
7th International Conference on Computer and Knowledge Engineering (ICCKE 2017), October 26-27 2017, Ferdowsi University of Mashhad

978-1-5386-0804-3/17/$31.00 ©2017 IEEE

A Performance Counter-based Control Flow Checking Technique for
Multi-core Processors

Hussien Al-haj Ahmad, Yasser Sedaghat, Mohammadreza Rezaei
Dependable Distributed Embedded Systems (DDEmS) Laboratory

Computer Engineering Department
Ferdowsi University of Mashhad

Mashhad, Iran
hu.alhajahmad@stu.um.ac.ir, y_sedaghat@um.ac.ir, rezaei.mr89@stu.um.ac.ir

Abstract— Today, both the rapid improvement of process

technology and the arrival of new embedded systems with high-
performance requirements, have led to making the current trend
in processors manufacturing shift from single-core processors to
multi-core processors. This trend has raised several challenges for
reliability in safety-critical systems that operate in high-risk
environments, making them more vulnerable to soft errors.
Hence, using additional methods to satisfy the strict system
requirements in terms of safety and reliability is unavoidable. In
this paper, an efficient hybrid method to detect control flow
errors in multi-core processors has been proposed and evaluated.
About 36,000 software faults have been injected into three well-
known multi-threaded benchmarks at run-time. The experiment
results show that the fault coverage is 100%. The results also show
that the execution time overhead varies between 31.25% and
51.02%, and the program size overhead varies between 20.23%
and 67.64% with respect to the employed benchmark.

Keywords—multi-core; hardware performance counter; control
flow checking; safety-critical systems

I. INTRODUCTION
Recently, the rapid improvements in processors technology

and the need to achieve high performance computations have
led to produce processors with more cores, so-called multi-core
processors [1, 2]. Using these processors has led to improve the
performance significantly. Therefore, the improvement in
processors manufacturing has also extended to cover the
embedded systems that are widely used in several applications
such as avionics and automotive control systems [1, 2]. While
multi-core trend has become the common trend in processor
technology, it has introduced several challenges for reliability
in safety-critical embedded systems [1, 3, 4]. Strictly speaking,
the advancements in the process technology in tandem with the
production of chips comprising millions of transistors have led
to making these processors more susceptible to faults [5-8].
Critical embedded systems which work in harsh environments
are more vulnerable against faults. Therefore, the use of a
faster processor, e.g. multi-core, will not be sufficient to meet
the strict system requirements such as safety, real-timeness,
and reliability. As a result, several recent projects such as
ARTEMIS ACROSS [5], have focused on employing multi-
core technology in embedded systems in order to make these
systems work efficiently with high level of reliability.

Transient faults, also known as soft errors, pose a major
threat to system reliability [3, 5]. When a soft error, e.g. Single
Error Upset (SEU), occurs in a safety-critical system, it may
lead to disastrous. As a result, they will need to be addressed in
the design phase of the system development process [8].
Studies have been shown that transient faults can be classified,

in terms of effects, into data errors and control flow errors
(CFEs) [3, 6, 8]. Data errors appear when the value of a
variable is changed, erroneously. A CFE appears if a program
is executed in an abnormal fashion (deviations from the normal
execution flow). The experimental results have shown that
about 33%–77% of these faults lead to CFEs [9, 10],
depending on the type of processors used [11]. Hence,
employing additional methods to satisfy the system reliability
requirements and detect any unanticipated behavior caused by
CFEs as early as possible is unavoidable [10-12].

In this paper, a hybrid, efficient technique to detect CFEs in
the modern multi-core processors is proposed. This method
takes the advantage of the hardware performance counter, a
common feature in the most modern processors, in order to
perform the control flow error detection and keep the system
reliable. The method proposed in this paper can achieve 100%
of control flow error detection, including unexpected interrupts
errors, e.g. infinite loops.

