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Abstract. In 1994, Moneyhun introduced and studied the concept of isoclinism in
Lie algebras. Moghaddam and parvaneh in 2009 introduced and gave some properties
of isoclinism of a pair of Lie algebras. In this paper we introduce the concept of
relative n-isoclinism between two pairs of Lie algebras. They form equivalence classes
and we show that each equivalent class contains an n-stem pair of Lie algebras. We
also show that for a relative n-isoclinism family of Lie algebras C say, consists of
(M,L) such that L is finitely generated and [M,n L] is finite dimension, then there
exists an n-stem pair of Lie algebras (R,S) ∈ C such that

dim([R,n−1 S] = min{dim([M,n−1 L]); for all (M,L) ∈ C}.

Mathematics Subject Classification (2010): Primary 17B30, 17B60, 17B99; Secondary
20E99, 20D15.

Key words: Lie algebra, n-isoclinism, relative n-isoclinism, n-stem Lie algebra.

1. Introduction. We consider all Lie algebras over a fixed field F and assume
M to be an ideal of a Lie algebra L, with the Lie product [ , ]. Then (M,L) is
said to be a pair of Lie algebras. The lower and the upper central series of L are
defined inductively by L1 = L , Ln+1 = [Ln, L], for all n ≥ 1, and Z0(L) = {0},
Z1(L) = Z(L), and Zn+1(L)/Zn(L) = Z(L/Zn(L)), for all n ≥ 0. Also one may
consider
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28 M.R.R. Moghaddam, F. Saeedi, S. Tajnia and B. Veisi

[M,L] = ⟨[m, l]; m ∈M, l ∈ L⟩,
Z(M,L) = {m ∈M ; [m, l] = 0, ∀l ∈ L} = Z(L) ∩M ,

to be the commutator and the centre of the pair of Lie algebras (M,L), respectively.
We also denote [M,L, . . . , L︸ ︷︷ ︸

n−times

] by [M,n L] and

Zn(L) ∩M = {m ∈M ; [m, l1, l2, . . . , ln] = 0, ∀li ∈ L, 1 ≤ i ≤ n}
by Zn(M,L), which is considered as the nth-term of the upper central series of the
pair of Lie algebras (M,L).
Clearly, [M,n L] and Zn(M,L) are both ideals of L and when M = L, they are
Ln+1 and Zn(L), the (n + 1)st and nth-term of the lower and the upper central
series of L, respectively.

The notion of isoclinism for groups was first introduced by P. Hall [3] in 1940
and was generalized to n- isoclinism and isologism by other authors (see also [4], [5],
[6]). In 1994, Moneyhun [9] introduced the Lie algebra’s analogue of the concept
and contrary to the group theory case, she showed that when two Lie algebras have
the same finite dimensions then the two concepts of isoclinism and isomorphism
are coincide.

In 2009, the first author and parvaneh [8] studied the concept of isoclinism of
a pair of Lie algebras and gave some structural properties of the notion.

In the present article we introduce the concept of relative n-isoclinism of a pair
of Lie algebras and give some properties of this new notion. Among other results,
it is shown that if C is a relative n-isoclinism family of Lie algebras and (M,L) is a
pair in C such that L is finitely generated and [M,n L] is of finite dimension, then
there exists an n-stem pair (R,S) ∈ C such that

dim([R,n−1 S] = min{dim([M,n−1 L]); for all (M,L) ∈ C}.

For a pair of Lie algebras (M,L), put L = L
Zn(M,L) and M = M

Zn(M,L) . Let M1

and M2 be two ideals of the Lie algebras L1 and L2, respectively. Then the pair
(α, β) is called a relative n-isoclinism between the pairs of Lie algebras (M1, L1)
and (M2, L2), if the maps α : L1 −→ L2 with α(M1) = M2 and β : [M1,n L1] −→
[M2,n L2] are both isomorphisms, for which the following diagram commutes

M1 ⊕ L1 ⊕ . . .⊕ L1︸ ︷︷ ︸
n−times

αn+1

→ M2 ⊕ L2 ⊕ . . .⊕ L2︸ ︷︷ ︸
n−times

↓ ↓

[M1,n L1]
β
→ [M2,n L2].

In this case, we write (M1, L1) ∼n (M2, L2). We show the map from Mi ⊕
Li ⊕ . . .⊕ Li︸ ︷︷ ︸

n−times

(i = 1, 2) to [Mi,n Li] by γ(n,Mi, Li) (i = 1, 2), which sends

(mi, li1 , . . . lin) to [mi, li1 , . . . lin ] and if Mi is equal to Li, the map is shown by
γ(n,Li). Clearly, in this case we have the notion of n-isoclinism (see [10]) and
when n = 1 one obtains the concept of isoclinism of the pairs of Lie algebras.
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Characterization of relative n-isoclinism 29

2. Some properties of relative n-isoclinism. In this section we give some
properties of relative n-isoclinism of a pair of Lie algebras, which will be used in
the next section. We also give some relation between the notions of n-isoclinism
and relative n-isoclinism. Finally, it is shown that if L is a Lie algebra with an
ideal M and a subalgebra H containing M such that M ∩ [H,n L] = 0, then
(HM , LM ) ∼n (H,L) and its converse is also true, when the subalgebra [H,n L] is
of finite dimension.

