Bull. Korean Math. Soc. **53** (2016), No. 3, pp. 657–665 http://dx.doi.org/10.4134/BKMS.b140818 pISSN: 1015-8634 / eISSN: 2234-3016

2-ENGELIZER SUBGROUP OF A 2-ENGEL TRANSITIVE GROUPS

Mohammad Reza R. Moghaddam and Mohammad Amin Rostamyari

ABSTRACT. A general notion of χ -transitive groups was introduced by C. Delizia et al. in [6], where χ is a class of groups. In [5], Ciobanu, Fine and Rosenberger studied the relationship among the notions of conjugately separated abelian, commutative transitive and fully residually χ -groups.

In this article we study the concept of 2-Engel transitive groups and among other results, its relationship with conjugately separated 2-Engel and fully residually χ -groups are established. We also introduce the notion of 2-Engelizer of the element x in G and denote the set of all 2-Engelizers in G by $E^2(G)$. Then we construct the possible values of $|E^2(G)|$.

1. Introduction

An element x of a group G is called a right Engel element, if for every $y \in G$, there exists a natural number n = n(x, y) such that [x, ny] = 1. If n can be chosen independent of y, then x is called a right n-Engel element or simply a bounded right Engel element. We denote the sets of all right Engel elements and bounded right Engel elements of G by R(G) and $\overline{R}(G)$, respectively.

An element x of G is called a *left Engel* element, if for every $y \in G$, there exists a natural number n = n(x, y) such that [y, nx] = 1. If n can be chosen independent of y, then x is called a *left n-Engel* element or simply a *bounded left Engel* element. We denote the sets of all left Engel elements and bounded left Engel elements of G by L(G) and $\overline{L}(G)$, respectively. For any positive integer n, a group G is called an n-Engel group, if [x, ny] = [y, nx] = 1 for all $x, y \in G$.

A proper subset E of a group G is said to be *n*-Engel set, whenever $[x, _ny] = [y, _nx] = 1$ for all $x, y \in E$.

Let χ be a class of groups. Then a group G is *residually* χ if for every non-trivial element $g \in G$, there is a homomorphism $\phi : G \to H$, where H

O2016Korean Mathematical Society

Received October 23, 2014; Revised December 17, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 20F19, 20E06, 20B08; Secondary 20F99, 20E70.

Key words and phrases. 2-ET group, CSE^2 -group, residually χ -group, fully residually χ -group, 2-Engelizer subgroup.

is a χ -group such that $\phi(g) \neq 1$. Also a group G is fully residually χ if for finitely many non-trivial elements g_1, \ldots, g_n in G there exists a homomorphism $\phi: G \to H$ where H is a χ -group such that $\phi(g_i) \neq 1$ for all $i = 1, \ldots, n$.

Definition 1.1. A subgroup H of a group G is called *malnormal* or *conjugately* separated, if $H \cap H^x = 1$ for all $x \in G \setminus H$.

It is clear that the intersection of a family of malnormal subgroups of a given group G is again malnormal, which allows us to define the *malnormal closure* of a subgroup H of G. Clearly the intersection of all malnormal subgroups of G contains H is malnormal.

2. 2-Engel transitive groups

A group G is called a *conjugately separated* 2-*Engel* (henceforth CSE²-group) if all of its maximal 2-Engel subgroups are malnormal. In the following, we discuss the notion of 2-Engel transitive group and then give its relationship with CSE²-group and fully residually χ -groups.

Definition 2.1. (a) A group G is 2-Engel transitive (henceforth 2-ET), when [x, y, y] = 1 and [y, z, z] = 1 imply that [x, z, z] = 1 for every non-trivial elements x, y, z in G.

(b) For a given element x of G, we call

$$E_G^2(x) = \{ y \in G : [x, y, y] = 1, [y, x, x] = 1 \}$$

to be the set of 2-Engelizer of x in G. The family of all 2-Engelizers in G is denoted by $E^2(G)$ and $|E^2(G)|$ denotes the number of distinct 2-Engelizers in G.

As an example consider $Q_{16} = \langle a, b : a^8 = 1, a^4 = b^4, b^{-1}ab = a^{-1} \rangle$, the Quaternion group of order 16 and take the element b in Q_{16} . Then one can easily check that the 2-Engelizer set of b is as follows:

$$E^2_{Q_{16}}(b) = \{1, a^2, a^4, a^6, b, a^2b, a^4b, a^6b\}.$$

The following lemma is useful for our further investigations.