The rest of this paper is organized as follows: Section II
summarizes the related work on control flow checking methods
and highlights the motivations of presenting control flow error
detection method for multi-core architectures. Section III
discusses the proposed method and the fault model used in this
paper. Section IV discusses the evaluation of the proposed
method. Finally, conclusion section concludes the paper.

II. RELATED WORK
A CFE may occur in both computers and digital systems

[7]. This error may cause by an error occurred in processor
registers, such as occurrence of SEU in a bit of the Program
Counter (PC) register during the execution of the program, or
in system memory. As a result, the program will violate the
correct sequence of its control flow and result in incorrect
outcomes [13]. Hence, control flow checking (CFC) methods
which provide a cost-efficient error detection, are considered
an essential need to keep the system reliable [9, 11, 14, 15]. In
order to detect CFEs, numerous methods have been proposed
in the literature that fall into three broad categories, namely,
hardware-based CFC, software-based CFC, and hybrid CFC
methods, combining software-based CFC with hardware-based
CFC methods [12].

The general approach adopted by the most of the CFC
methods is dividing high-level program source code into basic
blocks (branch free interval). A basic block (BB) is formed
from continuous instructions that run continuously, in the
absence of errors, from the first instruction to the last one.

461

Branches or call instructions are only allowed at the end of
BBs. These blocks associate with each other through directed
edges that are used to represent the legal jumps. Control flow
graph (CFG) is formed by combining a set of BBs with a set of
corresponding legal jumps. Extracting the CFG is an essential
step in CFC process. Therefore it should extract accurately in
which it can reflect the proper control flow of the
corresponding program without any limitations [3].

A. Hardware-based CFC Methods
Hardware-based CFC methods usually lie on introducing

additional, special purpose hardware modules (like a watchdog
processor). A watchdog processor is a processing element used
for detecting CFEs by monitoring the main processor during
running the program. Although these methods introduce a
higher fault coverage [3, 8], they impose higher costs on the
system. Therefore, These methods are typically considered an
appropriate solution when cost is not crucial or reconfiguring
hardware architecture is allowed.

B. Software-Based CFC Methods
Software-based CFC methods use CFG in tandem with

signatures and additional instructions in order to detect any
undesirable violations. Examples of such methods are
Enhanced Control Flow Checking using Assertions (ECCA)
[16], CFC by Software Signature (CFCSS) [14], Control-flow
Error Detection through Assertions (CEDAs) [11] and
Assertion for CFC (ACFC) [17]. Enhanced Committed
Instructions Counting (ECIC) is an error detection method
presented in [18] for embedded and real-time systems using
commercial off the shelf (COTS) processor. This method
exploits the performance monitoring features [19] of a
processor in order to detect errors. ECIC is applied to single-
threaded benchmarks and the experimental results were shown
that the error detection coverage is close to 98.18%. ECIC,
however, has involved limitations. It can be applied only in
COTS processors that have performance monitoring features
and special pins (Event Ticking Pins). ECIC drawbacks have
been eliminated by the method proposed in [20]. In [3], a
software behavior-based technique is presented to detect CFEs
in multi-core architectures. To examine the correctness of
sequence execution of the program, a software-based watchdog
thread is developed and scheduled to run in parallel with the
main process. However, the performance gained by multi-core
processors will be adversely affected if a separate core is
assigned to run the watchdog thread.

Software CFC methods are low-cost, i.e. it can be
implemented entirely in software without any additional
hardware elements. In addition, they have the capability of
being implemented in applications when using hardware
methods are not possible, especially for COTS processors and
modern processors equipped with cache memories [5, 6, 15,
21]. However, they suffer from significant problems such as
performance degradation due to the redundant instructions
inserted to the program.

C. Hybrid CFC Methods
Most of the hybrid CFC technique are based on redesign

the processor [22], or employing a special hardware module to

observe the execution of the main processor [5, 6]. To improve
error detection coverage, the hybrid CFC methods take
advantages of both hardware and software CFC methods. Since
hardware CFC technique can provide a higher fault coverage,
hybrid CFC technique, usually, employ hardware for both
accelerating the checking and improving the error detection
capability. Combining software-based CFC technique with
external hardware module may result in higher average of the
control flow error detection, e.g. Hybrid Error-Detection
Technique Using Assertions (HETA) [5] and [6, 21, 23].