The proof of the following useful lemma can be easily seen.

Lemma 2.1. Let (α, β) be a relative n-isoclinism between the pairs of Lie algebras
(M1, L1) and (M2, L2). Then for all x ∈ [M1,n L1],

1. α(x+ Zn(M1, L1)) = β(x) + Zn(M2, L2);

2. β([m1, l1. . . . li−1, x, li+1, . . . ln]) = [m2, k1, . . . ki−1, β(x), ki+1, . . . kn], where
m2 ∈ α(m1 + Zn(M1, L1)) and kj ∈ α(lj + Zn(M1, L1)); 1 ≤ j ≤ n; i ̸= j;

3. β([M1,n L1] ∩ Zi(M1, L1)) = [M2,n L2] ∩ Zi(M2, L2), n ≥ i ≥ 0.

Theorem 2.2. The pairs of Lie algebras (M1, L1) and (M2, L2) are relative n-
isoclinism if and only if there exist ideals N1 and N2 of L1 and L2 contained
in Zn(M1, L1) and Zn(M2, L2), respectively, together with the isomorphisms α :
L1

N1
−→ L2

N2
, for which α(M1

N1
) = M2

N2
and β : [M1,n L1] −→ [M2,n L2] given by

β([m1, l1, . . . , ln]) = [m2, k1, . . . kn], where m1 ∈ M1, li ∈ L1 1 ≤ i ≤ n, and
m2 ∈M2, ki ∈ L2, m2 ∈ α(m1 + Zn(M1, L1)), and ki ∈ α(li + Zn(M1, L1)).

Proof. Let N1 and N2 be the ideals of L1 and L2, respectively, with the
given isomorphisms α and β. By the definition, we must show that α induces an

isomorphism from L1 onto L2. It is enough to show that α(Zn(M1,L1)
N1

) = Zn(M2,L2)
N2

.

So, let k ∈ Zn(M2, L2) and l ∈ α−1(k + N2). For l1, . . . ln+1 ∈ L1, suppose that
ki ∈ α(li +N1), 1 ≤ i ≤ n+ 1. It is clear that li + l ∈ α−1((ki + k) +N2).
Now

[l1, . . . li + l, . . . ln+1] = β−1([k1, . . . , ki + k, . . . , kn+1])

= [l1, . . . li, . . . ln+1],

which implies that l ∈ Zn(M1, L1), and hence Zn(M2,L2)
N2

⊆ α(Zn(M1,L1)
N1

). By a

similar argument, we have α(Zn(M1,L1)
N1

) ⊆ Zn(M2,L2)
N2

, which completes the proof.
2

Corollary 2.3. If (M1, L1) ∼n (M2, L2), then (M1, L1) ∼n+1 (M2, L2).

Proof. By the assumption, the isomorphisms α : L1 −→ L2, with α(M1) = M2

and β : [M1,n L1] −→ [M2,n L2] exist. Now, put N1 = Zn(M1, L1) ⊆ Zn+1(M1, L1)
and N2 = Zn(M2, L2) ⊆ Zn+1(M2, L2). Then consider the isomorphism β′ :
[M1,n+1 L1] −→ [M2,n+1 L2], such that β′(x) = β(x), for all x ∈ [M1,n+1 L1].
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30 M.R.R. Moghaddam, F. Saeedi, S. Tajnia and B. Veisi

It is easily seen that the conditions of the above theorem are satisfied. Hence
(M1, L1) ∼n+1 (M2, L2). 2

Corollary 2.4. If (M1, L1) ∼n (M2, L2), then for all 0 ≤ i ≤ n

(
M1

Zi(M1, L1)
,

L1

Zi(M1, L1)
) ∼n−i (

M2

Zi(M2, L2)
,

L2

Zi(M2, L2)
).

