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Abstract— Today, both the rapid improvement of process 

technology and the arrival of new embedded systems with high-
performance requirements, have led to making the current trend 
in processors manufacturing shift from single-core processors to 
multi-core processors. This trend has raised several challenges for 
reliability in safety-critical systems that operate in high-risk 
environments, making them more vulnerable to soft errors. 
Hence, using additional methods to satisfy the strict system 
requirements in terms of safety and reliability is unavoidable. In 
this paper, an efficient hybrid method to detect control flow 
errors in multi-core processors has been proposed and evaluated. 
About 36,000 software faults have been injected into three well-
known multi-threaded benchmarks at run-time. The experiment 
results show that the fault coverage is 100%. The results also show 
that the execution time overhead varies between 31.25% and 
51.02%, and the program size overhead varies between 20.23% 
and 67.64% with respect to the employed benchmark. 

Keywords—multi-core; hardware performance counter; control 
flow checking; safety-critical systems 

I. INTRODUCTION 
Recently, the rapid improvements in processors technology 

and the need to achieve high performance computations have 
led to produce processors with more cores, so-called multi-core 
processors [1, 2]. Using these processors has led to improve the 
performance significantly. Therefore, the improvement in 
processors manufacturing has also extended to cover the 
embedded systems that are widely used in several applications 
such as avionics and automotive control systems [1, 2]. While 
multi-core trend has become the common trend in processor 
technology, it has introduced several challenges for reliability 
in safety-critical embedded systems [1, 3, 4]. Strictly speaking, 
the advancements in the process technology in tandem with the 
production of chips comprising millions of transistors have led 
to making these processors more susceptible to faults [5-8]. 
Critical embedded systems which work in harsh environments 
are more vulnerable against faults. Therefore, the use of a 
faster processor, e.g. multi-core, will not be sufficient to meet 
the strict system requirements such as safety, real-timeness, 
and reliability. As a result, several recent projects such as 
ARTEMIS ACROSS [5], have focused on employing multi-
core technology in embedded systems in order to make these 
systems work efficiently with high level of reliability. 

Transient faults, also known as soft errors, pose a major 
threat to system reliability [3, 5]. When a soft error, e.g. Single 
Error Upset (SEU), occurs in a safety-critical system, it may 
lead to disastrous. As a result, they will need to be addressed in 
the design phase of the system development process [8]. 
Studies have been shown that transient faults can be classified, 

in terms of effects, into data errors and control flow errors 
(CFEs) [3, 6, 8]. Data errors appear when the value of a 
variable is changed, erroneously. A CFE appears if a program 
is executed in an abnormal fashion (deviations from the normal 
execution flow). The experimental results have shown that 
about 33%–77% of these faults lead to CFEs [9, 10], 
depending on the type of processors used [11]. Hence, 
employing additional methods to satisfy the system reliability 
requirements and detect any unanticipated behavior caused by 
CFEs as early as possible is unavoidable [10-12]. 

In this paper, a hybrid, efficient technique to detect CFEs in 
the modern multi-core processors is proposed. This method 
takes the advantage of the hardware performance counter, a 
common feature in the most modern processors, in order to 
perform the control flow error detection and keep the system 
reliable. The method proposed in this paper can achieve 100% 
of control flow error detection, including unexpected interrupts 
errors, e.g. infinite loops. 

The rest of this paper is organized as follows: Section II 
summarizes the related work on control flow checking methods 
and highlights the motivations of presenting control flow error 
detection method for multi-core architectures. Section III 
discusses the proposed method and the fault model used in this 
paper. Section IV discusses the evaluation of the proposed 
method. Finally, conclusion section concludes the paper. 

II. RELATED WORK 
A CFE may occur in both computers and digital systems 

[7]. This error may cause by an error occurred in processor 
registers, such as occurrence of SEU in a bit of the Program 
Counter (PC) register during the execution of the program, or 
in system memory. As a result, the program will violate the 
correct sequence of its control flow and result in incorrect 
outcomes [13]. Hence, control flow checking (CFC) methods 
which provide a cost-efficient error detection, are considered 
an essential need to keep the system reliable [9, 11, 14, 15]. In 
order to detect CFEs, numerous methods have been proposed 
in the literature that fall into three broad categories, namely, 
hardware-based CFC, software-based CFC, and hybrid CFC 
methods, combining software-based CFC with hardware-based 
CFC methods [12]. 