The analysis of three important issues has led to introduce
the proposed technique. First, a general trend in process
technology is towards multi-core processors, and the safety-
critical systems have shifted to use multi-core processors
instead of single-core. Second, lack of CFC methods that run in
multi-thread environments for detecting CFEs. Third, high
memory and performance overhead produced by previous CFC
methods are not allowed in real-time safety-critical embedded
systems that have tight memory and performance budget.
Hence, introducing a new hybrid method to provide full error
detection with appropriate overheads, is mandatory.

In this paper, a hybrid CFC method is presented. This
method aims to exploit the hardware facilities, i.e. the counters
implemented in modern processors in order to detect CFEs.
Next section discusses the proposed method in more details.

III. THE PROPOSED METHOD
The proposed method uses the counters in order to detect

CFEs. The hardware performance counter, basically, is
composed of a small number of special purpose configured
registers [19]. Since these registers are built inside a processor
(on-chip structures), they are able to collect information about
the running programs without affecting the performance. In
multi-core processors, these counters are independent of each
other in the sense that each core has its own set of counters
[24]. The proposed method employs the counters beside
redundant software instructions in order to count and check the
executed instructions. Also, an interface which provides access
to the performance counters is needed. Moreover, this interface
should not only offer an ability to get access to the
performance counters per-thread but also guarantees that each
available counter has been customized for a particular thread.

A. Fault Model
CFEs can grouped into three general categories [8, 11]: 1)

illegal intra-basic block jumps: they denote incorrect jumps
within a block, 2) illegal inter-basic block jumps: they refer to
incorrect jumps to other block, and 3) illegal jumps from a
basic block to outside the program space. In the proposed
method, the program is divided into basic blocks and partition
blocks (PBs). PBs contain extra software instructions that are
added at compile time to detect any violation affects the
program control flow. The PB resides between two consecutive
BBs. As shown in Fig. 1 (a), the three illegal jumps mentioned
above will lead to raise nine possible types of CFEs: Type 1:
from a BB to the beginning of another BB, Type 2: from a BB
to any point in another BB, Type 3: from a BB to any point in a
PB, Type 4: from the end of a PB to the beginning of another

462

Fig 1. (a) Fault Model, (b) CFE-tolerant basick block structure

BB (legal branch but invalid), Type 5: from a PB to any point
in another BB, Type 6: from a PB to any point in another PB,
Type 7: from a BB to outside the program memory space, Type
8: from a PB to outside the program memory space, Type 9:
from a BB to any point in the same BB.

Type 7 and 8 are almost detected by the operating systems
as a segmentation fault [3, 9, 15]. Error type 4 is often occurs
due to data errors. As illustrated early, transient faults in
processors may result in CFEs and data errors. This paper
treats CFEs and not data errors. Most of CFC methods are not
able to detect control flow error represented by Type 7, 8 and
the illegal jumps to the same basic block, e.g. Type 9. The CFC
methods, like software-based CFC methods, in order to detect
such errors, insert extra instructions inside basic blocks. While
using this scheme enables to detect intra-block CFEs, it may
lead to comparative more performance overhead. The method
proposed in this paper addresses 9-types CFEs shown in Fig 1.
(a) as will be illustrated in the next section.

B. Mechanism for the proposed method
The hardware performance provides counters for counting

micro-architecture events like clock cycles, branch misses and
executed instructions [19]. As counters is an on-chip hardware
built inside a processor, there is very limited overhead in
counting such events. Some CFC methods proposed in the
literature, count the executed instructions inside a basic block
using inserted software instructions to detect any CFEs. This
scheme tends to be ineffective due to performance overhead.
Counting instruction by hardware performance counters in
order to detect CFEs will reduce the negative impact of extra
instructions on performance.