Lemma 2.2. Let G be a 2-ET group. Then 2-Engelizer of each non-trivial element of G is 2-Engel set.

Proof. Let G be a 2-Engel transitive group, then [x, y, y] = 1 and [y, z, z] = 1imply [x, z, z] = 1 for all non-trivial elements x, y, z in G. Clearly using the definition, for $y, z \in E_G^2(x)$, it follows that [z, y, y] = 1 and [y, z, z] = 1. Thus $E_G^2(x)$ is 2-Engel set.

We remark that for the identity element e of G, we have $G = E_G^2(e)$ and hence $G \in E^2(G)$. Clearly in general, the 2-Engelizer of each non-trivial element of an arbitrary group G does not form a subgroup. The following example shows our claim.

Example 2.3. Let G be a finitely presented group of the following form:

 $G = \langle a_1, a_2, a_3, a_4 : a_3^3 = a_4^3 = 1, [a_1, a_2] = 1, [a_1, a_3] = a_4,$

 $[a_1, a_4] = 1, [a_2, a_3] = 1, [a_2, a_4] = a_2, [a_3, a_4] = 1 \rangle.$

Using GAP [7] implies that G is an infinite group. One can easily check that G is not 2-ET, as $[a_2, a_1, a_1] = 1$ and $[a_1, a_4, a_4] = 1$, while $[a_2, a_4, a_4] = a_2$. Moreover, $E_G^2(a_1)$ is not a subgroup of G, since it is easily calculated that $a_2, a_3 \in E_G^2(a_1)$ but $a_2a_3 \notin E_G^2(a_1)$.

Here, we state an interesting property of 2-Engel transitive groups.

Proposition 2.4. Let G be a 2-ET group. Then $x^{E_G^2(x)}$ is nilpotent of class at most 3, for every non-trivial element x of G.

Proof. Note that $x^{E_G^2(x)} = \langle x^y : y \in E_G^2(x) \rangle$. Now, for every $y \in E_G^2(x)$;

$$[x^{y}, x] = [x[x, y], x] = [x, y, x] = 1.$$

On the other hand $[x^y, x, x] = 1$ and $[x, x^z, x^z] = 1$ imply that $[x^y, x^z, x^z] = 1$, as G is 2-ET. Hence $x^{E_G^2(x)}$ is 2-Engel group and so nilpotent of class at most 3.

Now, we discuss the condition under which the 2-Engelizer of each non-trivial element of G is a subgroup.

Theorem 2.5. Let G be an arbitrary group. Then the set of each 2-Engelizer of a non-trivial element in G forms a subgroup if and only if the group $x^{E_G^2(x)}$ is abelian for all non-trivial element x of G.

Proof. Let $y \in E_G^2(x)$. Then one can easily see that

$$\begin{split} [y^{-1}, x, x] &= [[x, y]^{y^{-1}}, x] = [[x, y][x, y, y^{-1}], x] \\ &= [[x, y][x, y, y]^{-y^{-1}}, x] \\ &= [x, y, x] = 1, \end{split}$$

and also

$$\begin{split} [x,y^{-1},y^{-1}] &= [[y,x]^{y^{-1}},y^{-1}] = [[y,x][y,x,y^{-1}],y^{-1}] \\ &= [[y,x][y,x,y]^{-y^{-1}},y^{-1}] \\ &= [y,x,y^{-1}] = [y,x,y]^{-y^{-1}} = 1. \end{split}$$

Thus $y^{-1} \in E_G^2(x)$. Now, for every $y, z \in E_G^2(x)$ we have;

$$\begin{split} [yz, x, x] &= [[y, x]^{z}[z, x], x] \\ &= [[y, x]^{z}, x]^{[z, x]}[z, x, x] \\ &= [[y, x][y, x, z], x]^{[z, x]} \\ &= [y, x, z, x]^{[z, x]}. \end{split}$$

Clearly, using Witt identity and the same technique in the proof of Theorem 7.13 in [8], we may have [y, x, z, x] = 1 if and only if $x^{E_G^2(x)}$ is abelian. Similarly, [x, yz, yz] = 1 and the proof is complete.

The proof of the following lemma is a routine argument by using Zorn's Lemma.

Lemma 2.6. Every 2-Engel subgroup H of a given group G is contained in a maximal 2-Engel subgroup.

The following fact is needed in proving our main result.

Proposition 2.7. Let G be a CSE^2 -group. Then every non-trivial 2-Engel normal subgroup of G is maximal.