Proof. It is a routin exercise to show that for any pair of Lie algebras (M,L),

Zj(
M

Zi(M,L)
,

L

Zi(M,L)
) ∼=

Zi+j(M,L)

Zi(M,L)
. (1)

Assume L̃j =
Lj

Zi(Mj ,Lj)
and M̃j =

Mj

Zi(Mj ,Lj)
(j = 1, 2). By the assumption, the

isomorphisms α : L1 −→ L2 with α(M1) = M2 and β : [M1,n L1] −→ [M2,n L2]

exist. Now using (1), we obtain α̃ : L̃1/Zn−i(M̃1, L̃1) −→ L̃2/Zn−i(M̃2, L̃2)

such that α̃(M̃1/Zn−i(M̃1, L̃1)) = M̃2/Zn−i(M̃2, L̃2) and β̃ : [M̃1,n−i L̃1] −→
[M̃2,n−i L̃2], given by β̃(x̃) = β(x) + Zn−i(M2, L2). Now, Theorem 2.2 gives the
result. 2

In the next result of this section, we present some properties of relative n-
isoclinism between the subalgebras of Lie algebras, which is similar to the work of
Moghaddam and Parvaneh [8] for the isoclinism of a pair of Lie algebras.

Theorem 2.5. Let (α, β) be a relative n-isoclinism between the pairs of Lie
algebras (M1, L1) and (M2, L2).

1. If K1 is a subalgebra of L1 containing Zn(M1, L1) and K2 is some subalgebra
of L2, such that α(K1) = K2, where Ki =

Ki

Zn(Mi,Li)
(i = 1, 2), Then (K1 ∩

M1,K1) ∼n (K2 ∩M2,K2).

2. If K1 is an ideal of L1 contained in [M1,n L1], then

(
M1

K1
,
L1

K1
) ∼n (

M2

β(K1)
,

L2

β(K1)
).

Proof. (1) By Theorem 2.2, we consider Ni = Zn(Ki∩Mi, Li) ⊆ Zn(Ki∩Mi,Ki),
i = 1, 2. Now, we define α : K1

N1
−→ K2

N2
given by α(k1 + N1) = k2 + N2, where

k2 ∈ α(K1) and β : [K1 ∩M1,nK1] −→ [K2 ∩M2,nK2] such that β(x) = β(x), for
all x ∈ [K1 ∩M1,nK1].

Clearly α and β are monomorphisms, as α and β are. On the other hand α is
onto, since α(K1) = K2 and N2 ⊆ Zn(M2, L2). We only need to show that β is
surjective. For doing this, assume [m2, k21 , k22 , . . . , k2n ] is an arbitrary generator
of [K2∩M2,nK2]. By surjectivity of α, there exist k11 , k12 , . . . , k1n ∈ K1 such that
α(k1i + Zn(M1, L1)) = k2i + Zn(M2, L2), for 1 ≤ i ≤ n. Also since α(M1) = M2
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Characterization of relative n-isoclinism 31

and α(K1) = K2, there exists m2 ∈ M2 ∩ K2 such that α(m1 + Zn(M1, L1)) =
m2 + Zn(M2, L2). By the assumption, the pair (α, β) is relative n-isoclinism and
using the commutativity of the diagram in the definition,

β([m1, k11 , k12 , . . . , k1n ]) = [m2, k21 , k22 , . . . , k2n ].

Finally, one must show that α(K1∩M1

N1
) = K2∩M2

N2
, which is trivially true, by the

above discussion.
(2) Clearly β(K1) is an ideal of L2, and so put L̃1 = L1

K1
, M̃1 = M1

K1
, L̃2 = L2

β(K1)

and M̃2 = M2

β(K1)
. Also assume that Ñ1 = Zn(M1,L1)+K1

K1
⊆ Zn(M̃1, L̃1), and Ñ2 =

Zn(M2,L2)+β(K1)
β(K1)

⊆ Zn(M̃2, L̃2).

We may define

α̃ : L̃1

Ñ1
−→ L̃2

Ñ2

such that α̃(l̃1 + Ñ1) = l̃2 + Ñ2, where l̃1 ∈ L̃1 and l2 ∈ α(l1 + Zn(M1, L1)). Also

β̃ : [M̃1,n L̃1] −→ [M̃2,n L̃2], given by β̃(x̃) = β̃(x +K1) =
β(x)+β(K1)

β(K1)
= β̃(x), for

all generators x of [M1,n L1]. The maps α̃ and β̃ are both isomorphisms, as α and

β are. We also have α̃(M̃1/Ñ1) = M̃2/Ñ2, since α(M1) =M2. Clearly

β̃([m1, l11 , . . . l1n ] +K1) = β̃([m̃1, l̃11 , . . . l̃1n ]) = [m̃2, l̃21 , . . . l̃2n ],

where m̃2 ∈ α̃(m̃1+ Ñ1), and l̃2i ∈ α̃(l̃1i + Ñ1), for 1 ≤ i ≤ n. Now, using Theorem
2.2, we deduce (M1

K1
, L1

K1
) ∼n ( M2

β(K1)
, L2

β(K1)
). 2

The following theorem shows that, if (M1, L1) and (M2, L2) are two pairs of
Lie algebras, such that (M1, L1) ∼n (M2, L2), then M1 and M2 are n-isoclinism
Lie algebras.

Theorem 2.6. If (M1, L1) and (M2, L2) are relative n-isoclinism, then M1 and
M2 are n-isoclinism Lie algebras.

