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2-ENGELIZER SUBGROUP OF
A 2-ENGEL TRANSITIVE GROUPS

MoHAMMAD REzZA R. MOGHADDAM AND MOHAMMAD AMIN ROSTAMYARI

ABSTRACT. A general notion of x-transitive groups was introduced by C.
Delizia et al. in [6], where X is a class of groups. In [5], Ciobanu, Fine and
Rosenberger studied the relationship among the notions of conjugately
separated abelian, commutative transitive and fully residually x-groups.

In this article we study the concept of 2-Engel transitive groups and
among other results, its relationship with conjugately separated 2-Engel
and fully residually x-groups are established. We also introduce the no-
tion of 2-Engelizer of the element x in G and denote the set of all 2-
Engelizers in G by E2(G). Then we construct the possible values of
E2(G).

1. Introduction

An element x of a group G is called a right Engel element, if for every y € G,
there exists a natural number n = n(x,y) such that [z,,y] = 1. If n can be
chosen independent of y, then z is called a right n-Engel element or simply a
bounded right Engel element. We denote the sets of all right Engel elements
and bounded right Engel elements of G by R(G) and R(G), respectively.

An element x of G is called a left Engel element, if for every y € G, there
exists a natural number n = n(z,y) such that [y, ,z] = 1. If n can be chosen
independent of y, then x is called a left n-Engel element or simply a bounded
left Engel element. We denote the sets of all left Engel elements and bounded
left Engel elements of G by L(G) and L(G), respectively. For any positive
integer n, a group G is called an n-Engel group, if [z, ,y] = [y, »x] = 1 for all
z,y € G.

A proper subset E of a group G is said to be n-Engel set, whenever [z, ,y] =
[y, nz] =1 for all z,y € E.

Let x be a class of groups. Then a group G is residually x if for every
non-trivial element g € G, there is a homomorphism ¢ : G — H, where H
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is a x-group such that ¢(g) # 1. Also a group G is fully residually x if for
finitely many non-trivial elements g1, . .., g, in G there exists a homomorphism
¢ : G — H where H is a x-group such that ¢(g;) # 1 for alli=1,...,n.

Definition 1.1. A subgroup H of a group G is called malnormal or conjugately
separated, if HN H* =1 for all z € G\H.

It is clear that the intersection of a family of malnormal subgroups of a given
group G is again malnormal, which allows us to define the malnormal closure
of a subgroup H of G. Clearly the intersection of all malnormal subgroups of
G contains H is malnormal.

2. 2-Engel transitive groups

A group G is called a conjugately separated 2-Engel (henceforth CSEQ—group)
if all of its maximal 2-Engel subgroups are malnormal. In the following, we
discuss the notion of 2-Engel transitive group and then give its relationship
with CSE?-group and fully residually y-groups.

Definition 2.1. (a) A group G is 2-Engel transitive (henceforth 2-ET), when
[z,y,y] = 1 and [y,z,z] = 1 imply that [z,2z,2z] = 1 for every non-trivial
elements z,y, z in G.

(b) For a given element z of G, we call

Eg(z)={yeG:lx,y,y] =1, [y,z,2] =1}

to be the set of 2-Fngelizer of x in G. The family of all 2-Engelizers in G is
denoted by E?(G) and |E?(G)| denotes the number of distinct 2-Engelizers in
G.

As an example consider Q15 = {(a,b: a® = 1, a* = b*, b~lab = a71), the
Quaternion group of order 16 and take the element b in Q16. Then one can
easily check that the 2-Engelizer set of b is as follows:

Eém‘ (b) = {1’ a’2’ a4a a6’ b, a2b; a4b, GGb}.
The following lemma is useful for our further investigations.

Lemma 2.2. Let G be a 2-ET group. Then 2-Engelizer of each non-trivial
element of G is 2-Engel set.