The general approach adopted by the most of the CFC 
methods is dividing high-level program source code into basic 
blocks (branch free interval). A basic block (BB) is formed 
from continuous instructions that run continuously, in the 
absence of errors, from the first instruction to the last one. 
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Branches or call instructions are only allowed at the end of 
BBs. These blocks associate with each other through directed 
edges that are used to represent the legal jumps. Control flow 
graph (CFG) is formed by combining a set of BBs with a set of 
corresponding legal jumps. Extracting the CFG is an essential 
step in CFC process. Therefore it should extract accurately in 
which it can reflect the proper control flow of the 
corresponding program without any limitations [3]. 

A. Hardware-based CFC Methods 
Hardware-based CFC methods usually lie on introducing 

additional, special purpose hardware modules (like a watchdog 
processor). A watchdog processor is a processing element used 
for detecting CFEs by monitoring the main processor during 
running the program. Although these methods introduce a 
higher fault coverage [3, 8], they impose higher costs on the 
system. Therefore, These methods are typically considered an 
appropriate solution when cost is not crucial or reconfiguring 
hardware architecture is allowed. 

B. Software-Based CFC Methods 
Software-based CFC methods use CFG in tandem with 

signatures and additional instructions in order to detect any 
undesirable violations. Examples of such methods are 
Enhanced Control Flow Checking using Assertions (ECCA) 
[16], CFC by Software Signature (CFCSS) [14], Control-flow 
Error Detection through Assertions (CEDAs) [11] and 
Assertion for CFC (ACFC) [17]. Enhanced Committed 
Instructions Counting (ECIC) is an error detection method 
presented in [18] for embedded and real-time systems using 
commercial off the shelf (COTS) processor. This method 
exploits the performance monitoring features [19] of a 
processor in order to detect errors. ECIC is applied to single-
threaded benchmarks and the experimental results were shown 
that the error detection coverage is close to 98.18%. ECIC, 
however, has involved limitations. It can be applied only in 
COTS processors that have performance monitoring features 
and special pins (Event Ticking Pins). ECIC drawbacks have 
been eliminated by the method proposed in [20]. In [3], a 
software behavior-based technique is presented to detect CFEs 
in multi-core architectures.  To examine the correctness of 
sequence execution of the program, a software-based watchdog 
thread is developed and scheduled to run in parallel with the 
main process. However, the performance gained by multi-core 
processors will be adversely affected if a separate core is 
assigned to run the watchdog thread.  

Software CFC methods are low-cost, i.e. it can be 
implemented entirely in software without any additional 
hardware elements. In addition, they have the capability of 
being implemented in applications when using hardware 
methods are not possible, especially for COTS processors and 
modern processors equipped with cache memories [5, 6, 15, 
21]. However, they suffer from significant problems such as 
performance degradation due to the redundant instructions 
inserted to the program. 

C. Hybrid CFC Methods 
Most of the hybrid CFC technique are based on redesign 

the processor [22], or employing a special hardware module to 

observe the execution of the main processor [5, 6]. To improve 
error detection coverage, the hybrid CFC methods take 
advantages of both hardware and software CFC methods. Since 
hardware CFC technique can provide a higher fault coverage, 
hybrid CFC technique, usually, employ hardware for both 
accelerating the checking and improving the error detection 
capability. Combining software-based CFC technique with 
external hardware module may result in higher average of the 
control flow error detection, e.g. Hybrid Error-Detection 
Technique Using Assertions (HETA) [5] and  [6, 21, 23]. 

The analysis of three important issues has led to introduce 
the proposed technique. First, a general trend in process 
technology is towards multi-core processors, and the safety-
critical systems have shifted to use multi-core processors 
instead of single-core. Second, lack of CFC methods that run in 
multi-thread environments for detecting CFEs. Third, high 
memory and performance overhead produced by previous CFC 
methods are not allowed in real-time safety-critical embedded 
systems that have tight memory and performance budget. 
Hence, introducing a new hybrid method to provide full error 
detection with appropriate overheads, is mandatory. 

In this paper, a hybrid CFC method is presented. This 
method aims to exploit the hardware facilities, i.e. the counters 
implemented in modern processors in order to detect CFEs. 
Next section discusses the proposed method in more details. 