Proof. Let (α, β) be a relative n-isoclinism between the pairs of Lie algebras
(M1, L1) and (M2, L2). Assume K = Zn(M1, L1) ⊆ Zn(M1) and H = Zn(M2, L2)
⊆ Zn(M2). Consider α′ : M1

K −→ M2

H and β′ : Mn+1
1 −→ Mn+1

2 , which are the

restrictions of α and β to M1

K and Mn+1
1 , respectively. Clearly both α′ and β′ are

isomorphisms, and using the definition

β′([m1,m2 . . . ,mn+1]) = β([m1,m2, . . . ,mn+1])

= βγ(n,M1, L1)(m1,m2, . . . ,mn+1)

= γ(n,M2, L2)α
n+1(m1,m2, . . . ,mn+1)

= [k1, k2, . . . , kn],

for all m1,m2, . . .mn+1 ∈Mn+1
1 and k1, k2, . . . kn+1 ∈ α′(mi+K). Using Theorem

2.2 and considering the case L1 =M1 and M2 = L2 we obtain M1 ∼n M2. 2
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32 M.R.R. Moghaddam, F. Saeedi, S. Tajnia and B. Veisi

In the following result we give a sufficient condition, so that the n-isoclinism
between Lie algebras gives rise to a relative n-isoclinism of the pairs of Lie algebras.

Theorem 2.7. Let (φ,ψ) be a pair of n-isoclinism between the Lie algebras L1

and L2 such that for any l1, l
′
1 ∈ L1, the equality φ(l1 +Zn(L1)) = φ(l′1 +Zn(L1))

implies that l1 = l′1. Then for any ideal M1 of L1, there exists an ideal M2 of L2

such that (M1, L1) ∼n (M2, L2).

Proof. Let (φ,ψ) be an n-isoclinism between the Lie algebras L1 and L2, and M1

be an arbitrary ideal of L1. Assume

M2 = {x ∈ L2; ∃m1 ∈M1, φ(m1 + Zn(L1)) = x+ Zn(L2)}.

One can easily check that M2 is an ideal of L2, and hence let α : L1 −→ L2 be a
map given by α(l1 +Zn(M1, L1)) = φ(l1 +Zn(L1)). As φ is an isomorphism, then
so is α and since M2 is an ideal of L2, it follows that α(M1) =M2.

Now, consider the following diagram

M1 ⊕ L1 ⊕ . . .⊕ L1
αn+1

→ M2 ⊕ L2 ⊕ . . .⊕ [L2

↓ ↓

[M1,n L1]
β
→ [M2,n L2],

in which β is the restriction of ψ to [M1,n L1]. The map β is monomorphism, as ψ is.
Assume [m2, l21 , l22 , . . . , l2n ] is any generator of [M2,n L2], then using the property
of M2 and φ being onto, there exist l1i ∈ L1 (1 ≤ i ≤ n) and m1 ∈ M1, such that
φ(m1 + Zn(L1)) = m2 + Zn(L2)) = α(m1) and φ(l1i + Zn(L1)) = l2i + Zn(L2)) =
α(l1i), for all (1 ≤ i ≤ n).

By the commutativity of the diagram in the definition of n-isoclinism, we have

β([m1, l11 . . . , l1n ]) = ψ([m1, l11 . . . , l1n ])

= ψγ(n,L1)(m1 + Zn(L1), l11 + Zn(L1), . . . , l1n + Zn(L1))

= γ(n,L2)φ(m1 + Zn(L1), l11 + Zn(L1), . . . , l1n + Zn(L1))

= [m2, l21 , l22 , . . . , l2n ].

This shows that β is onto and hence it is an isomorphism. Hence it is enough to
show the commutativity of the diagram. So, for any generator [m1, l11 , . . . , l1n ] of
M1 ⊕ L1 ⊕ . . .⊕ L1, we have

βγ(n,M1, L1)(m1, l11 . . . , l1n) = β([m1, l11 . . . , l1n ])

= [m2, l21 , l22 , . . . , l2n ]

= γ(n,M2, L2)(m2, l21 . . . , l2n)

= γ(n,M2, L2)α(m1, l11 . . . , l1n),

and hence the proof is complete. 2
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Characterization of relative n-isoclinism 33

In the following it is shown that, if L1 and L2 are n-isoclinic, then under some
condition this property inherits to the ideals of L1 and L2. The proof follows from
Theorems 2.7 and 2.6

Corollary 2.8. Let (φ,ψ) be an n-isoclinism between the Lie algebras L1 and
L2 such that for all l1, l

′
1 ∈ L1, the equality φ(l1+Zn(L1)) = φ(l′1+Zn(L1)) implies

that l1 = l′1. Then for any ideal M1 of L1, there exists an ideal M2 of L2 such that
M1 ∼n M2.