Proof. Let G be a CSE^2 -group and K a non-trivial 2-Engel normal subgroup of G. Then by Lemma 2.6, K is contained in a maximal 2-Engel subgroup M of G. Let $1 \neq k \in K$, then for each $x \in G$ we have $k^x \in M$. Since G is CSE^2 , it follows that M is malnormal and therefore $x \in M$. Thus G = M, which implies that K is maximal.

Using the above proposition, we obtain the following useful result.

Corollary 2.8. Let G be a CSE^2 -group. Then every 2-Engel normal subgroup of G is equal to the second centre of G.

Lemma 2.9. Let χ be a class of groups such that each non-2-Engel group $H \in \chi$ is CSE^2 -group. Let N be a 2-Engel normal subgroup of a non-2-Engel residually χ -group G. Then N is contained in the second centre of G.

Proof. Let $G \in \chi$, then by the assumption G is CSE^2 and therefore by Corollary 2.8, every 2-Engel normal subgroup of G is equal to the second centre of G. Now let N be a 2-Engel normal subgroup of a non-2-Engel residually χ -group G so that N is not contained in the second centre of G. Then there exist elements $n \in N$ and $g_1, g_2 \in G$ such that $[n, g_1, g_2] = x \neq 1$, say. Since G is residually χ , there exists a normal subgroup N_x of G such that $G/N_x \in \chi$ and $x \notin N_x$. Clearly NN_x/N_x is a non-trivial 2-Engel normal subgroup of G/N_x . Then $NN_x/N_x = Z_2(G/N_x)$ and this contradicts that $x \notin N_x$. Therefore N is contained in the second centre of G.

Remark 2.10. Let G be a 2-ET and non 2-Engel group, then it is clear that $Z_2(G) = 1$. So it follows from the above lemma that any normal 2-Engel subgroup of G must be trivial.

Now we study the relationship between the non 2-Engel CSE^2 , 2-ET and fully residually χ -groups.

Theorem 2.11. Let χ be a class of groups such that each non 2-Engel χ -group is CSE^2 and G be a non 2-Engel and residually χ -group. Then

(i) G is a CSE^2 .

(ii) If G is a 2-Engel transitive, then G is fully residually χ -group.

Proof. (i) Let G be a non 2-Engel group. Then there exist $x, y \in G$ such that $[x, y, y] \neq 1$. On the other hand, there is a normal subgroup N of G, for which $[x, y, y] \notin N$ and $G/N \in \chi$, as G is residually χ . Clearly, $x, y \notin N$ and G/N is non 2-Engel. Hence G/N is CSE² and so every maximal 2-Engel subgroup in G/N is malnormal. Suppose M/N is a maximal 2-Engel subgroup of G/N. Then $\frac{M}{N} \cap (\frac{M}{N})^{gN} = N$, for all $gN \in \frac{G}{N} \setminus \frac{M}{N}$. This implies that $M \cap M^g = 1$ for every $g \in G \setminus M$, and hence G is CSE².

(ii) Let G be a 2-ET, non 2-Engel and residually χ -group. Then we show that G is fully residually χ . In order to do this, we prove that for given non-trivial elements g_1, \ldots, g_n in G there is a normal subgroup N such that g_1, \ldots, g_n are not in N and $G/N \in \chi$. This is equivalent to showing that given non-trivial elements $g_1, \ldots, g_n \in G$ there exists a non-trivial element $g \in G$ such that for any normal subgroup N of G if $g \notin N$, then $g_i \notin N$ for $i = 1, \ldots, n$. We proceed by induction on n. This is true for n = 1, as G is residually χ . Now assume the result holds for n - 1, if $[g_n^x, g, g] = 1 = [g, g_n^x, g_n^x]$ for any $x \in G$. Then by 2-Engel transitivity, the normal closure g_n^G is 2-Engel and hence by Remark 2.11 it is trivial, but g_n is in g_n^G , which is non-trivial. Therefore either $[g_n^x, g, g] \neq 1$ or $[g, g_n^x, g_n^x] \neq 1$, for some $x \in G$. Then either of the latest commutators is not in some normal subgroup N of G. This follows that $g_1, \ldots, g_n \notin N$, which gives the proof.

In 1967, B. Baumslag [3] introduced the notion of fully residually free groups and proved that a residually free group is fully residually free if and only if it is commutative transitive. A group G is commutative transitive, if [x, y] = 1and [y, z] = 1 implies that [x, z] = 1 for nontrivial elements x, y, z in G.

