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Abstract In this paper, a numerical method is proposed to estimate the solution of initial-
boundary value problems for a class of partial integro-differential equations. This is based on
the cubic B-splines method for spatial derivatives while the backward Euler method is used to dis-
cretize the temporal derivatives. Detailed discrete schemes are investigated. Next, we proved the
convergence and the stability of the proposed method. The method is applied to some test examples

and the numerical results have been compared with the exact solutions. The obtained results show

the computational efficiency of the method. It can be concluded that computational efficiency of the

method is effective for the initial-boundary value problems.

© 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. Thisis an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper has used cubic B-spline collocation method for the
following second order partial integro-differential equation

Ou(x,t)  [' _, 0%u(x, s) ,
o= [ = T s v,
>0, 0<a<l (1

x € [a,b], t

subject to the initial condition
u(x,0) = () 2)
and the boundary conditions

u(a,t) =0,u(b,t) =0, ¢=0. (3)
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The problem (1)—(3) can be found in the applications such
as heat conduction in materials with memory, compression of
visco-elastic media, biological models and chemical kinetics,
fluid dynamics and nuclear reactor dynamics [1-20].

Given that the analytical solution can only be available for
a few limited cases, we have used numerical solution as a major
approach to compute the solution of these problems. For this
goal, some numerical methods have been applied for partial
integro- differential equations. These methods include finite-
element methods [1-13], finite difference methods [14,15],
orthogonal spline collocation methods [16,17], spectral collo-
cation methods [18], Galerkin methods [19] and quasi wavelet
methods [20].

There is a challenge in developing accurate numerical meth-
ods for partial integro-differential equations; this is because of
the possible singularities of the kernel inducing sharp transi-
tions in the solution. Thus, the effective way is to apply collo-
cation method using the B-splines functions in handling the
sharp transitions caused by the singularities of the kernel. This
is because of two useful features of B-splines in numerical
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work. One feature is that the continuity conditions are inher-
ent. Compared with other piecewise polynomial interpolation
function, the B-spline is the smoothest interpolation function.
Second feature is the B-splines have small local support prop-
erty, i.e., each B-spline function is only non-zero over a few
mesh subintervals. Therefore, the resulting matrix is tightly
banded to discretize the equation. B-splines offer special
advantages, because they have smoothness and capability to
handle local phenomena. When it combined with the
collocation, these advantages can significantly simplify the
solution procedure of differential equations. The numerical
efforts have remarkably decreased, for example, the Regular-
ized Long Wave (RLW) equation can be solved by B-splines
in [21,22]. Caglar [23,24] used the B-splines to solve the bound-
ary value problems. As long as we know, the success of the B-
splines collocation method is depended on the choice of B-
spline basis. In special cases, the cubic B-splines have been
used to obtain the numerical solution of the Klein-Gordon
equation [25], the RLW equation [22] can be solved by quartic
B-splines and the quantic B-splines have been used to build up
the numerical solution of the Burgers equation in [26], the
KdVB equation [27], the RLW equation [28], the Kuramoto-
Sivashinsky equation [29] and cubic spline quasi-
interpolation and multi-node higher order expansion have
been used to solve the Burgers equation in [30]. Most recently,
the quantic B-spline collocation method is applied to obtain
the numerical solution of fourth order partial integro-
differential equations in [31].

The paper is organized as follows. Detailed description of
Section 2 is explained about the cubic B-splines collocation
method. In Section 3, we formulate our cubic B-spline colloca-
tion method for solving the problem, e.g. (1)—(3). The stability
analysis is carried out via Von-Neumann stability as given in
Section 4. The convergence analysis of the method is described
in Section 5. In Section 6, numerical experiments are tested to
demonstrate the viability of the proposed method and this
paper ends with a conclusion in Section 7.

