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2-ENGELIZER SUBGROUP OF

A 2-ENGEL TRANSITIVE GROUPS

Mohammad Reza R. Moghaddam and Mohammad Amin Rostamyari

Abstract. A general notion of χ-transitive groups was introduced by C.
Delizia et al. in [6], where χ is a class of groups. In [5], Ciobanu, Fine and
Rosenberger studied the relationship among the notions of conjugately
separated abelian, commutative transitive and fully residually χ-groups.

In this article we study the concept of 2-Engel transitive groups and
among other results, its relationship with conjugately separated 2-Engel
and fully residually χ-groups are established. We also introduce the no-
tion of 2-Engelizer of the element x in G and denote the set of all 2-

Engelizers in G by E2(G). Then we construct the possible values of
|E2(G)|.

1. Introduction

An element x of a group G is called a right Engel element, if for every y ∈ G,
there exists a natural number n = n(x, y) such that [x, ny] = 1. If n can be
chosen independent of y, then x is called a right n-Engel element or simply a
bounded right Engel element. We denote the sets of all right Engel elements
and bounded right Engel elements of G by R(G) and R(G), respectively.

An element x of G is called a left Engel element, if for every y ∈ G, there
exists a natural number n = n(x, y) such that [y, nx] = 1. If n can be chosen
independent of y, then x is called a left n-Engel element or simply a bounded

left Engel element. We denote the sets of all left Engel elements and bounded
left Engel elements of G by L(G) and L(G), respectively. For any positive
integer n, a group G is called an n-Engel group, if [x, ny] = [y, nx] = 1 for all
x, y ∈ G.

A proper subset E of a group G is said to be n-Engel set, whenever [x, ny] =
[y, nx] = 1 for all x, y ∈ E.

Let χ be a class of groups. Then a group G is residually χ if for every
non-trivial element g ∈ G, there is a homomorphism φ : G → H , where H
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is a χ-group such that φ(g) 6= 1. Also a group G is fully residually χ if for
finitely many non-trivial elements g1, . . . , gn in G there exists a homomorphism
φ : G → H where H is a χ-group such that φ(gi) 6= 1 for all i = 1, . . . , n.

Definition 1.1. A subgroupH of a group G is called malnormal or conjugately
separated, if H ∩Hx = 1 for all x ∈ G\H .

It is clear that the intersection of a family of malnormal subgroups of a given
group G is again malnormal, which allows us to define the malnormal closure

of a subgroup H of G. Clearly the intersection of all malnormal subgroups of
G contains H is malnormal.

2. 2-Engel transitive groups

A group G is called a conjugately separated 2-Engel (henceforth CSE2-group)
if all of its maximal 2-Engel subgroups are malnormal. In the following, we
discuss the notion of 2-Engel transitive group and then give its relationship
with CSE2-group and fully residually χ-groups.

Definition 2.1. (a) A group G is 2-Engel transitive (henceforth 2-ET), when
[x, y, y] = 1 and [y, z, z] = 1 imply that [x, z, z] = 1 for every non-trivial
elements x, y, z in G.

(b) For a given element x of G, we call

E2
G(x) = {y ∈ G : [x, y, y] = 1, [y, x, x] = 1}

to be the set of 2-Engelizer of x in G. The family of all 2-Engelizers in G is
denoted by E2(G) and |E2(G)| denotes the number of distinct 2-Engelizers in
G.

As an example consider Q16 = 〈a, b : a8 = 1, a4 = b4, b−1ab = a−1〉, the
Quaternion group of order 16 and take the element b in Q16. Then one can
easily check that the 2-Engelizer set of b is as follows:

E2
Q16

(b) = {1, a2, a4, a6, b, a2b, a4b, a6b}.

The following lemma is useful for our further investigations.

Lemma 2.2. Let G be a 2-ET group. Then 2-Engelizer of each non-trivial

element of G is 2-Engel set.

Proof. Let G be a 2-Engel transitive group, then [x, y, y] = 1 and [y, z, z] = 1
imply [x, z, z] = 1 for all non-trivial elements x, y, z in G. Clearly using the
definition, for y, z ∈ E2

G(x), it follows that [z, y, y] = 1 and [y, z, z] = 1. Thus
E2

G(x) is 2-Engel set. �

We remark that for the identity element e of G, we have G = E2
G(e) and

hence G ∈ E2(G). Clearly in general, the 2-Engelizer of each non-trivial ele-
ment of an arbitrary group G does not form a subgroup. The following example
shows our claim.
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Example 2.3. Let G be a finitely presented group of the following form:

G = 〈a1, a2, a3, a4 : a33 = a34 = 1, [a1, a2] = 1, [a1, a3] = a4,

[a1, a4] = 1, [a2, a3] = 1, [a2, a4] = a2, [a3, a4] = 1〉.