Proof. Let G be a 2-Engel transitive group, then [z,y,y] =1 and [y, z,2] =1

imply [z, z,z] = 1 for all non-trivial elements z,y,z in G. Clearly using the
definition, for y, 2z € FZ(x), it follows that [z,y,y] =1 and [y, 2, 2] = 1. Thus
EZ%(z) is 2-Engel set. O

We remark that for the identity element e of G, we have G = E%(e) and
hence G € E?(G). Clearly in general, the 2-Engelizer of each non-trivial ele-
ment of an arbitrary group G does not form a subgroup. The following example
shows our claim.
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Example 2.3. Let G be a finitely presented group of the following form:
G - <a15a2;a’35a4 : ag = ai = 17 [a1;a2] = 17 [a1;a3] = Q4,
[a1)a4] - 1) [a2)a3] = 1) [a23a4] = az, [a3aa/4] = 1)
Using GAP [7] implies that G is an infinite group. One can easily check that
G is not 2-ET, as [a2,a1,a1] = 1 and [a1,a4,a4] = 1, while [a2, a4, a4] = as.
Moreover, Eé(al) is not a subgroup of G, since it is easily calculated that
as, a3 € E%(a1) but asas & E%(ay).

Here, we state an interesting property of 2-Engel transitive groups.

Proposition 2.4. Let G be a 2-ET group. Then 2B&@) g nilpotent of class
at most 3, for every non-trivial element x of G.
Proof. Note that 27¢(®) = (2¥ : y € EZ(z)). Now, for every y € EZ(z);

[2Y, 2] = [z[z,y], 2] = [x,y,2] = 1.
On the other hand [2¥,z,z] = 1 and [z, 2%, 2*] = 1 imply that [2¥, 2% 2*] = 1,
as G is 2-ET. Hence z7&(®) is 2-Engel group and so nilpotent of class at most
3. O

Now, we discuss the condition under which the 2-Engelizer of each non-trivial
element of G is a subgroup.

Theorem 2.5. Let G be an arbitrary group. Then the set of each 2-Engelizer
of a non-trivial element in G forms a subgroup if and only if the group 2B& (@)
is abelian for all non-trivial element x of G.

Proof. Let y € EZ(x). Then one can easily see that

vy ta,2] = [[z,y)Y 2] = [z ylle, v,y Y, 2]
= [z, yl[z, v, 4], 2]
= [':I"’y?‘r] = ]‘5

and also
1

oy oy T =1y, 2Y Ly =y 2lly. 2,y ]y

= [y, 2]ly.x, 917"y~ ]
=y =y =1
Thus y=! € E%(x).
Now, for every y, z € EZ(z) we have;
lyz, z, z] = [[y, z]*[2, 2], 2]

= [y, )7, 2]z, z, 2]

= [ly. «]ly, =, 2], 2]

=

y? x? Z7 x] [Zﬁz] *
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Clearly, using Witt identity and the same technique in the proof of Theorem
7.13 in [8], we may have [y, x, z, 2] = 1 if and only if 2P&(®) ig abelian. Similarly,
[z,yz,yz] = 1 and the proof is complete. O

The proof of the following lemma is a routine argument by using Zorn’s
Lemma.

Lemma 2.6. Every 2-Engel subgroup H of a given group G is contained in a
maximal 2-Engel subgroup.

The following fact is needed in proving our main result.

Proposition 2.7. Let G be a CSE*-group. Then every non-trivial 2-Engel
normal subgroup of G is mazimal.

Proof. Let G be a CSE*-group and K a non-trivial 2-Engel normal subgroup
of G. Then by Lemma 2.6, K is contained in a maximal 2-Engel subgroup M
of G. Let 1 # k € K, then for each € G we have k¥ € M. Since G is CSE?,
it follows that M is malnormal and therefore x € M. Thus G = M, which
implies that K is maximal. (I

Using the above proposition, we obtain the following useful result.

Corollary 2.8. Let G be a CSE®-group. Then every 2-Engel normal subgroup
of G is equal to the second centre of G.

Lemma 2.9. Let x be a class of groups such that each non-2-Engel group
H e x is CSE*-group. Let N be a 2-Engel normal subgroup of a non-2-Engel
residually x-group G. Then N 1is contained in the second centre of G.