2. Description of the method

In this section we use the cubic B-spline collocation method to
compute the approximate solution of Egs. (1)—(3). It can be
written as a linear combination of cubic B-splines basis func-
tions. Consider a mesh ¢ = xy < x; < --- < xy_; < xy =b as
a uniform partition of the solution domain a < x < b by the
knots x; with h = x4,y —x; = (b—a)/N,j=0,1,...,N— 1.
The numerical treatment for solving (1)—(3) using the collo-
cation method with cubic B-spline is to find an approximate
solution U™ (x, ?) for the exact solution u(x, ) in the form

N+1

UN(x, 1) = > (1) Bi(x), 4)

j=—1

where values of «;(¢) are unknown time dependent quantities
to be determined by the boundary conditions and collocation
of the partial integro-differential equation.

The cubic B-splines B;(x) for j=—1,0,...,N+1 at the
knots are given as follows [32,33]:

(x = x2)7, x € [Xj-2,X-1)
. (x—x2) —4(x —x1)°, x€lx,x)
By(x) = B (e X) =4 = X)X € [, xm) (%)
(2 — )%, X € [Xj1, X542)
0, otherwise,

where {B_y, By, By,...,By_1, By, By;1} form a basis over the
region a < x < b. Each cubic B-spline covers four elements,
so that each element is covered by four cubic B-splines. The
values of B;(x) and its first and second derivatives are given
as in Table 1. Using the approximation solution (4) and the
cubic B-spline functions (5), the approximate values of
UV(X) and its two derivatives at the knots are determined in
terms of the time parameters o; as follows

Uj = oy + 405 + o
U =3 (o1 — 1) (6)

" __ 6
Uj 7}[—2(06]',1 —20(j+06j+1)

From (4), the boundary conditions (3), reads

U™ (xo, 1) = Z“i(f)Bf(xo) =0
o g
UN(xn, 1) = D o) Bi(x) = 0

=1

In view of Table 1 and from (8), we get

(3)

{O(_l +40€0+O{1 =0
oy-1 + 4oy +oay =0

We will use the results of this description in next section.

3. Numerical scheme

In this section, the numerical scheme is proposed for solving
the one dimensional partial integro-differential equation with
the weak singularity kernel, i.e.

u(x,1) = /[ (t =) "un(x,s)ds + f(x, 1), x€][0,1],

t 0> 0, 0<a<1 9)
subject to the initial condition
u(x,0) = v(x) (10)

and the boundary conditions
u(0,1) =0, wu(l,r)=0, r=0. (11)

In this method, the time derivative is dealt with the first
order backward Euler scheme and the cubic B-splines are
employed to approximate the space derivative. First, let the
time level is denoted by 7, = nAt,n =0,1,..., where At is the
time step. To apply the proposed method on (9) at time point
t = t,;1, the first expression in the left of(9) is approximated by

' (x) — u'(x)

<x<1,n>1. 12
A7 , 0<x<1,n> (12)

ur(x7 tn+1) ~



Cubic B-splines collocation method 2159
Table 1 Coefficients of cubic B-splines and its derivatives at knots x;.

25 253 Xj-1 25 Xji+1 Xj+2
B/(x) 0 1 4 1 0
Bi(xj) 0 i -7 0
H) : : & : 0

Therefore, for every x € [0, 1], we have by imposition the boundary conditions (8). Thus, the system
() — 10 (x) foes (18) is reduced to a tri-diagonal system of N + 1 linear equa-
M:/ (tar1 — 8) "ty (x, 8)ds tions and N+ 1 unknowns. For the sake of simplification,
At 0 the system (18) is denoted by the following matrix form