Using GAP [7] implies that G is an infinite group. One can easily check that
G is not 2-ET, as [a2, a1, a1] = 1 and [a1, a4, a4] = 1, while [a2, a4, a4] = a2.
Moreover, E2

G(a1) is not a subgroup of G, since it is easily calculated that
a2, a3 ∈ E2

G(a1) but a2a3 6∈ E2
G(a1).

Here, we state an interesting property of 2-Engel transitive groups.

Proposition 2.4. Let G be a 2-ET group. Then xE2

G
(x) is nilpotent of class

at most 3, for every non-trivial element x of G.

Proof. Note that xE2

G
(x) = 〈xy : y ∈ E2

G(x)〉. Now, for every y ∈ E2
G(x);

[xy, x] = [x[x, y], x] = [x, y, x] = 1.

On the other hand [xy, x, x] = 1 and [x, xz , xz ] = 1 imply that [xy, xz , xz] = 1,

as G is 2-ET. Hence xE2

G
(x) is 2-Engel group and so nilpotent of class at most

3. �

Now, we discuss the condition under which the 2-Engelizer of each non-trivial
element of G is a subgroup.

Theorem 2.5. Let G be an arbitrary group. Then the set of each 2-Engelizer

of a non-trivial element in G forms a subgroup if and only if the group xE2

G
(x)

is abelian for all non-trivial element x of G.

Proof. Let y ∈ E2
G(x). Then one can easily see that

[y−1, x, x] = [[x, y]y
−1

, x] = [[x, y][x, y, y−1], x]

= [[x, y][x, y, y]−y−1

, x]

= [x, y, x] = 1,

and also

[x, y−1, y−1] = [[y, x]y
−1

, y−1] = [[y, x][y, x, y−1], y−1]

= [[y, x][y, x, y]−y−1

, y−1]

= [y, x, y−1] = [y, x, y]−y−1

= 1.

Thus y−1 ∈ E2
G(x).

Now, for every y, z ∈ E2
G(x) we have;

[yz, x, x] = [[y, x]z [z, x], x]

= [[y, x]z , x][z,x][z, x, x]

= [[y, x][y, x, z], x][z,x]

= [y, x, z, x][z,x].
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Clearly, using Witt identity and the same technique in the proof of Theorem

7.13 in [8], we may have [y, x, z, x] = 1 if and only if xE2

G
(x) is abelian. Similarly,

[x, yz, yz] = 1 and the proof is complete. �

The proof of the following lemma is a routine argument by using Zorn’s
Lemma.

Lemma 2.6. Every 2-Engel subgroup H of a given group G is contained in a

maximal 2-Engel subgroup.

The following fact is needed in proving our main result.

Proposition 2.7. Let G be a CSE2-group. Then every non-trivial 2-Engel
normal subgroup of G is maximal.

Proof. Let G be a CSE2-group and K a non-trivial 2-Engel normal subgroup
of G. Then by Lemma 2.6, K is contained in a maximal 2-Engel subgroup M
of G. Let 1 6= k ∈ K, then for each x ∈ G we have kx ∈ M . Since G is CSE2,
it follows that M is malnormal and therefore x ∈ M . Thus G = M , which
implies that K is maximal. �

Using the above proposition, we obtain the following useful result.

Corollary 2.8. Let G be a CSE2-group. Then every 2-Engel normal subgroup

of G is equal to the second centre of G.

Lemma 2.9. Let χ be a class of groups such that each non-2-Engel group
H ∈ χ is CSE2-group. Let N be a 2-Engel normal subgroup of a non-2-Engel
residually χ-group G. Then N is contained in the second centre of G.

