


17th Conference On Fluid Dynamics, fd2017, Aug, 27-29   

 Shahrood University of Technology, Shahrood, Iran 

 

 

A THOROUGH EVALUATION OF THE FOKKER-PLANCK KINETIC 

MODEL IN THE COUETTE FLOW 

 

Vahid Rezapour Jaghargh 

High Performance Computing Laboratory 

(HPC), Department of Mechanical Engineering, 

Faculty of Engineering, 
Ferdowsi University of Mashhad, 

vahid.rezapour.jaghargh@gmail.com 

AmirMehran Mahdavi 

High Performance Computing Laboratory 

(HPC), Department of Mechanical Engineering, 

Faculty of Engineering, 
Ferdowsi University of Mashhad, 

am.me.mahdavi@gmail.com 

 

Ehsan Roohi 

High Performance Computing Laboratory (HPC), 

 Department of Mechanical Engineering, Faculty of Engineering, 
Ferdowsi University of Mashhad, 

ehsan.roohi.fum@gmail.com   

 

Abstract 

In this paper, the evolution of Fokker-Planck (FP) approach in various Knudsen numbers 

and number of particles per cells (PPC) was investigated. A canonical argon Couette flow 

has been chosen. However, there are some other direct simulation approaches to model 

rarefied gases such as DSMC and Lattice Boltzmann; Ideally, one would like to have an 

accuracy of DSMC method with computational efficiency of mesoscale methods such as LB. 

In this paper, it was pointed out that another possible computationally attractive option is to 

work with the Fokker-Planck kinetic model. The results show that this method is acceptable 

up to moderate Knudsen ranges. Additionally, with about 1000 PPC the computational 

efficiency is really approximate in comparison with DSMC. Also, the dependence of FP 

method to the computational grid is lower than other approaches. Therefore, this method can 

be work with a few computational grids. However, the Fokker Planck model was used and 

was developed; there is no evaluation and validation due to cell, PPC and time step.          

 

Keywords: Fokker-Planck kinetic model, Knudsen number, kinetic theory, Boltzmann 

equation, Particles per cells. 

 

1. Introduction 

Rarefied gas flows are present in many mechanical and aerospace systems and physical 

phenomena; ranging from satellite controllers and solar winds to gas separation mechanisms, 

micro-electro-mechanical systems (MEMS) and NEMS. Navier-Stokes-Fourier equations fail 

to describe gas flow in these applications accurately. This makes the modeling of rarefied gas 

flows a vital issue in engineering sciences. 
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One of the most successful numerical methods for rarefied gas flow simulations is direct 

simulation Monte Carlo (DSMC), which is based on the Boltzmann equation. However, the 

DSMC performance is not very satisfactory for near continuum and continuum regions . 

Different modeling attempts were made in order to simplify the complex Boltzmann 

governing equation
1-4

. One candidate is the Fokker-Planck equation. Fokker-Planck kinetic 

model based on the Boltzmann equation is considered for near continuum problems
5
. 

In domains of small to moderate rarefaction (length scales greater than the mean free path), 

the Fokker-Planck equation furnishes a good macroscopic model of overall particle advection 

and diffusion that can operate on much larger length and time scales
5
. 

The Fokker–Planck approximation of the Boltzmann equation can be used for rarefied gas 

flows as shown in many previous works. The objective of this model is the numerical 

advantage because the resulting diffusion model is computationally less challenging than the 

Boltzmann collision integral. A particle Monte Carlo scheme based on the Fokker–Planck 

equation was proposed by Gorji et al
6
. and was later extended to the cubic model to honor the 

decent Prandtl number for a monatomic gas. It should be mentioned that other researchers 

have also developed solution algorithms based on the Fokker–Planck model.  

The cubic FP model considered in this article provides an evolution equation for the 

distribution function. The model is constructed such that it gives rise to correct viscosity and 

heat conductivity coefficients at the hydrodynamic limit, as well as an accurate description of 

macroscopic flow properties for the non-equilibrium condition
7
. 

Note that the cost of the FP solution is independent of the Knudsen number since no 

collisions are computed. Moreover, time steps larger than the mean collision time and grid 

spacings greater than the mean free path are allowed. At the same time, accurate descriptions 

of rarefied gas flow can be obtained for a considerable range of Knudsen numbers
8
. 

In this paper, cubic Fokker-Planck model was discussed due to change of particles per cell, 

number of cells and Knudsen number. 