Whenever the selected event occurs during the execution of
the program, the processor increments the respective event
counter by one. The event selected in the proposed method is
the number of executed instructions. In order to detect control
flow errors in multi-core processor environments, the source
code of a program is divided into basic blocks and a control
flow graph is extracted for each thread from the source code
(per-thread CFG). Each per-thread basic block is assigned a
signature, “sig”, at compile time. The “sig” is a variable that

holds a value, which in the absence of errors, should be equal
to the counter value. Obtaining an accurate number of executed
instruction at compile time is hard. So, the value of “sig”
variable is obtained in two phases. First, the “sig” is assigned
an arbitrary value. Second, the program is compiled and
executed. Using the GNU Project Debugger (GDB), the
number of executed instructions is obtained accurately (by
adding a breakpoint at a specific place in the code and
retrieving the counter value). After that, the old value of “sig”
variable is updated to the value obtained at run-time. Then, the
program is compiled again. It is important to note that per-
thread CFG is extracted from the source code and the value
assigned to the “sig” variable was obtained after executing the
program. Function call instructions can appear at the end of BB
and the body of function will be handled as a separate CFG.
Thus, the functions are a part of BBs of the main CFG.

Additional instructions, also, are inserted and located at the
end of each per-thread basic block. The structure of the CFE-
tolerant basic block (after inserting the redundant instructions
to detect CFEs), is shown in Fig. 1 (b). These instructions
consist of two types (in loop basic block, there are three types
of the added instructions): retrieving the value of the counter
and “test” instruction. The task of “test” instruction is to
confirm that the current running basic block is executed
correctly (all its instructions are executed sequentially without
any violations).

PAPI (Performance Application Programming Interface)
provides a platform, operating system and machine,
independent access to the hardware performance counters [24].
It provides a set of functions for retrieving the counter value
for specific events. “PAPI_accum” function is used to retrieve
and accumulate the counters value. The counters are zeroed
and returned to counting after completing the operation. When
the control of the program reaches the PB, which contains
“test” instructions, the per-thread “array” (a variable defined
to hold the counter value) will store the counter content. In the
absence of errors, the value stored in the “array” should be
equal the “sig”. Otherwise, an error will occur in the program
and it will stop.

Basic block that is a header of a loop requires one
additional instruction (in addition to the two prior instructions).
When the control flow returns back to the header of loop BB,
the performance counter, due to the use of “PAPI_accum”, will
be accumulated making the “test” instruction interprets the
counter value as an error. The third instruction named “set” is
introduced to solve this problem. Having checked the “array”
under “test” instruction, “set” instruction sets the value of the
“array” to non-zero value in order to avoid any false CFE
detection. Overhead induced by “set” instruction is negligible
since it is limited to BBs which are the header of loops.

If error detection latency (EDL) —the interval between
fault activation and error detection [11]— is not critical, then
the instructions for checking CFE can be delayed. Meaning
that instead of inserting them at the end of each basic block,
these instructions can be added to critical basic blocks (basic
blocks where it is important to check for any violation in the
control flow of the program). This can result in reducing both
the memory and performance overhead.

463

C. False Accumulation
It is straightforward that any faulty behavior induced by

skipping some instructions can be detected when the program
control reaches “test” instructions. However, an illegal jump
from a basic block BBi to a specific place in another basic
block BBj, in the same thread, can lead to false accumulation
error if and only if the following conditions are met:

 Number of executed instructions in BBi + number of
instructions that will be executed in BBj = sigj.

 BBj ∉ suc(BBi),
Where suc(BBi) is a set of successors of BBi, and sigj is the
expected value of counter at end of BBj. Hence, the false
accumulation can occur, resulting in undetected CFE.
However, the probability of false accumulation is close to zero.

D. Optimization Issues
The performance is a major issue for embedded systems

[25]. High overhead in both memory and time execution of a
program raising from additional instruction inserted inside the
loop region, make the employed CFC technique inappropriate.
For this reason, these instructions are inserted outside the loop
region when it is possible to move them without any effect on
the final result. The desirable objective of this scheme is to
prevent the performance degradation resulting from repeated
execution of “test” and “PAPI_accum” instructions during
each loop iteration.