Finally in this section, we give the following result and has a useful corollary, which
will be used in the next section.

Theorem 2.9. Let M and H be ideals of a Lie algebra L such that H contains
M . Then, for all n ≥ o

(
H

M
,
L

M
) ∼n (

H

M ∩ [H,n L]
,

L

M ∩ [H,n L]
).

Proof. Assume, L̃ = L
M , H̃ = H

M , L̂ = L
M∩[H,nL]

and Ĥ = H
M∩[H,nL]

. So, we must

show that (H̃, L̃) ∼n (Ĥ, L̂). We define the map α : L̃

Zn(H̃,L̃)
−→ L̂

Zn(Ĥ,L̂)
given by

α(l̃ + Zn(H̃, L̃)) = l̂ + Zn(Ĥ, L̂), for all l̃ ∈ L̃. It can be easily seen that α is a
well-defined and one-to-one map. It is a Lie algebra homomorphism, since for all
x̃, ỹ ∈ L̃,

α((x̃+ ỹ) + Zn(H̃, L̃)) = α(x̃+ y + Zn(H̃, L̃))

= x̂+ y + Zn(Ĥ, L̂)

= α(x̃+ Zn(H̃, L̃)) + α(ỹ + Zn(H̃, L̃)),

and

α([x̃+ Zn(H̃, L̃), ỹ + Zn(H̃, L̃)]) = α([x̃, ỹ] + Zn(H̃, L̃))

= [̂x, y] + Zn(Ĥ, L̂)

= [x̂, ŷ] + Zn(Ĥ, L̂)

= [x̂+ Zn(Ĥ, L̂), ŷ + Zn(Ĥ, L̂)]

= [α(x̃+ Zn(H̃, L̃)), α(ỹ + Zn(H̃, L̃))].

The surjectivity of α is obvious and hence it is an isomorphism. Thus the restriction

of α to H̃

Zn(H̃,L̃)
onto Ĥ

Zn(Ĥ,L̂)
is also an isomorphism. Now, consider β : [H̃,n L̃] −→

[Ĥ,n L̂] given by β([h̃, l̃]) = [ĥ, l̂], for all h̃ ∈ H̃, l̃ ∈ L̃
n

. Clearly, β is a Lie algebra
epimorphism and it is one-to-one, since for every h ∈ H and li ∈ L, i = 1 . . . n,
β([h̃, l̃1 . . . l̃n]) = 0 implies that [ĥ, l̂1 . . . l̂n] = 0̂, which means that [h, l1, . . . ln] ∈
M∩[H,n L]. Therefore [h̃, l̃1 . . . l̃n] = 0̃ and hence β is an isomorphism. To complete
the proof, it is enough to show that the following diagram is commutative.
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34 M.R.R. Moghaddam, F. Saeedi, S. Tajnia and B. Veisi

H̃

Zn(H̃, L̃)
⊕

L̃

Zn(H̃, L̃)
⊕ . . .⊕

L̃

Zn(H̃, L̃)

αn+1

→
Ĥ

Zn(Ĥ, L̂)
⊕

L̂

Zn(Ĥ, L̂)
⊕ . . .⊕

L̂

Zn(Ĥ, L̂)
↓ ↓

[H̃,n L̃]
β
→ [Ĥ,n L̂].

This property follows, by using the definition of isomorphisms α and β. 2

The following corollary is an immediate consequence of the above theorem.

Corollary 2.10. Let L be a Lie algebra with an ideal M and a subalgebra H
containing M . If M ∩ [H,n L] = 0, for all n ≥ 1, then

(
H

M
,
L

M
) ∼n (H,L).

Conversely, if the subalgebra [H,n L] is of finite dimension and (HM , LM ) ∼n (H,L),
then M ∩ [H,n L] = 0.

3. The properties of relative n-stem pair of Lie algebras. The Lie al-
gebra S is said to be a stem Lie algebra, if Z(S) ⊆ [S, S]. In [9], it is shown
that every isoclinism family of Lie algebras contains at least one stem Lie algebra.
In finite dimensional case, every stem Lie algebra is of the least dimension in
the isoclinism family. It is defined in [8] that the pair of Lie algebras (R,S) is
a stem pair, when Z(R,S) ⊆ [R,S]. It is also shown that each isoclinism pair
contains at least one stem pair. In fact, if (R,S) is a pair of finite dimensional
Lie algebras in the isoclinism family C say, then it is a stem pair if and only if
dim(S) = min{dim(L) |(M,L) ∈ C}. Also, a Lie algebra S is called an n-stem if
Z(S) ⊆ Sn+1 (see [10]) and it is shown that each n-isoclinism family of Lie algebras
contains an n-stem Lie algebra. In particular, if C is a family of n-isoclinism of
finitely generated Lie algebras such that dim(Ln+1) is finite, for all L ∈ C, then C
contains an n-stem Lie algebra S say, so that dim(Sn) = min{dim(Ln) |L ∈ C}.

