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Abstract 

This paper concentrates on size-dependent dynamic pull-in instability of micro-bridge gyro-
scopes under the combined effects of instantaneous DC voltage and the Casimir attraction. 
Hamilton’s principle is employed to derive the governing equations of motion based on the 
modified couple stress theory. Galerkin’s reduced order model is then utilized to obtain the 
ordinary differential equations of motion. In order to solve the reduced equations, fourth or-
der Runge-Kutta method is used. The accuracy of the present model is validated through 
comparison with available results in the literature. Afterward effects of system parameters on 
the dynamic pull-in behavior of the system are investigated. It is found that neglecting the 
Casimir effect can lead to false results especially for systems with small initial gaps. 

Keywords: Instantaneous DC voltage; Micro-bridge gyroscope; Modified couple stress theo-
ry; Casimir force.  

1. Introduction 

Micro-electro-mechanical-systems (MEMS) cover a wide area of research interests nowadays. 
Small size, low power consumption and capability of mass production are the main factors that 
made analysis micro devices a desired topic among the researchers [1]. Based on these factors, mi-
cro devices have found their ways into many applications such as navigations [2]. 

As the analysis of micro system grows, the need for an accurate modelling of MEMS devices 
has arisen. Many researchers have employed micro-beams to model the behavior of different micro-
systems [3]. Ghommem et al. [4] investigated the behavior of an electrically actuated micro-
gyroscope by modelling the system with a rotating micro-cantilever with a tip mass. 
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Convergence of gyroscope and MEMS technologies has led to the developments of different 
types of micro-gyroscopes. In general, a micro-gyroscope, which is a device employed to detect 
angular velocity, has found growing applications in many research fields such as anti-rollover sys-
tems and virtual reality [5]. Among all kinds of micro gyroscopes, Coriolis based ones are the most 
common type of these devices due to their simple manufacturing process. These micro gyroscopes 
are usually modelled with rotating beams, tuning forks and vibrating rings [6]. Rotating beams are 
mostly employed to trace the response of the Coriolis based micro-gyroscopes. In these devices, a 
vibrating beam is placed in a rotating system. Upon actuation of dynamic loads in a specific direc-
tion, which is called drive direction, the effect of Coriolis acceleration combined with dynamic 
loadings will cause the system to begin a vibratory motion around the static deflection in a direction 
perpendicular to the actuation direction called sense direction. By measuring the motion of the sys-
tem in the sense direction, one can obtain the angular velocity of the system.  

Electrical actuation is widely used by researchers for the actuation of micro-gyroscopes. As 
the applied voltage reaches a critical value, the elastic force will not be able to overcome the effect 
of electrical actuation and the vibratory micro-beam will hit the stationary substrate underneath it. 
This phenomenon is called pull-in instability and the corresponding voltage is pull-in voltage. Since 
the pull-in instability is the most common type of instability in such micro-systems, investigating 
the pull-in behavior of such systems have turned into a desirable topic. Mojahedi et al. [7] modelled 
a micro gyroscope as a cantilever beam with a tip mass subjected to the step-input DC voltage. 
They considered the effects of squeeze film damping, nonlinear curvatures and air pressure in their 
theoretical formulations. To obtain the pull-in voltage of the system, they employed Hamilton’s 
principle and derived the equations of motion and solved them numerically. They observed that 
consideration of geometric nonlinearities would increase the stiffness of the beam that leads to 
higher values of pull-in voltage. 

When at least one of the dimensions of a system is took place in the order of micron, it has 
been proved that the classical theories are incapable of predicting the true behavior of systems. 
Therefore, many researchers have tried to introduce new continuum theories to remove such inca-
pabilities [8]. In this way, some continuum size-dependent theories, which usually contain some 
higher order material length scale parameters, have been introduced [8-10]. Modified couple stress 
theory (MCST) is one of these theories that has been proposed by Yang et al. [8] in which only one 
material length scale parameter is introduced. Recently, it has been proved that the modified couple 
stress theory is so accurate in problems with bending loadings only [11]. Hence, it has been widely 
employed to determine the response of micro-systems due to its accuracy and simplicity. 

  Although the size dependency of micro devices has been greatly investigated, the size effect 
on the behavior of micro-gyroscopes has received little attention. Ghayesh et al. [12] investigated 
the size effect on the dynamic behavior of a cantilever type micro gyroscope by considering the 
modified couple stress theory. They utilized Hamilton’s principle to derive the governing equations 
of motion and applied the Galerkin’s reduced order (ROM) method to obtain the reduced ordinary 
differential equations of motion. The reduced equations are then solved via a continuation method. 