However, this scheme seems to be not suitable for event-
controlled loops or loops that have in their body conditional
statements (if-then statements). In this case, the proposed
method is forced to move the additional instructions inside the
loop region. However, this will increase performance
overhead. To reduce performance overhead, loop unrolling
technique [25], as a traditional compiler optimization method,
is involved in the proposed method. This technique aims to
reduce instructions that control the loop, such as “end of loop”
tests on each iteration, by rewriting loop body. Thereby
increasing speed of a program. Thanks to the loop unrolling
mechanism, inappropriate performance overhead can be
decreased to an acceptable value. The authors of [25]
investigated the impact of employing loop unrolling on control
flow reliability. The results of this investigation showed that a
significant fault coverage with acceptable overhead in memory
and performance can be achieved. The proposed method can
benefit from the loop unrolling technique with a huge positive
impact on the execution time of the program. The impact of the
loop unrolling technique on both memory and performance
overheads is investigated in the next section.

IV. EVALUATION OF THE PROPOSED TECHNIQUE
The proposed technique has been tested in two phases, at

the first phase the proposed technique have been implemented
and then assessed in the presence of injected faults. The second
phase challenged the methods efficiency considering memory
and performance overheads.

To assess the proposed method, a quad-core processor
system with shared memory, running Ubuntu Linux OS release
14.0.1 is used. This processor was selected due to it supports

hardware performance counter and multi-threaded programs.
Also, three well-known multi-threaded benchmarks are
employed. These benchmarks are Matrix Multiplication (MM),
Insertion Sort (IS) and Quick Sort (QS)

A. Fault Injection Experimental Results
Several studies have clarified that a transient error in the

PC register can lead to CFEs. Thus, the fault model used in the
experiments is the bit flip fault applied to the PC register. In
addition, a sophisticated Software Implemented Fault Injection
(SWIFI) method based on GDB is used to perform fault
injection at run-time without changing the number of
instructions executed. About 36,000 faults are injected into the
benchmarks. These injected faults will affect the program and
can result in different cases:

 CR (Correct Result): the injected fault does not change the
control flow of the program, i.e. the final result is
produced, correctly.

 OS (Operating System): the injected faults lead to deviation
the running of the program and produce exceptions like a
segmentation fault which, mostly, detected by the OS.

 IR (Incorrect Result): the injected fault changes the final
result and leads to a wrong output.

 TO (Time Out): the injected fault modifies the program
execution time (such as entering in infinite loops).

 ED (Error Detection): the injected fault is detected by the
test instructions that are inserted into each BB for control
flow checking.

The occurrences of unexpected interrupts or illegal infinite
loops (endless loops), is a major limitation of most previous
CFC methods. In order to detect infinite loops, the proposed
method exploits the PAPI feature named “overflow”.
“PAPI_overflow” is a low-level function provided by PAPI
which enables to call user-defined handlers when an overflow,
i.e. exceeding a predefined threshold, occurs. Based on the
foregoing, a hardware performance counter to count the clock
cycles needed by the program being run is established, and
“PAPI_overflow” is used. Whenever overflow occurs, the
handler will be called and infinite loop error, or unexpected
interrupts, is reported.

Fault injection results are presented in TABLE I. It shows
the number of injected faults, the occurrence of IR, TO, CR,
and ED. As is clear from this table, the number of faults that
caused an error in the used benchmarks are fully detected.
Thus, the fault coverage of the proposed method is 100%. It
should be mentioned that not all of the injected faults lead to
faulty results because some of them are detected by the
operating system.

B. METHOD EFFICIENCY
Higher fault coverage and overhead are not sufficient to

compare two different CFC methods because they are not able
to reflect the effectiveness of the proposed method, accurately.
In other words, there is a trade-off between three major
parameters: fault coverage, performance overhead and memory
overhead. Therefore the method adopted must provide an
appropriate balance between them as much as possible.