Proof. LetG ∈ χ, then by the assumptionG is CSE2 and therefore by Corollary
2.8, every 2-Engel normal subgroup of G is equal to the second centre of G.
Now let N be a 2-Engel normal subgroup of a non-2-Engel residually χ-group
G so that N is not contained in the second centre of G. Then there exist
elements n ∈ N and g1, g2 ∈ G such that [n, g1, g2] = x 6= 1, say. Since G is
residually χ, there exists a normal subgroup Nx of G such that G/Nx ∈ χ and
x 6∈ Nx. Clearly NNx/Nx is a non-trivial 2-Engel normal subgroup of G/Nx.
Then NNx/Nx = Z2(G/Nx) and this contradicts that x 6∈ Nx. Therefore N is
contained in the second centre of G. �

Remark 2.10. Let G be a 2-ET and non 2-Engel group, then it is clear that
Z2(G) = 1. So it follows from the above lemma that any normal 2-Engel
subgroup of G must be trivial.

Now we study the relationship between the non 2-Engel CSE2, 2-ET and
fully residually χ-groups.

Theorem 2.11. Let χ be a class of groups such that each non 2-Engel χ-group
is CSE2 and G be a non 2-Engel and residually χ-group. Then

(i) G is a CSE2.

(ii) If G is a 2-Engel transitive, then G is fully residually χ-group.
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Proof. (i) Let G be a non 2-Engel group. Then there exist x, y ∈ G such that
[x, y, y] 6= 1. On the other hand, there is a normal subgroup N of G, for which
[x, y, y] 6∈ N and G/N ∈ χ, as G is residually χ. Clearly, x, y 6∈ N and G/N
is non 2-Engel. Hence G/N is CSE2 and so every maximal 2-Engel subgroup
in G/N is malnormal. Suppose M/N is a maximal 2-Engel subgroup of G/N .
Then M

N ∩ (MN )gN = N , for all gN ∈ G
N \M

N . This implies that M ∩Mg = 1 for

every g ∈ G\M , and hence G is CSE2.
(ii) LetG be a 2-ET, non 2-Engel and residually χ-group. Then we show that

G is fully residually χ. In order to do this, we prove that for given non-trivial
elements g1, . . . , gn in G there is a normal subgroup N such that g1, . . . , gn are
not in N and G/N ∈ χ. This is equivalent to showing that given non-trivial
elements g1, . . . , gn ∈ G there exists a non-trivial element g ∈ G such that for
any normal subgroupN of G if g 6∈ N , then gi 6∈ N for i = 1, . . . , n. We proceed
by induction on n. This is true for n = 1, as G is residually χ. Now assume the
result holds for n − 1, if [gxn, g, g] = 1 = [g, gxn, g

x
n] for any x ∈ G. Then by 2-

Engel transitivity, the normal closure gGn is 2-Engel and hence by Remark 2.11
it is trivial, but gn is in gGn , which is non-trivial. Therefore either [gxn, g, g] 6= 1
or [g, gxn, g

x
n] 6= 1, for some x ∈ G. Then either of the latest commutators is

not in some normal subgroup N of G. This follows that g1, . . . , gn 6∈ N , which
gives the proof. �

In 1967, B. Baumslag [3] introduced the notion of fully residually free groups
and proved that a residually free group is fully residually free if and only if it
is commutative transitive. A group G is commutative transitive, if [x, y] = 1
and [y, z] = 1 implies that [x, z] = 1 for nontrivial elements x, y, z in G.

Here we show that Baumslag’s theorem is also true in the case of 2-Engel
transitive groups.

Theorem 2.12. Let G be a residually free group. Then G is fully residually

free if and only if G is 2-Engel transitive.

Proof. Let G be a fully residually free group. Assume [x, y, y] = [y, z, z] = 1,
for every non-trivial elements x, y, z ∈ G. We must show that [x, z, z] = 1. If
[x, z, z] 6= 1, there exists a homomorphism φ : G → F , where F is a free group
and

φ([x, z, z]) = [φ(x), φ(z), φ(z)] 6= 1, φ(x) 6= 1, φ(y) 6= 1, φ(z) 6= 1.

Hence, φ([x, y, y]) 6= 1 and φ([y, z, z]) 6= 1 in F , which contradict the assump-
tions that [x, y, y] = 1 and [y, z, z] = 1 in G. Thus G is 2-ET.

Conversely, without loss of generality we may assume that G is non-abelian.
Also if G is non 2-Engel and residually free, then the result holds by Theorem
2.11(ii). Now, let G be a non-abelian 2-Engel residually free group. Then
[x, y, y] = 1 for all x, y in G and for some non-trivial elements x0, y0 ∈ G, we
have [x0, y0] 6= 1. Hence there is a homomorphism φ : G → F , where F is a
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free group such that φ([x0, y0]) 6= 1. Thus

φ([x0, y0]) = [φ(x0), φ(y0)] 6= 1 ⇒ φ(x0) 6= 1, φ(y0) 6= 1.