Proof. Let G € y, then by the assumption G is CSE? and therefore by Corollary
2.8, every 2-Engel normal subgroup of G is equal to the second centre of G.
Now let N be a 2-Engel normal subgroup of a non-2-Engel residually y-group
G so that N is not contained in the second centre of G. Then there exist
elements n € N and g1,g2 € G such that [n,g1,¢2] = « # 1, say. Since G is
residually x, there exists a normal subgroup N, of G such that G/N, € x and
x € N,. Clearly NN, /N, is a non-trivial 2-Engel normal subgroup of G/N,.
Then NN, /N, = Z2(G/N,) and this contradicts that « ¢ N,. Therefore N is
contained in the second centre of G. (|

Remark 2.10. Let G be a 2-ET and non 2-Engel group, then it is clear that
Z5(G) = 1. So it follows from the above lemma that any normal 2-Engel
subgroup of G must be trivial.

Now we study the relationship between the non 2-Engel CSE?, 2-ET and
fully residually x-groups.

Theorem 2.11. Let x be a class of groups such that each non 2-Engel x-group
is CSE? and G be a non 2-Engel and residually x-group. Then

(i) G is a CSE?.

(i) If G is a 2-Engel transitive, then G is fully residually x-group.
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Proof. (i) Let G be a non 2-Engel group. Then there exist x,y € G such that
[z,y,y] # 1. On the other hand, there is a normal subgroup N of G, for which
[z,y,y] € N and G/N € x, as G is residually y. Clearly, ,y ¢ N and G/N
is non 2-Engel. Hence G/N is CSE? and so every maximal 2-Engel subgroup
in G/N is malnormal. Suppose M /N is a maximal 2-Engel subgroup of G/N.
Then 2N (&)9N = N, for all gN € %\% This implies that M N MY =1 for
every g € G\M, and hence G is CSE?,

(ii) Let G be a 2-ET, non 2-Engel and residually x-group. Then we show that
G is fully residually x. In order to do this, we prove that for given non-trivial

elements g1, ..., g, in G there is a normal subgroup N such that g1, ..., g, are
not in N and G/N € x. This is equivalent to showing that given non-trivial
elements g1,...,g, € G there exists a non-trivial element g € G such that for

any normal subgroup N of G if g ¢ N, then g; ¢ N fori =1,...,n. We proceed
by induction on n. This is true for n = 1, as G is residually xy. Now assume the
result holds for n — 1, if [¢7,9,9] = 1 = [g, 9%, ¢7] for any € G. Then by 2-
Engel transitivity, the normal closure gg is 2-Engel and hence by Remark 2.11
it is trivial, but g, is in g&, which is non-trivial. Therefore either [¢Z, g, g] # 1
or [g,9%,9%] # 1, for some z € G. Then either of the latest commutators is
not in some normal subgroup N of G. This follows that g1,..., g, ¢ N, which
gives the proof. O

In 1967, B. Baumslag [3] introduced the notion of fully residually free groups
and proved that a residually free group is fully residually free if and only if it
is commutative transitive. A group G is commutative transitive, if [z,y] = 1
and [y, z] = 1 implies that [z, z] = 1 for nontrivial elements z,y, z in G.

Here we show that Baumslag’s theorem is also true in the case of 2-Engel
transitive groups.

Theorem 2.12. Let G be a residually free group. Then G is fully residually
free if and only if G is 2-FEngel transitive.

Proof. Let G be a fully residually free group. Assume [z,y,y] = [y, 2, 2] = 1,
for every non-trivial elements z,y,z € G. We must show that [z,z,2] = 1. If
[x, z, 2] # 1, there exists a homomorphism ¢ : G — F, where F is a free group
and

O([z, z,2]) = [p(x), 6(2), 6(2)] # 1, ¢(x) # 1, ¢(y) # 1, ¢(2) # 1.

Hence, ¢([x,y,y]) # 1 and ¢([y, 2,2]) # 1 in F', which contradict the assump-
tions that [z,y,y] =1 and [y, 2,2] = 1 in G. Thus G is 2-ET.