The following definition is vital in our investigation.

Definition 3.1. The pair of Lie algebras (R,S) is called an n-stem pair, for n ≥ 1,
when Z(R,S) ⊆ [R,n S].

Clearly, if n = 1 then we obtain the notion as defined in [8] and when R = S one
has the concept in [10].

The following lemma gives a criterion for a pair of Lie algebras to be n-stem,
for n ≥ 1.

Lemma 3.2. The pair of Lie algebras (R,S) is an n-stem pair if and only if S
contains no ideal M say, for which M ⊆ R with M ∩ [R,n S] = 0.

Proof. We proceed by the way of contradiction and assume that the n-stem
pair of Lie algebras (R,S) does not satisfy the conclusion. Hence, S contains an
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Characterization of relative n-isoclinism 35

ideal M such that M ⊆ R and M ∩ [R,n S] = 0. Then M ⊆ Zn(R,S), since for
all m ∈ M and s1 . . . sn ∈ S, we have [m, s1, . . . sn] ∈ M ∩ [R,n S] = 0. This
implies that m ∈ Zn(S) and hence m ∈ Zn(S) ∩ R = Zn(R,S). Now, we claim
that M ∩ Zn(R,S) = 0. To prove this, we use induction on n. For n = 1, we have
M ∩Z(R,S) ⊆M ∩ [R,n S] = 0. AssumeM ∩Zn−1(R,S) = 0. IfM ∩Zn(R,S) ̸= 0,
then there exists m ∈ M such that for all s1, . . . sn ∈ S, [m, s1, s2, . . . , sn] =
[[m, s1], s2, . . . , sn] = 0, so that [m, s1] ∈ M ∩ Zn−1(R,S). Now, by induction
hypothesis [m, s1] = 0 and hence m ∈M ∩ Z(R,S) = 0. Therefore M = 0, and so
S has no non-trivial ideasl satisfying our condition.

Conversely, let R and S satisfy the assumption, and assume Z(R,S) * [R,n S].
ConsiderM = ⟨x⟩, for x ∈ Z(R,S)\[R,n S], then by the hypothesisM∩Zn(R,S) ̸=
0, which gives the proof. 2

Theorem 3.3. Let (M,L) be a pair of Lie algebras. Then the class of relative
n-isoclinism pairs {(M,L)} contains at least one n-stem pair.

Proof. Consider the family of ideals A = {N |N E L; N ⊆M, N ∩ [M,n L] = 0}.
Clearly, A is non-empty, since 0 ∈ A. One notes that A is a partial ordered set
by inclusion and hence using Zorn’s lemma, it has a maximal member N , say.
So by the definition, N ∩ [M,n L] = 0 and hence using Corollary 2.10, we have
(MN ,

L
N ) ∼n (M,L). Now, let K

N E L
N such that K

N ⊆ M
N and K

N ∩ [MN ,n
L
N ] =

0. Thus K ∩ [M,n L] ⊆ N , so that K ∩ [M,n L] ⊆ [M,n L]. This implies that
K ∩ [M,n L] ⊆ N ∩ [M,n L] = 0. Therefore, K ∈ A so that N ⊆ K. By the
maximality of N in A, we have K = N and hence the pair (MN ,

L
N ) satisfies the

conditions of Lemma 3.2, and hence (MN ,
L
N ) is an n-stem pair in the relative n-

isoclinism class of {(M,L)}. 2

If C is a relative n-isoclinism family of Lie algebras pairs (M,L), such that
dim(L) and dim([M,n L]) are finite, then we show that C contains at least one
n-stem pair (R,S) say, such that

dim([R,n−1 L]) = min{dim([M,n−1 L]); (M,L) ∈ C}.

To prove our main theorem in this section, we need the following lemmas.

Lemma 3.4. Let l1, l2 . . . ln be some elements of a Lie algebra L. Then for each
x ∈ L, the commutator [l1, l2, . . . , ln, x] can be written as a finite sum of the form
±[x, li1 , li2 . . . lin ], where lij ∈ {l1, l2, . . . , ln}.

Proof. The proof follows from Lemma 3.6 of [10]. 2

Lemma 3.5. Let (M,L) be a pair of Lie algebras with [M,n−1L]
Z(M,L)∩[M,n−1L]

to be of

finite dimension, then the dimension of [M,n L] is also finite. The converse is true,
when L is finitely generated.
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36 M.R.R. Moghaddam, F. Saeedi, S. Tajnia and B. Veisi

Proof. Put A = Z(M,L)∩ [M,n−1 L] and take {x1 +A, . . . , xk +A} to be a basis

for [M,n−1L]
A , where xi = [mi, li1 , . . . , lin−1 ] ∈ [M,n−1 L]. Assume y = [m, l1, . . . , ln]

is a generator of [M,n L], and hence η = [m, l1 . . . ln−1] ∈ [M,n−1 L] thus η =∑k
i=1 λi[mi, li1 , . . . , lin−1 ] + a, a ∈ A. Now by Lemma 3.4, we have

y = [η, ln] =
k∑
i=1

λi[mi, li1 , . . . , lin−1 , ln] =
k∑
j=1

±λj [[m′
j , ln], l

′
j1 , . . . , l

′
jn−1

],

where m′
j ∈M and l′jk ∈ {li1 , . . . , lin−1}. Thus [M,n L] is finite dimension.