Another issue that the miniaturization process may face is the effect of Casimir force. The 
Casimir effect represents attractive force between two flat parallel plates of solids that arises from 
quantum fluctuations in the ground state of the electromagnetic field [13]. Although Casimir force 
seems to have an important role in determining the behavior of micro-gyroscope, only a few re-
searchers have studied the effect of Casimir force on the micro-gyroscopes. Mojahedi et al. [14] 
investigated the effect of Casimir force on the static pull-in behavior of a micro-bridge gyroscope. 

Although the static pull-in behaviour of the micro-bridge gyroscopes has been studied, size-
dependent dynamic pull-in analysis of such systems has not been conducted yet. The main purpose 
of this paper is to investigate the combined effects of size and the Casimir force on the threshold of 
the dynamic pull-in instability in micro-bridge gyroscopes with a proof mass. To this end, Ga-
lerkin’s weighted residual method is employed to obtain the reduced governing ordinary differential 
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equations of motion. Afterward, the fourth order Runge-Kutta method is utilized to solve the result-
ing initial value problems. The results are compared and validated by those available in the previous 
studies and very good agreements between them are observed.  

2. Theoretical formulations 

Consider an electrically actuated micro-bridge of length L, thickness b in the sense direction, 
thickness h in the drive direction and proof mass M in the middle as illustrated in Figure 1. The ini-
tial gap in the sense and drive directions are considered to be dw and dv, respectively. Since the 
square cross-section is the most common cross-section of beams for micro gyroscopes, the beam is 
considered to have a square cross-section in this study and hence, b is equal to h. In addition, to 
achieve symmetric static deflections, dw and dv are also assumed to have the same values. It is worth 
noting that the system in Figure 1 rotates with a constant angular velocity of Ω along the x-axis. 

 

Figure 1. Schematic of an electrically actuated rotating micro-bridge. 

2.1 Strain energy 
To simplify the strain energy expression of the system, Euler-Bernoulli beam model is as-

sumed. The displacement field correspond to the Euler-Bernoulli beam theory can be given as 

  0 0
0

v w
u u y z

x x

 
  

 
  (1a)

0v v    (1b)

0w w    (1c)

where u0, v0 and w0 are the displacements of a point on the neutral axis of the beam, respectively, in 
the x, y and z directions with respect to the rotating coordinate system. Considering the effect of 
mid-plane stretching, one can obtain the non-zero component of the strain tensor as [15] 

2 2
0 0 0 0 0

1 1

2 2xx u v y w z v w            (2)

where prime denotes the derivatives with respect to x. 
According to the MCST, non-zero components of symmetric curvature tensor can be obtained 

as [12] 
2 2

0 0
2 2

1 1
, 0

2 2xy xz x y z yz

w v

x x
      

      
 

 (3)

Therefore, the strain energy expression of the system based on the MCST can be written as 
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where E is the Young modulus of the micro-beam and  
2 2,yy zzA A

I z dA I y dA     (5)

Since the present investigation concentrates on the square cross-section, Iyy and Izz are equal 
and will be denoted by I hereinafter. 

2.2 Kinetic Energy 
To obtain the kinetic energy of the system, at the first step, velocity of a point P on a cross-

section of the beam at a distance x from one end of the beam is determined. Neglecting the second 
mass moment of inertia of the cross-sectional area and the time derivatives of displacement along 
the x axis, velocity of a point P can be written as   

   0 0 0 0
ˆˆv w j w v k   Pv     (6)

where dot represents the derivatives with respect to time. 
From Eq. (6), the kinetic energy of the beam can be obtained as 

 2 2
0 0 0 0

1

2
( ) ( )

2

L

o
T

L
A M x v w w v dx 

               (7)

2.3 Electrostatic force 
Considering the first order fringing field effect and neglecting the area of the capacitance, the 

electrostatic excitation by instantaneous DC voltage in the drive direction can be expressed as [16] 
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where   is the dielectric constant of the medium between the electrodes. 

2.4 Casimir force 
The Casimir force per unit length of the beam can be given as [17] 
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  (9)

where 341.055 10   J s is the Planck’s constant divided by 2π, 82.998 10c   m/s is the speed of 
light and i can be either v or w. 

2.5 Equations of motion 
Employing the Hamilton’s principle, the equations of motion can be obtained as 
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  (10a)
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where   is the Dirac's delta. The corresponding boundary conditions can be given as 

   0 00, 0, , 0u t u L t    (11a)

   0, 0, , 0k t k L t    (11b)

   0, 0, , 0k t k L t     (11c)

where k can be either v0 or w0. 

Eq. (10a) can be solved analytically for u0 along with the boundary conditions in Eq. (11a). 
The solution of u0 in terms of v0 and w0 can be obtained as 

    2 2 2 2
0 0 0 0 00 0

1 1

2 2

x L
u v w dx v w dx x

L
           (12)

To derive the non-dimensional equations of motion, following non-dimensional parameters 
are introduced 
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Substitution of Eq. (12) and the dimensionless parameters in Eq. (13) into Eqs. (10b) and 
(10c), and dropping the hats, one would get 
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2.6 Solution Procedure 
To solve the equations of motion, a Galerkin-based ROM is employed to convert the partial 

differential equations in Eqs. (14) to some ODEs. To this end, a single-mode approximation has 
been employed and deflection of an arbitrary point on the beam can be expressed as  

  ii x q   (15)

where i can be either v or w,  x is the normalized dimensionless un-damped mode shape of a 

clamped-clamped beam and iq  is the proof-mass displacement in corresponding direction of i. 