III. THE PROPOSED METHOD 
The proposed method uses the counters in order to detect 

CFEs. The hardware performance counter, basically, is 
composed of a small number of special purpose configured 
registers [19]. Since these registers are built inside a processor 
(on-chip structures), they are able to collect information about 
the running programs without affecting the performance. In 
multi-core processors, these counters are independent of each 
other in the sense that each core has its own set of counters 
[24]. The proposed method employs the counters beside 
redundant software instructions in order to count and check the 
executed instructions. Also, an interface which provides access 
to the performance counters is needed. Moreover, this interface 
should not only offer an ability to get access to the 
performance counters per-thread but also guarantees that each 
available counter has been customized for a particular thread. 

A. Fault Model 
CFEs can grouped into three general categories [8, 11]: 1) 

illegal intra-basic block jumps: they denote incorrect jumps 
within a block, 2) illegal inter-basic block jumps: they refer to 
incorrect jumps to other block, and 3) illegal jumps from a 
basic block to outside the program space. In the proposed 
method, the program is divided into basic blocks and partition 
blocks (PBs). PBs contain extra software instructions that are 
added at compile time to detect any violation affects the 
program control flow. The PB resides between two consecutive 
BBs. As shown in Fig. 1 (a), the three illegal jumps mentioned 
above will lead to raise nine possible types of CFEs: Type 1: 
from a BB to the beginning of another BB, Type 2: from a BB 
to any point in another BB, Type 3: from a BB to any point in a 
PB, Type 4: from the end of a PB to the beginning of another   
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Fig 1. (a) Fault Model, (b) CFE-tolerant basick block structure 

BB (legal branch but invalid), Type 5: from a PB to any point 
in  another BB, Type 6: from a PB to any point in another PB, 
Type 7: from a BB to outside the program memory space, Type 
8: from a PB to outside the program memory space, Type 9: 
from a BB to any point in the same BB.  

Type 7 and 8 are almost detected by the operating systems 
as a segmentation fault [3, 9, 15]. Error type 4 is often occurs 
due to data errors. As illustrated early, transient faults in 
processors may result in CFEs and data errors. This paper 
treats CFEs and not data errors. Most of CFC methods are not 
able to detect control flow error represented by Type 7, 8 and 
the illegal jumps to the same basic block, e.g. Type 9. The CFC 
methods, like software-based CFC methods, in order to detect 
such errors, insert extra instructions inside basic blocks. While 
using this scheme enables to detect intra-block CFEs, it may 
lead to comparative more performance overhead. The method 
proposed in this paper addresses 9-types CFEs shown in Fig 1. 
(a) as will be illustrated in the next section. 

B. Mechanism for the proposed method 
The hardware performance provides counters for counting 

micro-architecture events like clock cycles, branch misses and 
executed instructions [19]. As counters is an on-chip hardware 
built inside a processor, there is very limited overhead in 
counting such events. Some CFC methods proposed in the 
literature, count the executed instructions inside a basic block 
using inserted software instructions to detect any CFEs. This 
scheme tends to be ineffective due to performance overhead. 
Counting instruction by hardware performance counters in 
order to detect CFEs will reduce the negative impact of extra 
instructions on performance. 

Whenever the selected event occurs during the execution of 
the program, the processor increments the respective event 
counter by one. The event selected in the proposed method is 
the number of executed instructions. In order to detect control 
flow errors in multi-core processor environments, the source 
code of a program is divided into basic blocks and a control 
flow graph is extracted for each thread from the source code 
(per-thread CFG). Each per-thread basic block is assigned a 
signature, “sig”, at compile time. The “sig” is a variable that 

holds a value, which in the absence of errors, should be equal 
to the counter value. Obtaining an accurate number of executed 
instruction at compile time is hard. So, the value of “sig” 
variable is obtained in two phases. First, the “sig” is assigned 
an arbitrary value. Second, the program is compiled and 
executed. Using the GNU Project Debugger (GDB), the 
number of executed instructions is obtained accurately (by 
adding a breakpoint at a specific place in the code and 
retrieving the counter value). After that, the old value of “sig” 
variable is updated to the value obtained at run-time. Then, the 
program is compiled again. It is important to note that per-
thread CFG is extracted from the source code and the value 
assigned to the “sig” variable was obtained after executing the 
program. Function call instructions can appear at the end of BB 
and the body of function will be handled as a separate CFG. 
Thus, the functions are a part of BBs of the main CFG. 

Additional instructions, also, are inserted and located at the 
end of each per-thread basic block. The structure of the CFE-
tolerant basic block (after inserting the redundant instructions 
to detect CFEs), is shown in Fig. 1 (b). These instructions 
consist of two types (in loop basic block, there are three types 
of the added instructions): retrieving the value of the counter 
and “test” instruction. The task of “test” instruction is to 
confirm that the current running basic block is executed 
correctly (all its instructions are executed sequentially without 
any violations).  

