradicts Lemma 3.2. Hence $\left|E^{2}(G)\right| \geq 4$ and this completes the proof.

Part (i) of the following example shows that the lower bound obtained in the above theorem is attained. Also one notes that the number of 2-Engelizers of a given group is always less than or equal to the number of centralizers.
Example 3.4. (i) Consider $D_{16}=\left\langle a, b: a^{8}=b^{2}=1, b a b=a^{-1}\right\rangle$, the dihedral group of order 16. It can be easily calculated that all 2-Engelizers of D_{16} are precisely as follows:

$$
\begin{gathered}
D_{16}, E_{D_{16}}^{2}(a)=\langle a\rangle, E_{D_{16}}^{2}(b)=\left\{1, a^{2}, a^{4}, a^{6}, b, a^{2} b, a^{4} b, a^{6} b\right\}, \\
E_{D_{16}}^{2}(a b)=\left\{1, a^{2}, a^{4}, a^{6}, a b, a^{3} b, a^{5} b, a^{7} b\right\} .
\end{gathered}
$$

Hence $\left|E^{2}\left(D_{16}\right)\right|=4$.
(ii) All 2-Engelizers of the symmetric group $S_{3}=\left\langle a, b: b^{3}=a^{2}=1, a b a^{-1}=\right.$ $\left.b^{-1}\right\rangle$ are as follows:
$S_{3}, E_{S_{3}}^{2}(a)=\{1, a\}, E_{S_{3}}^{2}(b)=\left\{1, b, b^{2}\right\}, E_{S_{3}}^{2}(a b)=\{1, a b\}, E_{S_{3}}^{2}\left(a b^{2}\right)=\left\{1, a b^{2}\right\}$.
Therefore $\left|E^{2}\left(S_{3}\right)\right|=5$.
Lemma 3.5. Let $\left|E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)\right|=p$ for some non second central element x of a group G and p be an any prime number. For all $y \in G \backslash Z_{2}(G)$, if $E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)=E_{G / Z_{2}(G)}^{2}\left(y Z_{2}(G)\right)$, then

$$
E_{G}^{2}(x)=E_{G}^{2}(y)
$$

Proof. Clearly,

$$
E_{G}^{2}(x) / Z_{2}(G) \leq E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)
$$

Assume that $E_{G}^{2}(x) / Z_{2}(G)<E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)$. As $\left|E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)\right|=p$ and $\left|E_{G}^{2}(x) / Z_{2}(G)\right|$ divides $\left|E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)\right|$, we get $\left|E_{G}^{2}(x) / Z_{2}(G)\right|=1$ and so $E_{G}^{2}(x)=Z_{2}(G)$. Thus $x \in Z_{2}(G)$ which is a contradiction. Therefore $E_{G}^{2}(x) / Z_{2}(G)=E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)$. Clearly for all $y \in G \backslash Z_{2}(G)$,

$$
E_{G}^{2}(y) / Z_{2}(G) \leq E_{G / Z_{2}(G)}^{2}\left(y Z_{2}(G)\right)=E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)
$$

Hence $\left|E_{G / Z_{2}(G)}^{2}\left(x Z_{2}(G)\right)\right|=\left|E_{G}^{2}(y) / Z_{2}(G)\right|$ and so

$$
E_{G}^{2}(y) / Z_{2}(G)=E_{G}^{2}(x) / Z_{2}(G)
$$

Thus

$$
\frac{E_{G}^{2}(x)}{Z_{2}(G)}=\frac{E_{G}^{2}(y)}{Z_{2}(G)}=\left\{Z_{2}(G), x_{1} Z_{2}(G), x_{2} Z_{2}(G), \ldots, x_{p-1} Z_{2}(G)\right\}
$$

where $\left\{x_{1}, \ldots, x_{p-1}\right\} \in E_{G}^{2}(x) \cap E_{G}^{2}(y) \backslash Z_{2}(G)$. So $E_{G}^{2}(x)=E_{G}^{2}(y)$.
Characterization of finite groups in terms of the number of distinct centralizers has been an interesting topic of research in recent years (see [1, 2, 4]). In [4] Belcastro and Sherman proved that G is 4 -centralizer if and only if $G / Z(G) \cong C_{2} \times C_{2}$ and G is 5-centralizer if and only if $G / Z(G) \cong C_{3} \times C_{3}$ or S_{3}. Here we calculate $\left|E^{2}(G)\right|$ in the case of $G / Z_{2}(G) \cong C_{p} \times C_{p}$ for any prime number p.