Mode shape of clamped-clamped beam is utilized to obtain the ordinary differential equations of 
motion. Hence, the mode shape of the beam can be written as [18] 



7th International Conference on Acoustics & Vibration (ISAV2017), Sharif University of Technol-
ogy, Iran, 28-29 Nov. 2017 

 

 

6 

          cosh cos sinh sinx x x x x              (16)

where 

0.6297, 4.73, 0.9825       (17)

Substitution of Eq. (15) into Eqs. (14), multiplying the resultant by   and integrating over the 
non-dimensional domain will lead to 
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where 
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dx dx                  (19d)

3. Results and discussions 

To obtain numerical results, the micro-beam is considered to be made of silicon with material 
properties given in Table 1. 

Table 1. Material properties of micro-beam 
E (GPa)    (kg/m3) l (μm ) 

169 0.33 2331 0.592 

For the purpose of validation, a comparison has been made between the present findings and 
the results reported by Moghimi Zand et al. [19]. In this comparison, the parameters b, h, L, d and 
effective Young Modulus E are, respectively, set to 20 m ,  2 m , 300 m , 2 m  and 189 GPa. It 
should be noted that in this comparison, the cross-section of the beam is not a square since the sys-
tem is not a gyroscope. Furthermore, the values of parameters r , L  , rM  and   are chosen to be 

equal to zero in order to perform this comparison. The dimensionless dynamic pull-in voltage for 
these set of parameters is calculated as 1 63.79  which agrees excellently with 1 64.59  reported 

by Moghimi Zand et al. [19]. It is worth mentioning that, for the purpose of simplicity, the dimen-
sionless dynamic pull-in voltage is denoted by DPI  hereinafter. 

Time responses of the system in the drive and sense directions for both stable and unstable 
states are shown in Figure 2. To obtain this figures, the values of the parameters r , L  , rM  and 

  are set to 1, 0.5, 0.05 and 0.3953, respectively. It is noteworthy that DPI  is calculated as 79.44 

for this case. 
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Figure 2. Time response of the micro gyroscope for stable and unstable conditions for (a) drive direction and 

(b) sense direction  
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Figure 3. Non-dimensional dynamic pull-in voltage versus non-dimensional rotation frequency for two mass 

ratios 0.05 and 0.1. 

Figure 3 represents the effects of these base rotation frequency and proof mass on the dynam-
ic pull-in voltage of the micro gyroscope. It can be observed from Figure 3 that increasing of these 
two parameters leads to reduction of dynamic pull-in voltage. The reason is that increasing the r  

induces a higher value of centrifugal force to the system and rM  increases the system’s inertia. 

Hence, dynamic pull-in happens at a lower voltage. 
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Figure 4. Non-dimensional dynamic pull-in voltage versus non-dimensional rotation frequency for two Cas-

imir parameters L  (0.5 and 1.5). 

Figure 4 represents the effect of the Casimir force on the dynamic pull-in behaviour of the 
system when rM =0.1. It is obvious from Figure 4 that for higher values of the non-dimensional 

Casimir parameter L , dynamic pull-in instability occurs at lower voltages. This is due to the fact 

that, beside the electrostatic force, the Casimir force also attracts the movable electrode toward the 
fixed substrate. Therefore, it is so essential to account for the effect of Casimir force especially for 
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systems with lower initial gaps. Because, according to Eq. (14), the Casimir parameter L  increases 

with the decrease of the gap parameter. 

4. Conclusion 

This study aimed to investigate the effect of the Casimir force on the dynamic pull-in voltage 
of a micro-bridge gyroscope. Hamilton’s principle was utilized to derive the size-dependent govern-
ing equations of motion based on the modified couple stress theory. Galerkin’s weighted residual 
method was then employed to obtain the associated reduced ordinary differential equations of mo-
tion which solved through the fourth-order Runge-Kutta method. The accuracy of the present model 
was also validated by those available in the literature for simpler systems without the effect of the 
Casimir attraction. Finally, a parametric study was also conducted to account for the effects of dif-
ferent parameters on the dynamic pull-in behaviour of the system. It was found that increasing the 
angular velocity and the proof mass leads to the reduction of dynamic pull-in voltage of the system. 
Furthermore, the results revealed that considering the effect of the Casimir force had a noticeable 
influence on reducing the threshold of the dynamic pull-in instability of the system especially for 
those with lower initial gaps. 
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