+f(-x7 tn+1) (13) Ad:F, (19)
The first expression in the right side of (13), yields where the matrices 4.« and F as follow
/ " (tas1 — 8) “ter (X, 8)ds = /”+ S Uy (X, Ly — 8)ds [y—48 0 0 0 - 0 7
! o B y B0 - 0
= Sixu,\i\'(xv Ihy1 — S)dS
%/[, fljs1 A= ‘ ﬁ ! ﬁ )
= Zu.\'.\'(xa tllﬁHl) / s7"ds K . 0
et / 0 0 B 7 B
=15 D ey, ) [G+ 1) =77, ) 0 0 0 y—4p
j=0
(14) a= [t ot a’,’v“]T, n=0,1,2,..., F
Let b;= (j+ 1)'™* —j'=*, by substituting (14) into (13) and =[Fo,Fy,...,Fy)"
rearranging, we have
where
u(x) _AE ~bou (X, tug1) 6T 6T
1 —« 0Uxx n+1 ﬂzlf?, y:4+? (20)
A12 * &
=1'(x) + Zb e (X, Lji1) + ALFX, Byi) (15)  We choose
. L . . . (,0) =u’(x), xel0,1
Now, the space discretization of (15) is carried out using (4) u(x,0) = w'(x), x€0,1]
and the collocation method is implemented by identifying the ~ and by partitioning [0,1] into N+ 1 points, namely

collocation points as nodes. Therefore, for i =0,1,..., N, the
following formula obtain

141 Atz ; ! n+l /!
Ut =2 by B ()
j=-1
tz o n NA-1
— Un Zb Zan k+lB// +Al +1 (16)

k=1 j=—1

where o+ = o;(t,11). /1" = f(x;, ts1). U is the approximate
solutlon of u(x;) at (x;,2,11) in (13) and B/(x;) is the second
order partial derivative with respect to the space variable x
of B; at x;. Let T= A’ — and

n N+1

F=U"+ TZkaa” KB (x

k=1 =1

DAL i=0,1,...,N,

(17)
The Eq. (16) yields to the following simplified version

N+1

> {Bj(x,-) - TB,;'/(xi)] o = F,

i=0,1,...,N. (18)

Jj=—

The system (18) consists of N + 1 linear equations with N + 3
unknowns, o', it ...+l To obtain the unique solution
for this system, the parameters o

"t and o), are eliminated

Xo, X1, .., Xy and evaluate «°(x) at the points, we get the initial
vector U° = [uf, ;... ,u,_,,u].

4. The stability of the method

The stability of the proposed method is proved by Von-
Neumann method. We use Table | and set f{x;,#,.1) =0 in

(18) for any x;,i=0,1,..., N, to get
ﬁcxrﬁrl + ,yan+1 +ﬁ0(7:11 — Fi> (21)

where

~ 6T <

Fi= (o + 4o + o) +— Y by
( i—1 i i ) h2 — 1( i—1

n—I+1 n—I+1
— 207" o)

Next, we assume that the solution of (18) is presented as

n __ zn kinh
o, =¢e

where ¢ represents the time dependence of the solution, the
exponential function shows the spatial dependence such that

nh represents the position along the grid and k is vV —1. By sub-
stituting o into the (21), we have

Zb an 141 kmh (22)

vn kmh

Pf’1+1€k“1/1 _
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where In definition of R in (23), if we set R =0, then 1 =0. As a
P = B(eMh 4 o) 4 result, the Eq. (25) can be rewritten as
1
Q:eknh_‘_e—knh_i_4’ (23) én_%én—l :0:>é:0 or é: _g'

R = ekqh + e*knh —_2.

On the other hand, substituting the values of y and f from (20)
into (23) and using " + ¢ K" = 2cosnh, (23) becomes as

follows:
P=2(1- )cosnh+ (4+1 7)
0= 2cosr]h +4, (24)
R = 2cosnh — 2.

Now, dividing both sides of (22) by Pée*"" and after rearrang-
ing the results equation, we have

zn 6T R n 6TR £n—.
& <Q+h2 ) ‘f—be I= (25)
We choose
_ _ QO _ 6TrR
G==pyPr
' 26
{01_—(;]—;%[7/, 1:2,...71’1. ( )

Using (26), the Eq. (25) becomes as follows

"t a4 g éta, =0 (27)

It is easy to see that in (24), P, Q > 0 and R > 0. Therefore, all
of the coefficients a;, as, ..., a, are positive in the Eq. (27).