464

TABLE I. FAULT INJECTION RESULTS

Benchmark
Fault

Injecteda IR TO
Faulty
Results

(IR+TO)
CR ED

MM 12,000 772 7080 7852 0 7852
QS 12,000 429 3771 4200 612 4200
IS 12,000 1632 1521 3153 1719 3153

a. Not all the injected faults will lead to faulty results, some of them may
result in program crash.

As similar as some previous works [3, 8, 11], a metric named
“Evaluation Factor” is introduced in this paper. “Evaluation
Factor” takes the formula described below:

(1)

According to (1), the “Evaluation Factor” has a direct
relationship with “Fault Coverage” and a reverse relationship
with “Memory Overhead” and “Performance Overhead”.
“Fault Coverage” expresses the ability of the proposed method
to detect CFEs. While “Memory Overhead” and “Performance
Overhead” expresses the overhead incurred by additional
instructions. “Fault Coverage” is calculated using (2), where
ED denotes the number of detected CFEs and “Faulty Results”
denotes the number of incorrect results plus the number of
timeout errors induced by fault injection process.

(2)

In order to compute “Performance Overhead”, the proposed
technique uses the difference between time execution before
and after inserting redundant instructions. Equation 3 explains:

(3)

Where EtTp denotes the execution time of the CFE-tolerant
program, EtnonTp denotes the execution time of the target
program (program without CFC instructions). As for the
“Memory Overhead” resulted from inserting CFC instructions
to the target program, the difference between the size of the
CFE-tolerant program and the target program is used. As (4)
describes:

(4)

Where MTp denotes the program size of the CFE-tolerant
program, and MnonTp denotes the size of the target program.

In the next subsection, the paper will discuss the
performance and memory overheads incurred by applying the
proposed technique. In addition, it will show how the proposed
technique can benefit from the loop unrolling technique in
order to reduce the performance overhead.

C. Performance Evaluation
To quantify the performance and memory overheads, the

employed benchmarks are executed without any extra code.
The execution results with regard to execution time (ET) and
size of program code (SC) are recorded. Then, the CFC
proposed technique is applied to these benchmarks in two
different schemes (With-CFC, and With-CFC+LU).

TABLE II summarizes the percentage of the performance
overhead (PO), and the memory overhead (MO) incurred by
applying the proposed method (both without and with loop
unrolling technique) to three different benchmarks. As is
evident from TABLE II, the results show that the proposed
method incurs performance overhead varies between 31.25%
and 51.02%, and memory overhead varies between 20.23%
and 67.64% for different benchmarks, without using loop
unrolling technique.

Employing loop unrolling technique will result in lower
performance overhead, but this is at the expense of memory
overhead. However, this overhead can be controlled by
unrolling the most time-consuming loop “n” times. The “n”
variable so-called loop unrolling factor denotes the number of
times for unrolling the loop that consumes a lot of time until a
desired tradeoff between performance and memory overheads
is realized. Therefore, a new equation that enables a user to
achieve the tradeoff is introduced. Loop unrolling leads to
memory overhead due to repeating the loop region “n” times.
Therefore, the extra size overhead “Extra_Size Overhead”
results from loop unrolling is:

 (5)
Where “SUli” denotes the size of loop after unrolling it. “SOli”
denotes the original size of loop “li”. Variable “m” denotes the
number of loops in the program. “SUli” can be written as:

 (6)
“nli” denotes the loop unrolling factor of the loop “li”.
Therefore, with respect to (5) and (6):

 (7)
Moreover, the new program size “New_Program Size” will be
calculated as follow:

(8)

Where “Original Program Size” denotes the size of the
program without applying loop unrolling optimization.
Therefore the “Memory Overhead” induced by the loop
unrolling will be calculated as follow:

(9)

In addition, the “Performance Overhead” induced by the loop
unrolling will be as follow:

 (10)
Where “ETNP” refers to the execution time of the new
program produced after applying the loop unrolling. The
“ETOP” refers to the execution time of the original program.
CFC methods such as [3], [8], [11] and [20] incur
“Performance Overhead” (in average) ~10%, ~41%, ~30%,
~50% respectively. Based on the results presented in TABLE-
II, the “Performance Overhead” using Loop-unrolling is
reduced to 27.44% in average and the “Memory Overhead” is
about 57.1%. Based on (1) and the presented results in both
TABLE I and TABLE II, the “Evaluation Factor” of the

465

TABLE II. OVERHEAD CHARACTERISTICS
 Multithread Benchmarks

Parameters MM IS QS

Without-CFC ET 3914 129 160
SC 5.98 3.40 6.02

With-CFC

ET 5911 191 210
SC 7.19 5.70 9.31
PO 51.02% 48.06% 31.25%
MO 20.23% 67.64% 54.65%

With-CFC+LU

ET 5104 171 191
SC 7.97 6.21 9.55
PO 30.40% 32.55% 19.37%
MO 33.27% 80.34% 58.16%

a. Without-CFC is the target program without extra instructions
b. With-CFC is the modified program after inserted extra instructions.
c. With-CFC+LU is “With-CFC” in tandem with loop unrolling
d. ET denotes the program execution time (in milliseconds)
e. SC denotes the size of the program code (in kilobytes)
f. PO denotes the performance overhead
g. MO denotes the Memory overhead

proposed method using loop unrolling technique is about 50
(with 100% error detection).

V. CONCLUSION
This paper presents a hybrid CFC method for multi-

threaded programs running on multi-core processors. The
proposed method takes advantage of the hardware performance
counter common feature in modern processors to perform CFE
detection and keep system reliable. The distinctive advantages
of this method over previous CFC methods are the ability to
detect unexpected interrupts errors. Experimental results
showed that using the proposed technique, 100% of CFEs
could be detected. It is important to note that the proposed
method is more portable than other hybrid CFC methods. It
does not require any modifications to the processor or using
extra hardware monitoring module to observe the execution of
the main processor, i.e. the extra hardware overhead is zero.
This method requires only that the target multi-core processor
has a hardware performance counter feature. However, most
modern processors contain hardware performance counters.

REFERENCES
[1] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D. de Dinechin, “The shift

to multicores in real-time and safety-critical systems,” International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), IEEE, pp. 220-229, 2015.

[2] F. Reichenbach and A. Wold, “Multi-core Technology--Next Evolution
Step in Safety Critical Systems for Industrial Applications?,” 13th
Euromicro Conference on Digital System Design: Architectures, Methods
and Tools (DSD),IEEE, pp. 339-346, 2010.

[3] M. Maghsoudloo, H. R. Zarandi, and N. Khoshavi, “An efficient adaptive
software-implemented technique to detect control-flow errors in multi-core
architectures,” Journal of Microelectronics Reliability, Elsevier, vol. 52,
Issue. 11, pp. 2812-2828, 2012.

[4] C. El Salloum, M. Elshuber, O. Höftberger, H. Isakovic, and A. Wasicek,
“The ACROSS MPSoC–A new generation of multi-core processors
designed for safety–critical embedded systems,” Microprocessors and
Microsystems, vol. 37, Issue. 8, pp. 1020-1032, 2013.

[5] J. R. Azambuja, M. Altieri, J. Becker, and F. L. Kastensmidt, “HETA:
Hybrid error-detection technique using assertions,” IEEE Transactions on
Nuclear Science, vol. 60, pp. 2805-2812, 2013.

[6] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M. S. Reorda,
and L. Sterpone, “A new hybrid nonintrusive error-detection technique

using dual control-flow monitoring,” IEEE Transactions on Nuclear
Science, vol. 61, Issue. 6, pp. 3236-3243, 2014.

[7] M. Fazeli, R. Farivar, and S. G. Miremadi, “Error detection enhancement
in powerpc architecture-based embedded processors,” Journal of Electronic
Testing, vol. 24, Issue. 1-3, pp. 21-33, 2008.