 

2. Fokker-Planck approximation of the Boltzmann equation 

Consider the Boltzmann equation as described below: 
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If the Knudsen number is not too large, the temporal derivative of F can be approximated 

by the Fokker-Planck equation: 
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Here A represents drift coefficient and D accounts for the positive diffusion which are 

functions of F. 

relaxation of higher order moments can be controlled by appropriate expressions of Ai as 

polynomial functions of Vi. This leads to a set of macroscopic moment equations with 

physically correct macroscopic coefficients like viscosity μ and the Prandtl number Pr
8
. 

The physical assumptions implied by the FP model are
8
: 

1. The particle velocities change due to a permanent stochastic force and not due to 

discrete collisions.  
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2. Particle interaction occurs due to coupling through the coefficients in the evolution 

equations, which are functions of stochastic moments of the local ensemble.  

3. Considering the extreme case of infinite Knudsen number, i.e. no inter-molecular 

collisions occur, S
FP

 becomes zero, and thus the FP and DSMC models become 

identical.  

4. In the other extreme case of extremely small Knudsen numbers, the Navier–Stokes 

equations are recovered by both the FP model and DSMC; the only concern here is 

the consistency of the macroscopic coefficients. 

 
2.1. Coefficients 

Drift and diffusion coefficients Ai and D can be derived from known velocity moment 

evolutions as described below. First, the velocity moments in the kinetic framework are 

defined. Following the same procedure for the S
FP

 operator:
7 
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Now the coefficients Ai and D must be found. For the drift coefficient, a quadratic 

polynomial function of the fluctuating velocity is presented, which honors consistent viscosity 

and Prandtl numbers. The simplest form of the drift coefficient is quadratic and therefore
7
: 
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Whereas the symmetric tensor ijc  and Λ are: 

(6) 
ij

ij ijc c



  

 

(7)  3

1
| det |ij


  

 

 

Where det(πij) is determinant of the stress tensor πij and / 4( )3kT m   is a scaling factor 

with  2 / p   the relaxation time. 

The simple diffusion of Langevin equation was chosen
5
:  
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The final Fokker-Planck approximation of the Boltzmann equation for monatomic gas is 

derived as: 
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Whereas the coefficients 
ijc  and 

i  have to be determined by solving the system consisting 

of the linear equations
10

.  

Although in order to derive the Fokker-Planck equation some simplifications have been 

made, still the high dimensionality of the solution domain makes the direct simulation of Eq. 

(2) rather expensive. In order to cope with that, similar to Jenny et al. 2010 the equivalent Ito 

processes for M(t) and X(t) was used 
9,11

: 

(10) i i i idM Adt G dt DdW  
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, where dWi is the increment of the Wiener process with zero expectation and variance dt. 

The physical assumptions implied by a system of equations (10) -(11) (and thus the FP 

model) are that the particle velocities change due to a permanent stochastic force and not due 

to discrete collisions. Therefore, particle interaction occurs due to coupling through the 

coefficients in the evolution equations, which are functions of stochastic moments of the local 

ensemble.
12 

A numerical scheme was considered and after discretizing equations (10) and (11) the final 

evolution of velocity equation and position was carried out
8
:   
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2.2. Solution algorithm 

The solution algorithm that Fokker-Planck uses is
7
:   

 

 

Figure 1:  Fokker Planck solution algorithm 
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2.3. Results and discussion 

In this paper, Couette flow and Fourier heat conduction were selected for verification, case 

study and grid independence, particle per cell (PPC) independence, Knudsen comparison and 

time step comparison between Fokker-Planck, DSMC, and analytical solution.  

 

2.3.1. Couette flow 

In this paper, one of the problems which was chosen to be simulated was the Couette flow. 

The problem considers flow inside a planar channel with parallel movement of the walls. 

Assuming infinitely long walls, the flow field became one dimensional. Figure 2 shows the 

schematic diagram of Couette flow. 

V 

-V 

x

y

L

 

Figure 2:  A schematic diagram of Couette flow 

In this paper, a simple planar Couette flow of Argon was considered, and gas molecules 

were regarded as Maxwellian molecules with viscosity power index of 1. Walls move with a 

velocity of  50 /wallU m s  in opposite directions, and both walls are isothermal with 

 273.15 wallT K  and reference temperature is 273.15 K. As using cubic Fokker-Planck model 

the flow Prandtl number is 2/3 which is a correct Prandtl number. Molecular mass of Argon is 
266.63 10 Kg and molecular diameter is -104.17 10 m .  