PAPI (Performance Application Programming Interface) 
provides a platform, operating system and machine, 
independent access to the hardware performance counters [24]. 
It provides a set of functions for retrieving the counter value 
for specific events. “PAPI_accum” function is used to retrieve 
and accumulate the counters value. The counters are zeroed 
and returned to counting after completing the operation. When 
the control of the program reaches the PB, which contains 
“test” instructions, the per-thread “array” (a variable defined 
to hold the counter value) will store the counter content. In the 
absence of errors, the value stored in the “array” should be 
equal the “sig”. Otherwise, an error will occur in the program 
and it will stop.  

Basic block that is a header of a loop requires one 
additional instruction (in addition to the two prior instructions). 
When the control flow returns back to the header of loop BB, 
the performance counter, due to the use of “PAPI_accum”, will 
be accumulated making the “test” instruction interprets the 
counter value as an error. The third instruction named “set” is 
introduced to solve this problem. Having checked the “array” 
under “test” instruction, “set” instruction sets the value of the 
“array” to non-zero value in order to avoid any false CFE 
detection. Overhead induced by “set” instruction is negligible 
since it is limited to BBs which are the header of loops.                                

If error detection latency (EDL) —the interval between 
fault activation and error detection  [11]— is not critical, then 
the instructions for checking CFE can be delayed. Meaning 
that instead of inserting them at the end of each basic block, 
these instructions can be added to critical basic blocks (basic 
blocks where it is important to check for any violation in the 
control flow of the program). This can result in reducing both 
the memory and performance overhead. 
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C. False Accumulation 
It is straightforward that any faulty behavior induced by 

skipping some instructions can be detected when the program 
control reaches “test” instructions. However, an illegal jump 
from a basic block BBi to a specific place in another basic 
block BBj, in the same thread, can lead to false accumulation 
error if and only if the following conditions are met: 

 Number of executed instructions in BBi + number of 
instructions that will be executed in BBj = sigj. 

 BBj ∉  suc(BBi), 
Where suc(BBi) is a set of successors of BBi, and sigj is the 
expected value of counter at end of BBj. Hence, the false 
accumulation can occur, resulting in undetected CFE. 
However, the probability of false accumulation is close to zero. 

D. Optimization Issues 
The performance is a major issue for embedded systems 

[25]. High overhead in both memory and time execution of a 
program raising from additional instruction inserted inside the 
loop region, make the employed CFC technique inappropriate. 
For this reason, these instructions are inserted outside the loop 
region when it is possible to move them without any effect on 
the final result. The desirable objective of this scheme is to 
prevent the performance degradation resulting from repeated 
execution of “test” and “PAPI_accum” instructions during 
each loop iteration.  

However, this scheme seems to be not suitable for event-
controlled loops or loops that have in their body conditional 
statements (if-then statements). In this case, the proposed 
method is forced to move the additional instructions inside the 
loop region. However, this will increase performance 
overhead. To reduce performance overhead, loop unrolling 
technique [25], as a traditional compiler optimization method, 
is involved in the proposed method. This technique aims to 
reduce instructions that control the loop, such as “end of loop” 
tests on each iteration, by rewriting loop body. Thereby 
increasing speed of a program. Thanks to the loop unrolling 
mechanism, inappropriate performance overhead can be 
decreased to an acceptable value. The authors of [25] 
investigated the impact of employing loop unrolling on control 
flow reliability. The results of this investigation showed that a 
significant fault coverage with acceptable overhead in memory 
and performance can be achieved. The proposed method can 
benefit from the loop unrolling technique with a huge positive 
impact on the execution time of the program. The impact of the 
loop unrolling technique on both memory and performance 
overheads is investigated in the next section. 

IV. EVALUATION OF THE PROPOSED TECHNIQUE 
The proposed technique has been tested in two phases, at 

the first phase the proposed technique have been implemented 
and then assessed in the presence of injected faults. The second 
phase challenged the methods efficiency considering memory 
and performance overheads.  