Conversely, without loss of generality we may assume that G is non-abelian.
Also if G is non 2-Engel and residually free, then the result holds by Theorem
2.11(ii). Now, let G be a non-abelian 2-Engel residually free group. Then
[z,y,y] = 1 for all z,y in G and for some non-trivial elements xo,yo € G, we
have [zg,y0] # 1. Hence there is a homomorphism ¢ : G — F, where F' is a
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free group such that ¢([xg,yo]) # 1. Thus

d([ro, yo]) = [¢(x0), d(y0)] # 1 = ¢(w0) # 1, ¢(yo) # 1.

On the other hand, since F is free we must have ¢([xo, Yo, ¥o]) # 1 in F, which
contradicts that [zg,yo,y0] = 1 in G. Therefore G is not 2-Engel and the
required result is obtained from Theorem 2.11(ii), when we take x to be the
class of all free groups. O

3. The number of 2-Engelizers

As in the previous section, E?(G) denotes the set of all 2-Engelizers in the
group G. Now for a given group G, one may ask about the size of E?(G). So
our goal in this section is to study the possible values of |E%(G)|. Note that in
this section, we assume that the 2-Engelizer of each element of G is a subgroup.
Indeed z5&(®) is abelian, for every non-trivial element x of G.

One can easily check that G is 2-Engel group if and only if |[E?(G)| = 1.
Moreover, Z>(G) C NyecEE(x).

Lemma 3.1. A group G is the union of 2-Engelizers of all elements of
G\Z3(G), that is to say G = Uzecn z,(c) E& (2).

Proof. Clearly, Uyeq\ z,(c) Eé:(z) € G. By the definition, if g € Z5(G), then
g € E%(x) for every 2 € G and hence g € Uyeqz,(c)E&(2). In the case
g € G\Z5(Q), then clearly g € E%(g) and so

g€ Uxec\zz(c;)Eg:(iE)-

Therefore G C Uyea z,(q)EE () and the proof is complete. O

Lemma 3.2. A group G can not be written as the union of two proper subgroups

of G.

Proof. Suppose H and K are two proper subgroups of G such that G = HUK.
Let v € H\K and y € K\H. If 2y € H, then 2~ 'xy = y € H, which gives a
contradiction. Similarly, xy can not be in K and hence the claim is proved. [

Using the above lemmas we prove the following:
Theorem 3.3. Let G be any group. Then |E*(G)| > 4.

Proof. Using Lemma 3.1, the group G is the union of its proper 2-Engelizers,
ie, G = Uzeg\Z2(G)Eé(l‘). If |[E%(G)| = 1, then G is 2-Engel, which contra-
dicts the assumption. If |E?(G)| = 2, then G is the proper subgroup of itself,
which is impossible. Assume |E?(G)| = 3. Then E*(G) = {G, E%(z), E%(y)},
where EZ(x) and EZ(y) are proper 2-Engelizers of G. Therefore G = E%(z) U
EZ%(y), which contradicts Lemma 3.2. Hence |E?(G)| > 4 and this completes
the proof. O
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Part (i) of the following example shows that the lower bound obtained in
the above theorem is attained. Also one notes that the number of 2-Engelizers
of a given group is always less than or equal to the number of centralizers.
Example 3.4. (i) Consider Dig = (a,b: a® = b? = 1,bab = a~ '), the dihedral
group of order 16. It can be easily calculated that all 2-Engelizers of Dq¢ are
precisely as follows:

Dys, E%w (a) = {a), E%w (b) = {1,a? a*,a® b, a®b, a’b, a®b},
E3}, (ab) = {1,a a",a® ab,a®b,a’b,a"b}.
Hence |E?(Dyg)| = 4.
(ii) All 2-Engelizers of the symmetric group S3 = (a,b: b = a®> = 1,aba"! =
b=1) are as follows:
S3, B3, (a) ={1,a}, B3, (b) ={1,b,0%}, E§,(ab) ={1,ab}, B}, (ab®) ={1,ab’}.
Therefore |E%(S3)| = 5.