[8] S. A. Asghari, H. Taheri, H. Pedram, and O. Kaynak, “Software-based
control flow checking against transient faults in industrial environments,”
IEEE Transactions on Industrial Informatics, vol. 10, Issue. 1, pp. 481-490,
2014.

[9] R. Vemu, S. Gurumurthy, and J. A. Abraham, “ACCE: Automatic
correction of control-flow errors,” IEEE International Test
Conference,IEEE, pp. 1-10, 2007.

[10] Y. Sedaghat, S. G. Miremadi, and M. Fazeli, “A software-based error
detection technique using encoded signatures,” 21st IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems,IEEE, pp.
389-400, 2006.

[11] R. Vemu and J. Abraham, “Ceda: Control-flow error detection using
assertions,” IEEE Transactions on Computers, vol. 60, Issue. 9, pp. 1233-
1245, 2011.

[12] R. G. Ragel and S. Parameswaran, “A hybrid hardware--software
technique to improve reliability in embedded processors,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 10, Issue. 3,
p. 36, 2011.

[13] A. Chaudhari, J. Park, and J. Abraham, “A framework for low overhead
hardware based run-time control flow error detection and recovery,” VLSI
Test Symposium (VTS), IEEE 31st, IEEE, pp. 1-6, 2013.

[14] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE transactions on Reliability, vol. 51, Issue. 1, pp.
111-122, 2002.

[15] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante,
“Improved software-based processor control-flow errors detection
technique,” Annual Reliability and Maintainability Symposium, IEEE, pp.
583-589, 2005.

[16] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. A. Abraham, “Design
and evaluation of system-level checks for on-line control flow error
detection,” IEEE Transactions on Parallel and Distributed Systems, vol.
10, Issue. 6, pp. 627-641, 1999.

[17] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, “Low-cost on-
line fault detection using control flow assertions,” 9th IEEE On-Line
Testing Symposium (IOLTS), IEEE, pp. 137-143, 2003.

[18] A. Rajabzadeh and S. G. Miremadi, “Transient detection in COTS
processors using software approach,” Microelectronics Reliability, vol. 46,
Issue. 1, pp. 124-133, 2006.

[19] P. THIS, “The basics of performance-monitoring hardware,” IEEE Micro,
vol. 22, Issue. 4, pp. 64 - 71, 2002.

[20] A. Rajabzadeh and S. G. Miremadi, “Feature Specific Control Flow
Checking in COTS-Based Embedded Systems,” Third International
Conference on Dependability (DEPEND),IEEE, pp. 58-63, 2010.

[21] L. Parra, A. Lindoso, M. Portela, L. Entrena, F. Restrepo-Calle, S.
Cuenca-Asensi, and A. Martínez-Álvarez, “Efficient mitigation of data and
control flow errors in microprocessors,” IEEE Transactions on Nuclear
Science, vol. 61, Issue. 4, pp. 1590-1596, 2014.

[22] S. Cuenca-Asensi, A. Martinez-Alvarez, F. Restrepo-Calle, F. R. Palomo,
H. Guzman-Miranda, and M. A. Aguirre, “A novel co-design approach for
soft errors mitigation in embedded systems,” IEEE Transactions on
Nuclear Science, vol. 58, Issue. 3, pp. 1059-1065, 2011.

[23] P. Bernardi, L. Sterpone, M. Violante, and M. Portela-Garcia, “Hybrid
fault detection technique: A case study on virtex-II Pro's PowerPC 405,”
IEEE Transactions on Nuclear Science, vol. 53, Issue. 6, pp. 3550-3557,
2006.

[24] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable interface
to hardware performance counters,” Proceedings of the department of
defense HPCMP users group conference, pp. 7-10, 1999.

[25] G. Nazarian, L. Carro, and G. N. Gaydadjiev, “Towards Code Safety with
High Performance,” International Conference on Architecture of
Computing Systems,Springer, pp. 209-220, 2014.

466