In the rest of the procedure, we also need to use the follow-
ing theorem:

5” +a1€v)

Theorem 4.1. For all values of roots x; of an arbitrary
polynomial as

P(x) = aox" + a1x”7] + -

we have

+ ay,
I4] <maX{1,Z
Jj=

4 } (28)

4
2%}

Proof. For proof see [34].

Now, for stability, it must be proved that all roots ¢; of the
Eq. (27) satisfy |&;| = 1. According to Theorem 4.1, @y = 1 and

a;>0,j=1,...,n. So, we have
So[a] L @+ FRELY)
doy a P

=

(@ +%R((n+ 1) - 1)

= 29
. , (29)
where
Zb 720+1> /7= )T - (30)
Suppose N, = (n+1)""" — 1. From (29) we obtain
Q +6TRN )

Za/ —a (31)

Therefore, stability condition in this case is proved.
If R+ 0(R < 0) and from (31), if we have

- (Q + %ZT RNx) <P, (32)

then the stability condition, namely |&;| < 1, is fulfilled.
Now, using Eq. (24), from (32) we obtain

—4cosnh +1§—2T(Nx —1)(—cosnh+1) <0 (33)
or

h> %7_1) 0 (34)
cosn TN, 1)

Therefore, (34) is the condition for conditional stability of the
method.

5. Convergence analysis

For proving the convergence of the proposed method, we esti-
mate the convergency in space and temporal direction sepa-
rately. First, we describe the convergency in the space
direction with proving the following theorem:

Theorem 5.1. Let ui(x) be the exact solution of Egs. (1)—(3) and
5(x) be the B-spline collocation approximation to u(x), then the
method has second order convergence and

[i(x) = 5(x0)llc < 0, (35)

where @ = JLh* + k is finite constant.

Proof. Suppose u(x) be the exact solution of Eq. (1)-(3) and
also §(x) be the cubic B-splines collocation approximation to
u(x). Therefore, we have

N+1

= > 3(1)B(x) (36)

=1

2

where o = (a_1, do, . .., Ony1)-
Also, we assume that 5(x) be the computed cubic B-splines
approximation to 5(x), namely

N+1

= > 5%(1)By(x) (37)

=

where o = (&,1, &0, . 7EN+1)-

To approximate the error [|u(x)— 5(x)||,,, we have to
estimate the error |[7(x)—5(x)|l, and ||5(x) —5(x)|
separately.

Due to Eq. (18), to compute s(x) and 5(x), we must obtain

the values of vectors @ and a from two systems of linear
equations as follows
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Az =F, (38)
and

Az =F. (39)
Now, by subtracting (38) and (39), we obtain
A@—a)=F-F. (40)

On the other hand, due to the definition of the matrix A and
Eq. (19), A is a strictly diagonally dominant matrix. Thus, it
is nonsingular. Hence, we can write

a-a=A"(F-F) (41)

Taking infinity norm from (41), we obtain

2 — @l < A7|LIF - Fl. (42)

Now, assume that #;(0 < i < N) is the summation of the ith
row of matrix A = [a;f] y,).(v1)- Therefore, we have

N
no=Y ay=7—4p, (43)
=0
N
n=Y ay=y+2p, i=1,.. ,N-1 (44)
j=0
N
Ny =Y ay =7 —4B. (45)
=0
From the theory of the matrices, we have:
Z% =1, k=0,1,...,N, (46)
where a;' are the entries of A™'. Thus,
-1 —1 1
A7l = Zlaz‘, | < Sy (47)
where n = ming;cy 17; = min(ox — 4p,7 +2) = mln(—ZT7 6).
Substituting (47) into (42) we can find
SO I, =
Hm*ot\loc<ﬁl\F*Flloo (48)

For computing the upper bound of ||F — f||m,
for all values of 0 < i < N, we have

7ﬂ+1|

Z'bk |~n k+1 A:',:I](Jrl' +2|&':7—k+1

from Eq. (17)

|F, — Fi| < \a, — 0 + Arfr!