To assess the proposed method, a quad-core processor 
system with shared memory, running Ubuntu Linux OS release 
14.0.1 is used. This processor was selected due to it supports 

hardware performance counter and multi-threaded programs. 
Also, three well-known multi-threaded benchmarks are 
employed. These benchmarks are Matrix Multiplication (MM), 
Insertion Sort (IS) and Quick Sort (QS) 

A. Fault Injection Experimental Results 
Several studies have clarified that a transient error in the 

PC register can lead to CFEs. Thus, the fault model used in the 
experiments is the bit flip fault applied to the PC register. In 
addition, a sophisticated Software Implemented Fault Injection 
(SWIFI) method based on GDB is used to perform fault 
injection at run-time without changing the number of 
instructions executed. About 36,000 faults are injected into the 
benchmarks. These injected faults will affect the program and 
can result in different cases: 

 CR (Correct Result): the injected fault does not change the 
control flow of the program, i.e. the final result is 
produced, correctly. 

 OS (Operating System): the injected faults lead to deviation 
the running of the program and produce exceptions like a 
segmentation fault which, mostly, detected by the OS. 

 IR (Incorrect Result): the injected fault changes the final 
result and leads to a wrong output. 

 TO (Time Out): the injected fault modifies the program 
execution time (such as entering in infinite loops). 

 ED (Error Detection): the injected fault is detected by the 
test instructions that are inserted into each BB for control 
flow checking. 
 

The occurrences of unexpected interrupts or illegal infinite 
loops (endless loops), is a major limitation of most previous 
CFC methods. In order to detect infinite loops, the proposed 
method exploits the PAPI feature named “overflow”. 
“PAPI_overflow” is a low-level function provided by PAPI 
which enables to call user-defined handlers when an overflow, 
i.e. exceeding a predefined threshold, occurs. Based on the 
foregoing, a hardware performance counter to count the clock 
cycles needed by the program being run is established, and 
“PAPI_overflow” is used. Whenever overflow occurs, the 
handler will be called and infinite loop error, or unexpected 
interrupts, is reported. 

Fault injection results are presented in TABLE I. It shows 
the number of injected faults, the occurrence of IR, TO, CR, 
and ED. As is clear from this table, the number of faults that 
caused an error in the used benchmarks are fully detected. 
Thus, the fault coverage of the proposed method is 100%. It 
should be mentioned that not all of the injected faults lead to 
faulty results because some of them are detected by the 
operating system. 

B. METHOD EFFICIENCY 
Higher fault coverage and overhead are not sufficient to 

compare two different CFC methods because they are not able 
to reflect the effectiveness of the proposed method, accurately. 
In other words, there is a trade-off between three major 
parameters: fault coverage, performance overhead and memory 
overhead. Therefore the method adopted must provide an 
appropriate balance between them as much as possible.  

464



 

 

TABLE I.  FAULT INJECTION RESULTS  

Benchmark 
Fault 

Injecteda IR TO 
Faulty 
Results 

(IR+TO) 
CR ED 

MM 12,000 772 7080 7852 0 7852 
QS 12,000 429 3771 4200 612 4200 
IS 12,000 1632 1521 3153 1719 3153 

 

a. Not all the injected faults will lead to faulty results, some of them may 
result in program crash.  

As similar as some previous works [3, 8, 11], a metric named     
“Evaluation Factor” is introduced in this paper. “Evaluation 
Factor” takes the formula described below: 

 
(1) 

According to (1), the “Evaluation Factor” has a direct 
relationship with “Fault Coverage” and a reverse relationship 
with “Memory Overhead” and “Performance Overhead”. 
“Fault Coverage” expresses the ability of the proposed method 
to detect CFEs. While “Memory Overhead” and “Performance 
Overhead” expresses the overhead incurred by additional 
instructions. “Fault Coverage” is calculated using (2), where 
ED denotes the number of detected CFEs and “Faulty Results” 
denotes the number of incorrect results plus the number of 
timeout errors induced by fault injection process. 

 
(2) 

In order to compute “Performance Overhead”, the proposed 
technique uses the difference between time execution before 
and after inserting redundant instructions. Equation 3 explains: 

 
(3) 

Where EtTp denotes the execution time of the CFE-tolerant 
program, EtnonTp denotes the execution time of the target 
program (program without CFC instructions).  As for the 
“Memory Overhead” resulted from inserting CFC instructions 
to the target program, the difference between the size of the 
CFE-tolerant program and the target program is used. As (4) 
describes: 

 
(4) 

Where MTp denotes the program size of the CFE-tolerant 
program, and MnonTp denotes the size of the target program. 

In the next subsection, the paper will discuss the 
performance and memory overheads incurred by applying the 
proposed technique. In addition, it will show how the proposed 
technique can benefit from the loop unrolling technique in 
order to reduce the performance overhead. 

