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Abstract We show that a finite group satisfying the law [y,n x] = [x,n y] (n > 1) is
nilpotent and utilizing the results of Macdonalds on the structure of groups satisfying
the law [y, x] = [x, y], we investigate groups satisfying both of the laws [y, x] =
[x, y] and [y,n x] = [x,n y] for small n. Our results can be applied to obtain special
commutators, which can be expressed as the product of commutators squares.
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1 Introduction

Let G be a finite group. A word w = w(x, y) is called symmetric on the group G if
w(g1, g2) = w(g2, g1), for all g1, g2 ∈ G. Now let En = En(x, y) = [y,n x] be the
nth Engel word. Then G is said to be an En-symmetric group if En is symmetric on
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G. IfG is finite and En ≡ 1, then it is known thatG is nilpotent. In this paper, we shall
generalize this result by showing that G is still nilpotent if En (n ≥ 2) is symmetric
on G. See [4] and references therein for further results on equality of Engel words. If
P is an elementary abelian 2-group and φ is a fixed-point-free automorphism of P of
odd prime order p then G = P � 〈φ〉 is clearly a finite E1-symmetric group, which
is not nilpotent. So E1-symmetric groups are not necessarily nilpotent. Macdonald
[3] have shown that if G is an E1-symmetric group, then G/Z(G) is metabelian
and Neumann’s construction of 3-metablelian non-metabelian groups indicates that
E1-symmetric groups are not necessarily metabelian. We show that an E1-symmetric
group is an extension of a 2-group by an abelian group of odd order. Also we will
present some more results concerning groups, which are both E1- and En-symmetric
for small n and we give conditions under which some commutators of weight > 1 can
be expressed as the product of commutators squares.

2 En-symmetric groups, n ≥ 2

It is well-known that a finite Engel group is nilpotent (see [7, Theorem 12.3.4]). Now
we generalize this result by showing that a finite group satisfying a symmetric n-Engel
word (n ≥ 2) is also nilpotent.

Theorem 2.1 If G is a finite En-symmetric group (n ≥ 2), then G is nilpotent.

Proof First suppose that G is solvable. Clearly [y, x] ∈ G(1) and if [y,1+kn x] ∈
G(k+1) then

[y,1+(k+1)n x] = [y,1+kn x,n x] = [
x,n [y,1+kn x]

] ∈ G(k+2).

Hence we reach to [y,1+(m−1)n x] = 1 by choosing m to be the solvability length
of G that is G is an Engel group. Using [7, Theorem 12.3.4] we conclude that G is
nilpotent. Now suppose that G is a finite En-symmetric group and the result holds for
all groups of order less than |G|. Since the proper subgroups of G inherit the same
property as G does, each of which should be nilpotent. Hence by [7, Theorem 9.1.9],
G is solvable and consequently G is nilpotent. ��

Theorem 2.1 can be generalized in the following form.

Corollary 2.2 Let G be a finite group. If for each x, y ∈ G there exist integers
mx,y, nx,y > 1 such that [y,mx,y x] = [x,nx,y y], then G is nilpotent.

3 E1-symmetric groups

E1-symmetric groups are different from En-symmetric groups (n ≥ 2) as they are not
nilpotent in general. Macdonald have shown in [3, Theorem 4] and its consequences
that an E1-symmetric group G satisfies the following properties:

(1) [[x, y], [x, z]] = 1;
(2) [[x1, x2], [x3, x4]] = [[xπ1 , xπ2 ], [xπ3 , xπ4 ]

]
;
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(3) [γ2(G), γ3(G)] = 1;
(4) [γ2(G), γ2(G),G] = 1;
(5) G ′4 = 1,

for each x, y, z, x1, x2, x3, x4 ∈ G and π ∈ S4.
Also the results (4) and (5) are in a sense best possible due to the construction

of 3-metabelian non-metabelian groups by Neumann [5], where a group is called 3-
metabelian if all subgroups generated by three elements is metabelian. Such groups
are E1-symmetric and form the variety defined by (1).

It is investigated by several authors that, when a commutator (or an expression
involving commutators) can be expressed as the product of special elements of the
group, say squares, cubes and etc.? For example, it is proved that any commutator
[y, x] is the product of squares, [y, x, x] is the product of cubes and the fifth Engel
word [y, x, x, x, x, x] is the product of forth powers (see [1,2]).

Utilizing (3) and (4), we observe that in an arbitrary group G the commutators
of the form [[a, b, c], [d, e]] and [[a, b], [c, d], e] can be expressed as the product of
commutators squares.

We shall give further properties and applications of E1-symmetric groups.
The structure of finite E1-symmetric groups can be described in an alternative way

as follows.

Theorem 3.1 If G is a finite E1-symmetric group, then G is a semidirect product of
a normal Sylow 2-subgroup P by an abelian subgroup H of odd order. In particular,
[P, H ] is an elementary abelian 2-group.

Proof Let x ∈ G be a 2-element of order 2n . Then, [y,2n x] = [y, x2n ] = 1 for each
y ∈ G and consequently x is a right Engel element. By [6], the set of all right Engel
elements of G coincides with the Fitting subgroup F(G) of G. Thus, F(G) possesses
all Sylow 2-subgroups of G. Let P be a Sylow 2-subgroup of G [hence of F(G)]. As
F(G) is a characteristic nilpotent subgroup of G its Sylow 2-subgroup P is normal in
G and hence by Schur-Zassenhaus theorem [7, Theorem 9.1.2], P has a complement
H in G. Clearly, H is abelian. Finally, we know by (2) that [P, H ]′ ⊆ [P ′, H ′] = 1.
Hence [P, H ] is an elementary abelian 2-group and the proof is complete. ��

Here is a simple example of an E1-symmetric group.