Theorem 3.6. Let G be a group such that $G / Z_{2}(G) \cong C_{p} \times C_{p}$ for any prime number p. Then $\left|E^{2}(G)\right|=p+2$.
Proof. Suppose that $G / Z_{2}(G) \cong C_{p} \times C_{p}$, and hence

$$
\frac{G}{Z_{2}(G)}=\left\langle x Z_{2}(G), y Z_{2}(G): x^{p}, y^{p},[x, y] \in Z_{2}(G)\right\rangle
$$

Clearly any non-trivial proper subgroup $H / Z_{2}(G)$ of $G / Z_{2}(G)$ has order p. Therefore $H=Z_{2}(G) \cup h_{1} Z_{2}(G) \cup h_{2} Z_{2}(G) \cup \cdots \cup h_{p-1} Z_{2}(G)$, where $h_{i} \in$ $H \backslash Z_{2}(G)$ for all $1 \leq i \leq p-1$. Thus the proper subgroups of G properly containing $Z_{2}(G)$ are one of the following forms:

$$
\begin{gathered}
Z_{2}(G) \cup x Z_{2}(G) \cup x^{2} Z_{2}(G) \cup \cdots \cup x^{p-1} Z_{2}(G) \\
Z_{2}(G) \cup y Z_{2}(G) \cup y^{2} Z_{2}(G) \cup \cdots \cup y^{p-1} Z_{2}(G) \text { or }
\end{gathered}
$$

$Z_{2}(G) \cup x^{i} y^{j} Z_{2}(G)$, where $1 \leq i, j \leq p-1$. Note that, for all $1 \leq i, j \leq p-1$, it is easy to see that $x^{i} y^{j} Z_{2}(G)=x^{j} y^{i} Z_{2}(G)$ since $[x, y] \in Z_{2}(G)$. Hence we have only $p-1$ proper subgroups of G of latest type. For simplicity, we denote all the above subgroups by $H_{1}, H_{2}, \ldots, H_{p+1}$, respectively. Now we show that $H_{1}, H_{2}, \ldots, H_{p+1}$ are the only proper 2-Engelizers of G. Let $a \in G \backslash Z_{2}(G)$, then $a Z_{2}(G)=b Z_{2}(G)$ for some

$$
b \in\left\{x, \ldots, x^{p-1}, y, \ldots, y^{p-1}, x y, x y^{2}, \ldots, x y^{p-1}, \ldots, x^{p-1} y, \ldots, x^{p-1} y^{p-1}\right\}
$$

Therefore $E_{G / Z_{2}(G)}^{2}\left(a Z_{2}(G)\right)=E_{G / Z_{2}(G)}^{2}\left(b Z_{2}(G)\right)$ and Lemma 3.5 implies that $E_{G}^{2}(a)=E_{G}^{2}(b)$. Again let $b \in H_{i} \backslash Z_{2}(G)$ then $E_{G}^{2}(b) \subseteq \cup_{j=1}^{p+1} H_{j}$, as H_{1}, \ldots, H_{p+1} are the only proper subgroups of G. Also $b \in E_{G}^{2}(b)$, and hence $E_{G}^{2}(b) \neq$ H_{j}, for $1 \leq i \neq j \leq p+1$. Therefore $E_{G}^{2}(b)=H_{i}$, and $H_{1}, H_{2}, \ldots, H_{p+1}$ are the only proper 2-Engelizers of G and so $\left|E^{2}(G)\right|=p+2$.

Acknowledgments. The authors would like to thank the referee for the helpful suggestions, which made the article more readable.

References

[1] A. Abdollahi, S. M. J. Amiri, and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (2007), no. 1, 43-57.
[2] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2000), no. 2, 139-146.
[3] B. Baumslag, Residually free groups, Proc. Lond. Math. Soc. 17 (1967), no. 3, 402-418.
[4] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (1994), no. 5, 366-374.
[5] L. Ciobanu, B. Fine, and G. Rosenberger, Classes of groups generalizing a theorem of Benjamin Baumslag, Preprint.
[6] C. Delizia, P. Moravec, and C. Nicotera, Finite groups in which some property of twogenerator subgroups is transitive, Bull. Aust. Math. Soc. 75 (2007), no. 2, 313-320.
[7] The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.4.12, www.gapsystem.org, 2008.
[8] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Parts 1 and 2, Springer-Verlag, 1972.

Mohammad Reza R. Moghaddam
Department of Mathematics
Khayyam University
AND
Centre of Excellence in Analysis on Algebraic Structures
Ferdowsi University of Mashhad
Mashhad, Iran
E-mail address: rezam@ferdowsi.um.ac.ir
Mohammad Amin Rostamyari
International Campus, Faculty of Mathematical Sciences
Ferdowsi University of Mashhad
Mashhad, Iran
E-mail address: rostamyari@gmail.com

[^0]: Received October 23, 2014; Revised December 17, 2014.
 2010 Mathematics Subject Classification. Primary 20F19, 20E06, 20B08; Secondary 20F99, 20E70.

 Key words and phrases. 2-ET group, CSE^{2}-group, residually χ-group, fully residually χ-group, 2-Engelizer subgroup.