 
2.3.2. Grid comparison 

Figure 3 shows the grid comparison between different grids of Fokker-Planck and a DSMC 

grid as a benchmark. According to this figure, it is entirely clear that Fokker-Planck is not 

very sensitive to cell size. Also using large cell size, the results are almost accurate and near 

DSMC results.  As 100 cells and 200 cells are very close to each other, for more precise 

results and further actions 100-cell grid was chosen. 

As is shown in figure 3, one of the most significant advantages of the Fokker-Planck 

method is that it is not sensibly dependent to the grid size.  
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Figure 3:  Grid comparison of Couette flow 

2.3.3. Particle number comparison 

In this section, number of particles per cell (PPC) have been investigated. Again, a simple 

planar Couette flow of Argon with 100 cells was chosen which is a suitable grid as mentioned 

in the previous section. Wall velocities are 50 m/s in opposite directions, and wall temperature 

is 273.15 K for all different PPCs.  

For more accurate comparison between number of particles per cells, the temperature 

profile of Couette flow was plotted. A number of 500, 1000 and 1500 PPCs was chosen for 

PPC independence. As figure 4 shows 1000 PPC and 1500 PPC are very close thus 1000 PPC 

was selected for further comparisons. On the other hand, as illustrated in figure 4, there is a 

slight difference between DSMC and Fokker-Planck. The reason backs to temperature 

calculation of two methods.    
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Figure 4:  PPC comparison of Couette flow 
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2.3.4. Time step comparison 

In this section, time step effect was investigated on Couette flow. Time step is defined as: 

(25) 
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x
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
 

 

 

Where Tin is the stream temperature. The 
0dt  is the proposed referenced time step we use 

for Couette flow. Other time steps are selected as a fraction of this time step. For this reason, 

a lower time step 
00.1 dt  and two larger time steps 

010 dt and 
0100 dt were chosen. As 

figure 5 shows, velocity profile with 00.1 dt  and 010 dt  are very close to velocity profile of 

the reference time step case. However, for time step of  
0100 dt  the velocity profile becomes 

incorrect. 
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Figure 5:  Time step comparison ( 8

0 2 10dt   ) 

2.3.5. Knudsen comparison 

As seen in figure 6, Fokker-Planck works very accurately at low Knudsen numbers. This 

can be very useful in hybrid DSMC Fokker-Planck method which for low Knudsen numbers 

Fokker-Planck and for higher Knudsen numbers DSMC can be implemented. Figure 6 Shows 

that Fokker-Planck can be very accurate for a variety of Knudsen numbers.  

As seen in figure 6 (d) for KN=0.3 there is a little difference in velocity profile near walls 

which backs to variations in Knudsen layer. 
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Figure 6:  Knudsen comparison of couette flow a) KN=0.005 b) KN=0.0237 c) KN=0.1 d) KN=0.3 

2.3.6. Fourier heat conduction 

The other problem which was chosen for verification is Fourier heat conduction. This 

problem considers two parallel walls with two different temperatures and no movement for 

any of the walls. Assuming infinitely long walls, the temperature became one dimensional. 

Figure 7 shows the schematic diagram of Fourier heat conduction. 
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Figure 7:  A schematic diagram of Fourier heat conduction 
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We considered heat conduction of Maxwellian Argon gas for two cases, which will be 

mentioned below.  

 

2.3.7. Verification 

Fourier heat conduction is a very sensitive case. Therefore, two cases for verification was 

chosen. For a good comparison, analytical results and DSMC-SBT results from a newly 

published paper were considered.
13

  

For case 1, Argon gas at Kn = 0.001, Tcold = 173.15 K, Thot = 373.15 K was examined. The 

result is presented in Figure 8(a) and for case 2, Kn = 0.024, Tcold = 223.15 K, Thot = 323.15 K 

was considered, and the result is presented in Figure 8(b) . 
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(a) (b) 

Figure 8: Comparison between DSMC-SBT (square)
13

, analytical solution (delta) and Fokker Plank (line) for 

Case 1 (a) and Case 2 (b) 

 

As the results show, Fokker Planck solution captures DSMC-SBT and analytical data very 

well.  

 

3. Conclusions 

This paper shows the best grid and PPC for this simple cubic Fokker-Planck method. The 

Fokker-Planck method is accurate in a wide range of Knudsen number and results were 

validated with DSMC method. Time step change shows no such difference between Fokker-

Planck and DSMC. This is a crucial issue because bigger time steps can converge the results 

much faster. Finally, the Fokker-Planck method could be integrated into the computational 

procedure of the DSMC method in order to reduce computational costs for applications with a 

broad range of Knudsen number. 
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