On the other hand, since F is free we must have φ([x0, y0, y0]) 6= 1 in F , which
contradicts that [x0, y0, y0] = 1 in G. Therefore G is not 2-Engel and the
required result is obtained from Theorem 2.11(ii), when we take χ to be the
class of all free groups. �

3. The number of 2-Engelizers

As in the previous section, E2(G) denotes the set of all 2-Engelizers in the
group G. Now for a given group G, one may ask about the size of E2(G). So
our goal in this section is to study the possible values of |E2(G)|. Note that in
this section, we assume that the 2-Engelizer of each element of G is a subgroup.

Indeed xE2

G
(x) is abelian, for every non-trivial element x of G.

One can easily check that G is 2-Engel group if and only if |E2(G)| = 1.
Moreover, Z2(G) ⊆ ∩x∈GE

2
G(x).

Lemma 3.1. A group G is the union of 2-Engelizers of all elements of

G\Z2(G), that is to say G = ∪x∈G\Z2(G)E
2
G(x).

Proof. Clearly, ∪x∈G\Z2(G)E
2
G(x) ⊆ G. By the definition, if g ∈ Z2(G), then

g ∈ E2
G(x) for every x ∈ G and hence g ∈ ∪x∈G\Z2(G)E

2
G(x). In the case

g ∈ G\Z2(G), then clearly g ∈ E2
G(g) and so

g ∈ ∪x∈G\Z2(G)E
2
G(x).

Therefore G ⊆ ∪x∈G\Z2(G)E
2
G(x) and the proof is complete. �

Lemma 3.2. A group G can not be written as the union of two proper subgroups

of G.

Proof. Suppose H and K are two proper subgroups of G such that G = H∪K.
Let x ∈ H\K and y ∈ K\H . If xy ∈ H , then x−1xy = y ∈ H , which gives a
contradiction. Similarly, xy can not be in K and hence the claim is proved. �

Using the above lemmas we prove the following:

Theorem 3.3. Let G be any group. Then |E2(G)| ≥ 4.

Proof. Using Lemma 3.1, the group G is the union of its proper 2-Engelizers,
i.e., G = ∪x∈G\Z2(G)E

2
G(x). If |E2(G)| = 1, then G is 2-Engel, which contra-

dicts the assumption. If |E2(G)| = 2, then G is the proper subgroup of itself,
which is impossible. Assume |E2(G)| = 3. Then E2(G) = {G,E2

G(x), E
2
G(y)},

where E2
G(x) and E2

G(y) are proper 2-Engelizers of G. Therefore G = E2
G(x)∪

E2
G(y), which contradicts Lemma 3.2. Hence |E2(G)| ≥ 4 and this completes

the proof. �
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Part (i) of the following example shows that the lower bound obtained in
the above theorem is attained. Also one notes that the number of 2-Engelizers
of a given group is always less than or equal to the number of centralizers.

Example 3.4. (i) Consider D16 = 〈a, b : a8 = b2 = 1, bab = a−1〉, the dihedral
group of order 16. It can be easily calculated that all 2-Engelizers of D16 are
precisely as follows:

D16, E2
D16

(a) = 〈a〉, E2
D16

(b) = {1, a2, a4, a6, b, a2b, a4b, a6b},

E2
D16

(ab) = {1, a2, a4, a6, ab, a3b, a5b, a7b}.

Hence |E2(D16)| = 4.
(ii) All 2-Engelizers of the symmetric group S3 = 〈a, b : b3 = a2 = 1, aba−1 =

b−1〉 are as follows:

S3, E
2
S3
(a) ={1, a}, E2

S3
(b) ={1, b, b2}, E2

S3
(ab) ={1, ab}, E2

S3
(ab2) ={1, ab2}.

Therefore |E2(S3)| = 5.

Lemma 3.5. Let |E2
G/Z2(G)(xZ2(G))| = p for some non second central element

x of a group G and p be an any prime number. For all y ∈ G\Z2(G), if

E2
G/Z2(G)(xZ2(G)) = E2

G/Z2(G)(yZ2(G)), then

E2
G(x) = E2

G(y).