Here we show that Baumslag's theorem is also true in the case of 2-Engel transitive groups.

Theorem 2.12. Let G be a residually free group. Then G is fully residually free if and only if G is 2-Engel transitive.

Proof. Let G be a fully residually free group. Assume [x, y, y] = [y, z, z] = 1, for every non-trivial elements $x, y, z \in G$. We must show that [x, z, z] = 1. If $[x, z, z] \neq 1$, there exists a homomorphism $\phi : G \to F$, where F is a free group and

$$\phi([x, z, z]) = [\phi(x), \phi(z), \phi(z)] \neq 1, \ \phi(x) \neq 1, \ \phi(y) \neq 1, \ \phi(z) \neq 1.$$

Hence, $\phi([x, y, y]) \neq 1$ and $\phi([y, z, z]) \neq 1$ in F, which contradict the assumptions that [x, y, y] = 1 and [y, z, z] = 1 in G. Thus G is 2-ET.

Conversely, without loss of generality we may assume that G is non-abelian. Also if G is non 2-Engel and residually free, then the result holds by Theorem 2.11(ii). Now, let G be a non-abelian 2-Engel residually free group. Then [x, y, y] = 1 for all x, y in G and for some non-trivial elements $x_0, y_0 \in G$, we have $[x_0, y_0] \neq 1$. Hence there is a homomorphism $\phi : G \to F$, where F is a free group such that $\phi([x_0, y_0]) \neq 1$. Thus

$$\phi([x_0, y_0]) = [\phi(x_0), \phi(y_0)] \neq 1 \Rightarrow \phi(x_0) \neq 1, \ \phi(y_0) \neq 1.$$

On the other hand, since F is free we must have $\phi([x_0, y_0, y_0]) \neq 1$ in F, which contradicts that $[x_0, y_0, y_0] = 1$ in G. Therefore G is not 2-Engel and the required result is obtained from Theorem 2.11(ii), when we take χ to be the class of all free groups.

3. The number of 2-Engelizers

As in the previous section, $E^2(G)$ denotes the set of all 2-Engelizers in the group G. Now for a given group G, one may ask about the size of $E^2(G)$. So our goal in this section is to study the possible values of $|E^2(G)|$. Note that in this section, we assume that the 2-Engelizer of each element of G is a subgroup. Indeed $x^{E^2_G(x)}$ is abelian, for every non-trivial element x of G.

One can easily check that G is 2-Engel group if and only if $|E^2(G)| = 1$. Moreover, $Z_2(G) \subseteq \bigcap_{x \in G} E_G^2(x)$.

Lemma 3.1. A group G is the union of 2-Engelizers of all elements of $G \setminus Z_2(G)$, that is to say $G = \bigcup_{x \in G \setminus Z_2(G)} E_G^2(x)$.

Proof. Clearly, $\bigcup_{x \in G \setminus Z_2(G)} E_G^2(x) \subseteq G$. By the definition, if $g \in Z_2(G)$, then $g \in E_G^2(x)$ for every $x \in G$ and hence $g \in \bigcup_{x \in G \setminus Z_2(G)} E_G^2(x)$. In the case $g \in G \setminus Z_2(G)$, then clearly $g \in E_G^2(g)$ and so

$$g \in \bigcup_{x \in G \setminus Z_2(G)} E_G^2(x).$$

Therefore $G \subseteq \bigcup_{x \in G \setminus Z_2(G)} E_G^2(x)$ and the proof is complete.

Lemma 3.2. A group G can not be written as the union of two proper subgroups of G.

Proof. Suppose H and K are two proper subgroups of G such that $G = H \cup K$. Let $x \in H \setminus K$ and $y \in K \setminus H$. If $xy \in H$, then $x^{-1}xy = y \in H$, which gives a contradiction. Similarly, xy can not be in K and hence the claim is proved. \Box

Using the above lemmas we prove the following:

Theorem 3.3. Let G be any group. Then $|E^2(G)| \ge 4$.