_ an— /(+1| 4 ‘OC” k+1

7 ) (49)

i+1

Now, we need to recall the following theorem. [J

Theorem 5.2. If f(x) € ¢*|a,b],|/Y) (x)| < L,Vx € [a,b] and
A={a=x)<x <--- <xy=Db} be the equally spaced parti-
tion of [a, b] with step size h. If s(x) is the unique spline function
interpolate f(x) at knots Xy, x1, ..., Xy, then there exit a constant
A; such that,

<ALLEY, j=0,1,2,3.

Proof. See [35,36]. Now, due to the above theorem, we have

i — 1] = [5(x;) — S(x;)| < ALK (50)

In addition, {b;};_, is a sequence of positive terms descending
and b, <1 for 1 < k < n. Thus, from (50) and by supposing
Viak =ﬁ7“, we can rewrite (49) as follows

T n
|F — F||, < oLh*+ = > i, (51)
k=1
where
(‘&;:kﬂ _ a;x:]kﬂ' + 2‘&«7—k+| _ an k+1| 4 |~'11+|k+] _ &;L:IHID
< my.

By assuming 3°_ my = M, and ZoLh* + SIM, = K,, we get
|F—Fll, <K, (52)
Using (52), from (48) we have

& —a. < Ki (53)

where Ki? =1 & 18T)K,, O

To proceed the rest we also need to note the following
theorem.

= max(}

Theorem 5.3. The B-splines {B_i,By,Bi,...,By_1, By, Byi1}
satisfy the following inequality

N+l

Y B(x)[<1, 0<x<1 (54)
i=—1

Proof. See [37].
Now, by subtracting (37) from (36), we have
N+l

> (@ — ) B(x). (55)

j=—1

s(x) —5(x) =

Using the above theorem and after taking the norm from (55),
we obtain

N+1
I5(x) = 50 le = || D (@ — @) By(x)
=1 .
N+1 )
< DBl — il < ki (56)
=1

On the other hand, from Theorem 5.3and after taking the
norm from (50), we have

lla(x) = 5(x)||., < ALh". (57)

Therefore, from (56) and (57) we get

< [ (x) = 5(0) e + I150x) = 5(3) [l
< JoLh* + kh* = wh?, (58)

[[(x) = ()l

where w = A LW + k. O
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Now, for estimate the convergence in temporal
direction, we applied Taylor expansion. Therefore, we have
from (15)

AP
(MM(X) + Atu;’ + 714;‘[ + - )
A127o<
l—a

AP
b() uxx(xu [n) + Atuxxl(xy Zn) + Tuxxu(xa tn) +---

A127o< n
ijuxA’(xv tn-js1)

1 -0t

+ At(f(x, 1,) + Atfi(x, 1))

= '(x) +

(59)
And from rearranging we get
Al(u’[’ — flx, tn))
AP o
- m bOuxx(x7 [n) + /:ZIbiuxx(xa ln—j+1)
2
+ Atuxxt(x7 tn) + 7 (uxxtt(xy In) + - )
AP
+5r (u, + fo(x,8,)) + -+
= 0(A7) (60)

Finally, if we suppose that u(x, ) is the exact solution of the
Egs. (1)-(3) and u"(x, 1) is the numerical approximation to this
solution by applying the numerical method, from (58) and
(60), we will have

(e, 1) = (e, 1) || < plk + 7). (61)

where p is finite constant.

6. Numerical experiments

In this section, some numerical examples are considered to
demonstrate the efficiency and accuracy of the proposed
method. All calculations are run with Matlab R2014a software
on a Pentium PC Laptop with Core i3-350M Processor
2.26 GHz of CPU and 4G RAM. We have solved the various
examples based on a variety of temporal and spatial divisions.

o
&

I
'S

o
w

o
¥

u-numerical

space 0 o

time

Figure 1
N = 100.

The numerical solutions of example 6.1 for M = 50 and

0.5

0.4

0.3

u-exact

0.2

space 0 o time

Figure 2
N = 100.

The exact solutions of example 6.1 for M = 50 and

space

30 b

20 b

10

! ! ! ! ! ! ! ! !