Conversely, let {x1, . . . , xt} be a finite set of generators of L. Then define the
map ηi : CL([M,n L]) ∩ [M,n−1 L] → [M,n L] given by ηi(x) = [x, xi], for all x ∈
CL([M,n L])∩ [M,n−1 L] and 1 ≤ i ≤ t. Clearly, ηi is a Lie algebra homomorphism
and

Ker(ηi) = {x ∈ CL([M,n L]) ∩ [M,n−1 L]; ηi(x) = [x, xi] = 0}
= CL(xi) ∩ CL([M,n L]) ∩ [M,n−1 L].

Therefore, Di = CL([M,nL])∩[M,n−1L]
ker(ηi)

is isomorphic with a subalgebra of [M,n L]

and hence it is of finite dimension. Now, since M is an ideal of L, the following
equalities are held,

∩ti=1Ker(ηi) = ∩ti=1CL(xi) ∩ CL([M,n L]) ∩ [M,n−1 L]

= Z(L) ∩ CL([M,n L]) ∩ [M,n−1 L]

= Z(L) ∩ [M,n−1 L] ∩M
= Z(M,L) ∩ [M,n−1 L].

Thus C1 = CL([M,nL])∩[M,n−1L]
Z(M,L)∩[M,n−1L]

≤ ⊕ti=1Di, and hence it is of finite dimension.

Now, define the map f : [M,n−1 L] −→ Der[M,n L] given by f(x) = adx, which is
a homomorphism and

Ker(f) = {x ∈ [M,n−1 L]; adx(y) = [x, y] = 0, ∀y ∈ [M,n L]}.

Clearly, Ker(f) ⊆ CL([M,n L]). Thus Ker(f) = CL([M,n L]) ∩ [M,n−1 L] and so

C2 = [M,n−1L]
CL([M,nL])∩[M,n−1L]

is also of finite dimension. Now, the result follows as
C2

C1

∼= [M,n−1L]
Z(M,L)∩[M,n−1L]

. 2

Theorem 3.6. For every pair of Lie algebras (M1, L1), there exists a pair (M2, L2)
such that (M1, L1) ∼n (M2, L2) and

1. Z(M2, L2) ∩ [M2,n−1 L2] ⊆ [M2,n L2] ;

2. If [M1,n−1L1]
Z(M1,L1)∩[M1,n−1L1]

is of finite dimension, then so is [M2,n−1 L2];

3. If L1 is finitely generated, then so is L2.
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Characterization of relative n-isoclinism 37

Proof. (1) Let T be the complement of Z(M1, L1) ∩ [M1,n L1] in Z(M1, L1) ∩
[M1,n−1 L1]. Then it is clear that T is an ideal of L1 and T ∩ [M1,n L1] = 0. Now,
put L2 = L1

T and M2 = M1

T , then (M1, L1) ∼n (M2, L2) by Corollary 2.10. Let l =
l+T ∈ Z(M2, L2)∩ [M2,n−1 L2], for some l ∈ [M1,n−1 L1]. It is clear that for every
l1 ∈ L1, [l, l1] ∈ [M1,n L1] and [l, l1] ∈ T , since l+ T ∈ Z(M2, L2) and l1 + T ∈ L2.
Therefore [l, l1] ∈ T ∩ [M1,n L1] = 0 and hence l ∈M1 ∩Z(L1) = Z(M1, L1). Now,
by the above discussion

l ∈ [M1,n−1 L1] ∩ Z(M1, L1) = [M1,n L1] ∩ Z(M1, L1) + T.

This implies that l + T ∈ [M1,n L1] ∩ Z(M1, L1) + T ⊆ [M2,n L2].

(2) If A1 = [M1,n−1L1]
Z(M1,L1)∩[M1,n−1L1]

is finite dimension then by Lemma 3.5,

[M1,n L1] is also of finite dimension. On the other hand, A2 = Z(M1,L1)∩[M1,n−1L1]
T

is isomorphic with a subalgebra of [M1,n L1], which implies that A2 is a finite
dimension. Therefore

A1

A2

∼=
[M1,n−1 L1]

T
∼= [M2,n−1 L2]

is also of finite dimension.
(3) It is clear, as L2 = L1

T . 2

Theorem 3.7. Let (M1, L1) be a pair of Lie algebras such that dim([M1,n−1 L1])
is finite. Then Z(M1, L1) ∩ [M1,n−1 L1] is a subalgebra of [M1,n L1] if and only
if, for every pair of Lie algebras (M2, L2) so that (M1, L1) ∼n (M2, L2), then
dim([M1,n−1 L1]) ≤ dim([M2,n−1 L2]).