Lemma 3.5. Let |Eé/Z2(G)(zZ2(G))| = p for some non second central element
x of a group G and p be an any prime number. For all y € G\Z2(G), if

Eé/ZQ(G) (Z2(G)) = Eé/Z2(G)(yZ2(G)), then
B (x) = Eg(y).
Proof. Clearly,
E&(2)/22(G) < EZ 7,6y (2 22(@)).
Assume that FZ(z)/Z2(G) < Eé/ZQ(G)(:cZQ(G)). As |Eé/Z2(G)(:cZ2(G))| =p
and |EZ(z)/Z2(G)| divides |Eé/z2(c)(xZ2(G))|, we get |E4(x)/Z2(G)| = 1
and so EZ(z) = Z5(G). Thus z € Z>(G) which is a contradiction. Therefore
E¢(2)/22(G) = B, (y(222(G)). Clearly for all y € G\Z>(G),
E&(Y)/22(G) < EZ 7,00y Z2(G)) = EZ 7, (2 22(@)).
Hence |EZ, ;) (222(G))| = |EZ(y)/Z2(G)| and so

E¢(y)/22(G) = E¢(x)/Z2(G).

Thus
gj((é; = ZG((Gy; ={2:(G),2125(G), 22 Z5(G), . .., xp—1Z2(G)},
where {z1,...,2p_1} € E&(z) N E&(y)\Z2(G). So E&(x) = E(y). 0

Characterization of finite groups in terms of the number of distinct central-
izers has been an interesting topic of research in recent years (see [1, 2, 4]).
In [4] Belcastro and Sherman proved that G is 4-centralizer if and only if
G/Z(G) = Cy x Cy and G is 5-centralizer if and only if G/Z(G) = C3 x Cs or
Ss. Here we calculate | E%(G)| in the case of G/Z2(G) = C,, x C,, for any prime
number p.
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Theorem 3.6. Let G be a group such that G/Z3(G) = Cp x C,, for any prime
number p. Then |E*(G)| =p + 2.

Proof. Suppose that G/Z>(G) = C}, x Cp, and hence

G
—— = (2Z5(Q),yZ>(Q) : 2P, y? Z5(@)).
Z2(G> <-T 2( )ay 2( ) Y ,[-T,y]e 2( )>
Clearly any non-trivial proper subgroup H/Z3(G) of G/Z2(G) has order p.
Therefore H = ZQ(G) U h1Z2(G) U hQZQ(G) u---u hp_1Z2(G), where h; €
H\Z5(G) for all 1 < ¢ < p — 1. Thus the proper subgroups of G properly
containing Z5(G) are one of the following forms:

Z5(G) U zZo(G) U2 Zo(G) U --- U aP~ 1 Zy(G);

Z3(G)UyZa(G) Uy Za(G) U --- UyP 1 Z3(G) or
Z5(G) U 'y Z5(G), where 1 < i,j < p — 1. Note that, for all 1 <i,j <p —1,
it is easy to see that x'y! Z>(G) = 2’y'Z2(Q) since [z,y] € Z2(G). Hence we
have only p — 1 proper subgroups of G of latest type. For simplicity, we denote
all the above subgroups by Hi, Ho, ..., H,11, respectively. Now we show that
Hy,Hs,...,Hyt1 are the only proper 2-Engelizers of G. Let a € G\Z2(G),
then aZ5(G) = bZ3(G) for some

p—1 p—1 2 p—1 p—1 p—1 p—1
be{x,..., 2P Ly, Y ey, ayt, a2 Ty, e P

Therefore Eé/z2(c)(aZ2 (@) = Eé/z2(c)(bZ2(G)) and Lemma 3.5 implies that
EZ%(a) = EZ(b). Again let b € H;\Z5(G) then E%(b) C UPX 1 H;, as Hy, ...,
H, 11 are the only proper subgroups of G. Also b € EZ(b), and hence E%(b) #
Hj, for 1 <i# j <p-+ 1. Therefore E%(b) = H;, and Hy, Hs, ..., Hpq are
the only proper 2-Engelizers of G and so |E?(G)| = p + 2. O
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