Proof. Using Lemma 3.1, the group G is the union of its proper 2-Engelizers, i.e., $G = \bigcup_{x \in G \setminus Z_2(G)} E_G^2(x)$. If $|E^2(G)| = 1$, then G is 2-Engel, which contradicts the assumption. If $|E^2(G)| = 2$, then G is the proper subgroup of itself, which is impossible. Assume $|E^2(G)| = 3$. Then $E^2(G) = \{G, E_G^2(x), E_G^2(y)\}$, where $E_G^2(x)$ and $E_G^2(y)$ are proper 2-Engelizers of G. Therefore $G = E_G^2(x) \cup E_G^2(y)$, which contradicts Lemma 3.2. Hence $|E^2(G)| \ge 4$ and this completes the proof. Part (i) of the following example shows that the lower bound obtained in the above theorem is attained. Also one notes that the number of 2-Engelizers of a given group is always less than or equal to the number of centralizers.

Example 3.4. (i) Consider $D_{16} = \langle a, b : a^8 = b^2 = 1, bab = a^{-1} \rangle$, the dihedral group of order 16. It can be easily calculated that all 2-Engelizers of D_{16} are precisely as follows:

$$\begin{split} D_{16}, \ E^2_{D_{16}}(a) &= \langle a \rangle, \ E^2_{D_{16}}(b) = \{1, a^2, a^4, a^6, b, a^2b, a^4b, a^6b\}, \\ E^2_{D_{16}}(ab) &= \{1, a^2, a^4, a^6, ab, a^3b, a^5b, a^7b\}. \end{split}$$

Hence $|E^2(D_{16})| = 4$.

(ii) All 2-Engelizers of the symmetric group $S_3 = \langle a, b : b^3 = a^2 = 1, aba^{-1} = b^{-1} \rangle$ are as follows:

$$\begin{split} S_3, \ E_{S_3}^2(a) = \{1,a\}, \ E_{S_3}^2(b) = \{1,b,b^2\}, \ E_{S_3}^2(ab) = \{1,ab\}, \ E_{S_3}^2(ab^2) = \{1,ab^2\}. \\ \text{Therefore } |E^2(S_3)| = 5. \end{split}$$

Lemma 3.5. Let $|E_{G/Z_2(G)}^2(xZ_2(G))| = p$ for some non second central element x of a group G and p be an any prime number. For all $y \in G \setminus Z_2(G)$, if $E_{G/Z_2(G)}^2(xZ_2(G)) = E_{G/Z_2(G)}^2(yZ_2(G))$, then

$$E_G^2(x) = E_G^2(y).$$

Proof. Clearly,

$$E_G^2(x)/Z_2(G) \le E_{G/Z_2(G)}^2(xZ_2(G))$$

Assume that $E_G^2(x)/Z_2(G) < E_{G/Z_2(G)}^2(xZ_2(G))$. As $|E_{G/Z_2(G)}^2(xZ_2(G))| = p$ and $|E_G^2(x)/Z_2(G)|$ divides $|E_{G/Z_2(G)}^2(xZ_2(G))|$, we get $|E_G^2(x)/Z_2(G)| = 1$ and so $E_G^2(x) = Z_2(G)$. Thus $x \in Z_2(G)$ which is a contradiction. Therefore $E_G^2(x)/Z_2(G) = E_{G/Z_2(G)}^2(xZ_2(G))$. Clearly for all $y \in G \setminus Z_2(G)$,

$$E_G^2(y)/Z_2(G) \le E_{G/Z_2(G)}^2(yZ_2(G)) = E_{G/Z_2(G)}^2(xZ_2(G)).$$

Hence $|E_{G/Z_2(G)}^2(xZ_2(G))| = |E_G^2(y)/Z_2(G)|$ and so

$$E_G^2(y)/Z_2(G) = E_G^2(x)/Z_2(G).$$

Thus

$$\frac{E_G^2(x)}{Z_2(G)} = \frac{E_G^2(y)}{Z_2(G)} = \{Z_2(G), x_1 Z_2(G), x_2 Z_2(G), \dots, x_{p-1} Z_2(G)\},\$$

where $\{x_1, \ldots, x_{p-1}\} \in E_G^2(x) \cap E_G^2(y) \setminus Z_2(G)$. So $E_G^2(x) = E_G^2(y)$.

Characterization of finite groups in terms of the number of distinct centralizers has been an interesting topic of research in recent years (see [1, 2, 4]). In [4] Belcastro and Sherman proved that G is 4-centralizer if and only if $G/Z(G) \cong C_2 \times C_2$ and G is 5-centralizer if and only if $G/Z(G) \cong C_3 \times C_3$ or S_3 . Here we calculate $|E^2(G)|$ in the case of $G/Z_2(G) \cong C_p \times C_p$ for any prime number p. **Theorem 3.6.** Let G be a group such that $G/Z_2(G) \cong C_p \times C_p$ for any prime number p. Then $|E^2(G)| = p + 2$.