C. Performance Evaluation 
To quantify the performance and memory overheads, the 

employed benchmarks are executed without any extra code. 
The execution results with regard to execution time (ET) and 
size of program code (SC) are recorded. Then, the CFC 
proposed technique is applied to these benchmarks in two 
different schemes (With-CFC, and With-CFC+LU).  

TABLE II summarizes the percentage of the performance 
overhead (PO), and the memory overhead (MO) incurred by 
applying the proposed method (both without and with loop 
unrolling technique) to three different benchmarks. As is 
evident from TABLE II, the results show that the proposed 
method incurs performance overhead varies between 31.25% 
and 51.02%, and memory overhead varies between 20.23% 
and 67.64% for different benchmarks, without using loop 
unrolling technique.  

Employing loop unrolling technique will result in lower 
performance overhead, but this is at the expense of memory 
overhead. However, this overhead can be controlled by 
unrolling the most time-consuming loop “n” times. The “n” 
variable so-called loop unrolling factor denotes the number of 
times for unrolling the loop that consumes a lot of time until a 
desired tradeoff between performance and memory overheads 
is realized. Therefore, a new equation that enables a user to 
achieve the tradeoff  is introduced. Loop unrolling leads to 
memory overhead due to repeating the loop region “n” times. 
Therefore, the extra size overhead “Extra_Size Overhead” 
results from loop unrolling is: 

 (5) 
Where “SUli” denotes the size of loop  after unrolling it. “SOli” 
denotes the original size of loop “li”. Variable “m” denotes the 
number of loops in the program. “SUli” can be written as: 

 (6) 
“nli” denotes the loop unrolling factor of the loop “li”. 
Therefore, with respect to (5) and (6): 

 (7) 
Moreover, the new program size “New_Program Size” will be 
calculated as follow: 

 
(8) 

Where “Original Program Size” denotes the size of the 
program without applying loop unrolling optimization. 
Therefore the “Memory Overhead” induced by the loop 
unrolling will be calculated as follow: 

 
(9) 

In addition, the “Performance Overhead” induced by the loop 
unrolling will be as follow: 

 (10) 
Where “ETNP” refers to the execution time of the new 
program produced after applying the loop unrolling. The 
“ETOP” refers to the execution time of the original program. 
CFC methods such as [3], [8], [11] and [20] incur 
“Performance Overhead” (in average) ~10%, ~41%, ~30%, 
~50% respectively. Based on the results presented in TABLE-
II, the “Performance Overhead” using Loop-unrolling is 
reduced to 27.44% in average and the “Memory Overhead” is 
about 57.1%.  Based on (1) and the presented results in both 
TABLE I and TABLE II, the “Evaluation Factor” of the  
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TABLE II. OVERHEAD CHARACTERISTICS 
 Multithread Benchmarks 

 

 
Parameters MM IS QS 

Without-CFC ET 3914 129 160 
SC 5.98 3.40 6.02 

With-CFC 

ET 5911 191 210 
SC 7.19 5.70 9.31 
PO 51.02% 48.06% 31.25% 
MO 20.23% 67.64% 54.65% 

With-CFC+LU 

ET 5104 171 191 
SC 7.97 6.21 9.55 
PO 30.40% 32.55% 19.37% 
MO 33.27% 80.34% 58.16% 

a. Without-CFC is the target program without extra instructions 
b. With-CFC is the modified program after inserted extra instructions. 
c. With-CFC+LU is “With-CFC” in tandem with loop unrolling 
d. ET denotes the program execution time (in milliseconds) 
e. SC denotes the size of the program code (in kilobytes) 
f. PO denotes the performance overhead 
g. MO denotes the Memory overhead 

proposed method using loop unrolling technique is about 50 
(with 100% error detection). 

V. CONCLUSION 
This paper presents a hybrid CFC method for multi-

threaded programs running on multi-core processors. The 
proposed method takes advantage of the hardware performance 
counter common feature in modern processors to perform CFE 
detection and keep system reliable. The distinctive advantages 
of this method over previous CFC methods are the ability to 
detect unexpected interrupts errors. Experimental results 
showed that using the proposed technique, 100% of CFEs 
could be detected. It is important to note that the proposed 
method is more portable than other hybrid CFC methods. It 
does not require any modifications to the processor or using 
extra hardware monitoring module to observe the execution of 
the main processor, i.e. the extra hardware overhead is zero. 
This method requires only that the target multi-core processor 
has a hardware performance counter feature. However, most 
modern processors contain hardware performance counters. 
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