Example Let F be a field of characteristic 2 and letG = U (n, F) be the Unitriangular
group of matrices of dimension n ≤ 4 over F . Then G is an E1-symmetric group.

To prove our results on E1- and En-symmetric groups, we need some more prop-
erties of E1-symmetric groups.

Lemma 3.2 If G is an E1-symmetric group, then

(i) [[x, y1, . . . , ym], [x, z1, . . . , zn]] = 1;
(ii) [[x, y], [z, w]] = [x, y, z, w][x, y, w, z],
where x, y, z, w, y1, . . . , ym, z1, . . . , zn ∈ G and m, n are natural numbers.
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Proof (i) The case (m, n) = (1, 1) is given in (1). Now if the result is true for (m, n),
then by expanding

[[x, y1, . . . , ym−1, ym ym+1], [x, z1, . . . , zn]
] = 1 we obtain the

result for (m + 1, n) and similarly for (m, n + 1).
(ii) If x, y, z, w ∈ G, then

[x, y, zw] = [x, y, w][x, y, z][x, y, z, w].

On the other hand, by applying (i),

[x, y, zw] = [x, y, wz[z, w]]
= [[x, y], [z, w]] [x, y, wz][z,w]

= [[x, y], [z, w]] [x, y, z][z,w][x, y, w][z,w][x, y, w, z][z,w]

= [[x, y], [z, w]] [x, y, z][x, y, w][x, y, w, z].

From these two identities and applying (i) once more we obtain the result. ��

4 E1- and En-symmetric groups, n ≥ 2

In this section, we investigate groups satisfying both E1- and En-symmetric properties
for small n. We will show that in an E1-symmetric group both E2- and E3-symmetric
properties are equivalent to the 2- and 3-Engel properties, respectively.

Lemma 4.1 If G is an E1- and En-symmetric group (n ≥ 2), then G is an (n + 1)-
Engel group.

Proof Let x, y ∈ G. Then, by Lemma 3.2(i)

[y,n+1 x] = [[y, x],n x] = [x,n [y, x]] = [[y, x, x], [y, x],n−2 [y, x]] = 1,

as required. ��
Lemma 4.2 If G is an E1-symmetric group, then [y, x, x, y] = [x, y, y, x], for all
x, y,∈ G.

Proof If x, y ∈ G, then

[y, x, x, y] = [y, x2, y] = [x2, y, y] = [x2, y2]

and

[x, y, y, x] = [x, y2, x] = [y2, x, x] = [y2, x2],

from which the result follows. ��
Theorem 4.3 If G is both E1- and E2-symmetric group, then G is nilponent of class
at most 2.
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Proof By the assumption, [y, x, x] = [x, y, y] holds for all x, y ∈ G and hence
expanding [xy, x, x] = [x, xy, xy] we obtain [y, x, x] = 1, that is G is a 2-Engel
group. Now let x, y, z ∈ G. Then

[x, y, z] = [z, [x, y]] = [z, u2v2w2]
= [z, w2][z, v2]w2 [z, u2]v2w2 = [z, w,w][z, v, v]w2 [z, u, u]v2w2 = 1,

where u = x−1, v = xy−1 and w = y. Hence G is nilpotent of class at most 2. ��
Theorem 4.3 asserts that in an arbitrary group G and elements x, y, z ∈ G, there

always exist elements xi , yi and zi , wi such that

[x, y, z] =
∏

[xi , yi ]2
∏

[zi , wi , wi ][wi , zi , zi ]−1.

Thus the commutators [x, y, z] can be expressed as the product of commutators squares
if and only if the elements [y, x, x][x, y, y]−1 have the same property.

Theorem 4.4 If G is both E1- and E3-symmetric group, then G is a 3-Engel group.

Proof Let x, y ∈ G. Expanding the identity [y, yx, yx, yx] = [yx, y, y, y] and
utilizing Lemmas 4.1 and 4.2, we obtain

[y, x, x, x] = [y, x, y, x, y][y, x, y, x, y, x] = [y, x, y, x, y]x ,

which implies that

[y, x, x, x] = [y, x, y, x, y].

By replacing y by y2 in the last identity we get

[x, y, x, y, x] = [y, x, x, y, x] = [x, y, y, x, x] = [x, y2, x, x] = [y2, x, x, x]
= [y2, x, y2, x, y2] = [x, y2, y2, x, y2] = [x, y, y, y, y, x, y2] = 1.

Therefore [y, x, y, x, y] = 1 and consequently [y, x, x, x] = 1, as required. ��
Theorem 4.5 If G is both E1- and E3-symmetric group, then G is metabelian.

Proof Expanding the identity [z, xy, xy, xy] = 1 in conjunction with the fact that,
by Lemma 3.2(i, ii), [a, b, c, d] = [a, b, d, c] when a, b, c, d ∈ {x, y, z}, we obtain
[z, x, y, y] = [z, y, x, x]. Moreover

[z, y, y, x, x] = [z, y2, x, x] = [z, x, y2, y2] = [z, x, y, y, y, y] = 1,

from which we deduce that [w, z, y, x, x] = 1, for all x, y, z, w ∈ G.
Now expanding [w, z, xy, xy] = [w, xy, z, z] in conjunction with the previous

identities we reach to [w, z, x, y] = [w, z, y, x]. Therefore G ′′ = 〈1〉. ��
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From Theorem 4.5, we conclude that each commutator [[x, y], [z, w]] can be
expressed as

[[x, y], [z, w]] =
∏

[xi , yi ]2
∏

[zi , wi , wi , wi ][wi , zi , zi , zi ]−1.

Hence in an arbitrary group G, the commutators [[x, y], [z, w]] can be expressed as
the product of commutators squares if the elements [y, x, x, x][x, y, y, y]−1 have the
same property.
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