Proof. First suppose that Z(M1, L1) ∩ [M1,n−1 L1] is a subalgebra of [M1,n L1],
then consider the pair (M2, L2) for which (M1, L1) ∼n (M2, L2). Using Corollary
2.4, we have

(
M1

Z(M1, L1)
,

L1

Z(M1, L1)
) ∼n−1 (

M2

Z(M2, L2)
,

L2

Z(M2, L2)
).

Put L̂i =
Li

Z(Mi,Li)
and M̂i =

Mi

Z(Mi,Li)
, i = 1, 2, then

dim([M̂1,n−1 L̂1]) = dim([M̂2,n−1 L̂2]).

Therefore

dim([M1,n−1 L1])− dim(Z(M1, L1) ∩ [M1,n−1 L1]) =

dim([M2,n−1 L2])− dim(Z(M2, L2) ∩ [M2,n−1 L2]),

which gives

dim([M1,n−1 L1]) = dim([M2,n−1 L2]) + dim(Z(M1, L1) ∩ [M1,n−1 L1])−
dim(Z(M2, L2) ∩ [M2,n−1 L2]) ≥
dim([M2,n−1 L2]) + dim(Z(M1, L1) ∩ [M1,n−1 L1])− dim(Z(M2, L2) ∩ [M2,n L2]).
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38 M.R.R. Moghaddam, F. Saeedi, S. Tajnia and B. Veisi

The inequality follows, by using Lemma 2.1(3).
Conversely, by Theorem 3.6, there exists a pair of Lie algebras such that

(H,K) ∼n (M1, L1) and

Z(H,K) ∩ [H,n−1K] ⊆ [H,nK].

Now, by similar discussion as above we have

dim([M1,n−1 L1]) ≥ dim([H,n−1K]) + dim(Z(M1, L1) ∩ [M1,n−1 L1])−
dim(Z(M1, L1) ∩ [M1,n L1]).

Using the assumption

dim(Z(M1, L1) ∩ [M1,n L1]) ≥ dim(Z(M1, L1) ∩ [M1,n−1 L1]).

Therefore

dim(Z(M1, L1) ∩ [M1,n L1]) = dim(Z(M1, L1) ∩ [M1,n−1 L1]),

and hence
Z(M1, L1) ∩ [M1,n−1 L1] ⊆ [M1,n L1].

This completes the proof. 2

Now, we are able to prove our main result in this section.

Theorem 3.8. Let C be a relative n-isoclinism family of Lie algebras. If (M,L) is
a pair of Lie algebras in C such that L is finitely generated and [M,n L] is of finite
dimension, then there exists an n-stem pair of Lie algebras (R,S) ∈ C such that
dim([R,n−1 S] = min{dim([M,n−1 L]); for all (M,L) ∈ C}.

Proof. Lemma 3.5 gives that [M,n−1L]
Z(M,L)∩[M,n−1L]

is finite dimension. Using Theorem

3.6, there exists a pair (R,S) such that

Z(R,S) ∩ [R,n−1 S] ⊆ [R,n S],

and hence [R,n−1 S] is of finite dimension. By Theorem 3.7 and the above inclusion,
we obtain

dim([R,n−1 S]) ≤ dim([M,n−1 L]),

which is to say that

dim([R,n−1 S] = min{dim([M,n−1 L]); (M,L) ∈ C}. (∗)

To complete the prove it is enough to show that any pair of Lie algebras with the
above property is an n-stem pair. We proceed by induction, for n = 1 we have
dim(R) = min{dim(M); (M,L) ∈ C}. To prove our goal, suppose that J is a
complement of Z(R,S) ∩ [R,S] in Z(R,S). It is clear that J ∩ [R,S] = 0 and
by Corollary 2.10, (RJ ,

S
J ) ∼ (R,S). Now, by the minimality of dim(R), we have
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Characterization of relative n-isoclinism 39

J = 0. Therefore Z(R,S) ⊆ [R,S], and hence (R,S) is a 1-stem pair. For (M,L),
assume there exists an (n− 1)-stem pair (R,S) such that (R,S) ∼n−1 (M,L). By
Corollary 2.3, we have (R,S) ∼n (M,L) and using (*) and Theorem 3.7,

Z(R,S) = Z(R,S) ∩ [R,n−1 S] ⊆ [R,n S].

Therefore, (R,S) is an n-stem pair and the proof is complete. 2
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