Proof. Suppose that $G/Z_2(G) \cong C_p \times C_p$, and hence

$$\frac{G}{Z_2(G)} = \langle xZ_2(G), yZ_2(G) : x^p, y^p, [x,y] \in Z_2(G) \rangle.$$

Clearly any non-trivial proper subgroup $H/Z_2(G)$ of $G/Z_2(G)$ has order p. Therefore $H = Z_2(G) \cup h_1Z_2(G) \cup h_2Z_2(G) \cup \cdots \cup h_{p-1}Z_2(G)$, where $h_i \in H \setminus Z_2(G)$ for all $1 \leq i \leq p-1$. Thus the proper subgroups of G properly containing $Z_2(G)$ are one of the following forms:

$$Z_{2}(G) \cup xZ_{2}(G) \cup x^{2}Z_{2}(G) \cup \dots \cup x^{p-1}Z_{2}(G);$$

$$Z_{2}(G) \cup yZ_{2}(G) \cup y^{2}Z_{2}(G) \cup \dots \cup y^{p-1}Z_{2}(G) \text{ or }$$

 $Z_2(G) \cup yZ_2(G) \cup y^2Z_2(G) \cup \cdots \cup y^{p-1}Z_2(G)$ or $Z_2(G) \cup x^i y^j Z_2(G)$, where $1 \leq i, j \leq p-1$. Note that, for all $1 \leq i, j \leq p-1$, it is easy to see that $x^i y^j Z_2(G) = x^j y^i Z_2(G)$ since $[x, y] \in Z_2(G)$. Hence we have only p-1 proper subgroups of G of latest type. For simplicity, we denote all the above subgroups by $H_1, H_2, \ldots, H_{p+1}$, respectively. Now we show that $H_1, H_2, \ldots, H_{p+1}$ are the only proper 2-Engelizers of G. Let $a \in G \setminus Z_2(G)$, then $aZ_2(G) = bZ_2(G)$ for some

$$b \in \{x, \dots, x^{p-1}, y, \dots, y^{p-1}, xy, xy^2, \dots, xy^{p-1}, \dots, x^{p-1}y, \dots, x^{p-1}y^{p-1}\}.$$

Therefore $E_{G/Z_2(G)}^2(aZ_2(G)) = E_{G/Z_2(G)}^2(bZ_2(G))$ and Lemma 3.5 implies that $E_G^2(a) = E_G^2(b)$. Again let $b \in H_i \setminus Z_2(G)$ then $E_G^2(b) \subseteq \bigcup_{j=1}^{p+1} H_j$, as H_1, \ldots, H_{p+1} are the only proper subgroups of G. Also $b \in E_G^2(b)$, and hence $E_G^2(b) \neq H_j$, for $1 \leq i \neq j \leq p+1$. Therefore $E_G^2(b) = H_i$, and $H_1, H_2, \ldots, H_{p+1}$ are the only proper 2-Engelizers of G and so $|E^2(G)| = p+2$.

Acknowledgments. The authors would like to thank the referee for the help-ful suggestions, which made the article more readable.

References

- A. Abdollahi, S. M. J. Amiri, and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (2007), no. 1, 43–57.
- [2] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2000), no. 2, 139–146.
- [3] B. Baumslag, *Residually free groups*, Proc. Lond. Math. Soc. 17 (1967), no. 3, 402–418.
- [4] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (1994), no. 5, 366–374.
- [5] L. Ciobanu, B. Fine, and G. Rosenberger, Classes of groups generalizing a theorem of Benjamin Baumslag, Preprint.
- [6] C. Delizia, P. Moravec, and C. Nicotera, Finite groups in which some property of twogenerator subgroups is transitive, Bull. Aust. Math. Soc. 75 (2007), no. 2, 313–320.
- [7] The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.4.12, www.gapsystem.org, 2008.
- [8] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Parts 1 and 2, Springer-Verlag, 1972.

Mohammad Reza R. Moghaddam Department of Mathematics Khayyam University and Centre of Excellence in Analysis on Algebraic Structures Ferdowsi University of Mashhad Mashhad, Iran *E-mail address*: rezam@ferdowsi.um.ac.ir

Mohammad Amin Rostamyari International Campus, Faculty of Mathematical Sciences Ferdowsi University of Mashhad Mashhad, Iran *E-mail address:* rostamyari@gmail.com