Proof. Clearly,
E2

G(x)/Z2(G) ≤ E2
G/Z2(G)(xZ2(G)).

Assume that E2
G(x)/Z2(G) < E2

G/Z2(G)(xZ2(G)). As |E2
G/Z2(G)(xZ2(G))| = p

and |E2
G(x)/Z2(G)| divides |E2

G/Z2(G)(xZ2(G))|, we get |E2
G(x)/Z2(G)| = 1

and so E2
G(x) = Z2(G). Thus x ∈ Z2(G) which is a contradiction. Therefore

E2
G(x)/Z2(G) = E2

G/Z2(G)(xZ2(G)). Clearly for all y ∈ G\Z2(G),

E2
G(y)/Z2(G) ≤ E2

G/Z2(G)(yZ2(G)) = E2
G/Z2(G)(xZ2(G)).

Hence |E2
G/Z2(G)(xZ2(G))| = |E2

G(y)/Z2(G)| and so

E2
G(y)/Z2(G) = E2

G(x)/Z2(G).

Thus

E2
G(x)

Z2(G)
=

E2
G(y)

Z2(G)
= {Z2(G), x1Z2(G), x2Z2(G), . . . , xp−1Z2(G)},

where {x1, . . . , xp−1} ∈ E2
G(x) ∩ E2

G(y)\Z2(G). So E2
G(x) = E2

G(y). �

Characterization of finite groups in terms of the number of distinct central-
izers has been an interesting topic of research in recent years (see [1, 2, 4]).
In [4] Belcastro and Sherman proved that G is 4-centralizer if and only if
G/Z(G) ∼= C2 × C2 and G is 5-centralizer if and only if G/Z(G) ∼= C3 ×C3 or
S3. Here we calculate |E

2(G)| in the case of G/Z2(G) ∼= Cp×Cp for any prime
number p.
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Theorem 3.6. Let G be a group such that G/Z2(G) ∼= Cp ×Cp for any prime

number p. Then |E2(G)| = p+ 2.

Proof. Suppose that G/Z2(G) ∼= Cp × Cp, and hence

G

Z2(G)
= 〈xZ2(G), yZ2(G) : xp, yp, [x, y] ∈ Z2(G)〉.

Clearly any non-trivial proper subgroup H/Z2(G) of G/Z2(G) has order p.
Therefore H = Z2(G) ∪ h1Z2(G) ∪ h2Z2(G) ∪ · · · ∪ hp−1Z2(G), where hi ∈
H\Z2(G) for all 1 ≤ i ≤ p − 1. Thus the proper subgroups of G properly
containing Z2(G) are one of the following forms:

Z2(G) ∪ xZ2(G) ∪ x2Z2(G) ∪ · · · ∪ xp−1Z2(G);

Z2(G) ∪ yZ2(G) ∪ y2Z2(G) ∪ · · · ∪ yp−1Z2(G) or

Z2(G) ∪ xiyjZ2(G), where 1 ≤ i, j ≤ p− 1. Note that, for all 1 ≤ i, j ≤ p− 1,
it is easy to see that xiyjZ2(G) = xjyiZ2(G) since [x, y] ∈ Z2(G). Hence we
have only p− 1 proper subgroups of G of latest type. For simplicity, we denote
all the above subgroups by H1, H2, . . . , Hp+1, respectively. Now we show that
H1, H2, . . . , Hp+1 are the only proper 2-Engelizers of G. Let a ∈ G\Z2(G),
then aZ2(G) = bZ2(G) for some

b ∈ {x, . . . , xp−1, y, . . . , yp−1, xy, xy2, . . . , xyp−1, . . . , xp−1y, . . . , xp−1yp−1}.

Therefore E2
G/Z2(G)(aZ2(G)) = E2

G/Z2(G)(bZ2(G)) and Lemma 3.5 implies that

E2
G(a) = E2

G(b). Again let b ∈ Hi\Z2(G) then E2
G(b) ⊆ ∪p+1

j=1Hj , as H1, . . .,

Hp+1 are the only proper subgroups of G. Also b ∈ E2
G(b), and hence E2

G(b) 6=
Hj , for 1 ≤ i 6= j ≤ p + 1. Therefore E2

G(b) = Hi, and H1, H2, . . . , Hp+1 are
the only proper 2-Engelizers of G and so |E2(G)| = p+ 2. �
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