5 10 15 20 25 30 35 40 45 50
time

Figure 3 The L, error of example 6.1 for M = 50 and N = 100.

In all of examples, we have used the variables M and N for
temporal and spatial divisions, respectively.

Furthermore, because of conditionally stability, we have
applied the stability condition for temporal and spatial divi-
sions and obtained the Error of computations in L, and L
error norms as follows

N 1/2
L2 — Huexact _ unum”z — Zluf)"aﬁ‘[ _ u?um‘z

=0
LOO — Hucxacl _ IIM”HHOO — (El’i)}v‘u;‘xab‘l _ ur.mm|

Example 6.1. In Eqs. (1)-(3), consider f(x,?) = 2¢(x — x?)+
48(52 +1), for a=1 the exact solution is u(x,?)=
(x —x?)( +1),x €[0,1],0 < ¢ < 1. The initial condition is
u(x,0) = (x — x?),x € [0,1] and the boundary conditions are
u(0,¢) =u(l,7) =0,0 < r< 1. We have solved the problem
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Table 2 The L, error norm for some cases of divisions of N and M for example 6.1.
N =100 N =200 N = 500 N = 2000
M =50 0.0014 0.008 0.005 0.004
M =100 0.003 0.0015 0.0006 0.0003
M =200 0.006 0.003 0.001 0.0003

u-numerical

space 0 o time

Figure 4
N = 100.

The numerical solutions of example 6.2 for M = 50 and

-0.5
150

space 0 o

time

Figure 5
N =100.

The exact solutions of example 6.2 for M = 50 and

based on a variety of temporal and spatial divisions and
applied the stability condition for temporal and spatial
divisions. We have obtained the error of computations in L,
and L,,. The numerical and exact solutions are shown for a
case of divisions as M = 50 and N = 100 in Figs. | and 2.

On Fig. 3. the L, error norm is shown for the case of
M =50 and N = 100.

On Table 2, the L error norm is shown for some cases of
divisions of N and M as follows.

Example 6.2. The following example is taken from [38]. In Eq.
(1), we assume that

space 0 o

time

Figure 6 The L, error of example 6.2 for M = 50 and N = 100.

Table 3 The L., error norm for some cases of divisions of N
and M for example 6.2.

N =100 N =200 N =500 N = 2000
M =50 0.0089 0.0047 0.0023 0.00013
M =100 0.017 0.0088 0.0036 0.003
M =200 0.035 0.017 0.0071 0.0018
ety = 2 (singeo) — 4 sin2nn) | — 20 sin(2m)
X, 1) = 72 sin(nx) — — nx) | = 2m2sin(2nx
: VT VT
The exact solution with a=1 is u(x,t) = sin(mx)—
3
a2

7 sin(2nx). The initial condition is u(x,0) = sin(mx),
x € [0, 1] and the boundary conditions are u(0,7) = u(1,7) =0,
0 < r < 1. The numerical and exact solution are shown for a
case of divisions as M =50 and N =100 in Figs. 4, 5 and
on Fig. 6 the L, error norm is shown for the case of M = 50
and N = 100. On Table 3, the L, error norm is shown for some

cases of divisions of M and N as follows.

Example 6.3. The following example is taken from [39], which
considered

2

S0 = (1—x) (1 —%) Lo

The exact solution is u(x, 1) = (1 — x?)¢,x € [—1, 1]. The initial
condition is u(x,0) = 0,x € [—1,1] and the boundary condi-
tions are u(—1,7) =u(l,7) = 0,0 < 7 < 1. The numerical and
exact solution and the L, error norm are shown for a case of
divisions as M = 75, N = 100 in Figs. 7-9.
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7. Conclusion

The results which we obtained in this research indicated that

the discrete schemes are developed in this study and the stabil-
08 ity and convergence of the method is confirmed by the analy-
3 06 sis. The numerical results have indicated the accuracy of the
'g method. In other words, to validate the proposed method of
204 this study, we have presented some numerical examples. The
2 02 results have also demonstrated that the proposed computa-
: ‘ tional method is efficient for these problems.
L . st
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