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Abstract—Path planning among polygonal obstacles is a well-
known problem in robotics. In this paper, we consider the
problem of planning a collision-free path for a robot in a
polygonal domain from a given source point to a given target
point. The robot has two basic limitations: an upper bound on the
angle of rotation and a lower bound on the distance between two
consecutive turns. We describe an algorithm that runs in O(n4)
time and finds a path in accordance with the above limitations.
As shown by experiments, the output of the algorithm is much
close to the shortest path with the requirements. We further
demonstrate how to decompose the algorithm into two phases,
preprocessing time and query time. In this way, given a fixed start
point and a set of obstacles, we can preprocess a data-structure
of size O(n4) in O(n4) time, such that for any query target point
we can find the above-mentioned path in O(n2) time.

I. INTRODUCTION

The path planning problem used in various domains like

robotics, road-building, navigation, aviation industry and so

on. In this paper, we study the problem of path planning among

polygonal obstacles. The goal is to generate a path from a

source point to a target point such that the path does not pass

through the interior of obstacles, the angles of rotations are

less than a fixed given value and the distance between two

consecutive turns is greater than a fixed given length.

If all inputs of the problem is given at the same time we

solve the problem in O(n4) time. In another version of the

problem, we may need the path to different target points, from

a fixed source point through a fixed set of obstacles. In this

case, we preprocess a data structure of O(n4) size in O(n4)
time, and answer any query target point in O(n2) time.

The remaining of the paper is organized as follows: The

related work is summarized in Section II. The problem is de-

scribed in Section III. In Section IV, we discuss the geometry

prerequisites necessary to solve the problem. We present the

algorithm to solve the problem in Section V. The extension

of the algorithm is described in Section VI and its evaluation

is given in Section VII. Section VIII concludes the paper.

II. RELATED WORK

The exact problem we study in this paper, as far as we know,

was not studied by theoretical computer scientists. A related

problem studied extensively is the shortest path problem in

a polygonal domain. Kapoor and Maheshwari [1] solved this

problem in O(m2 log n + n log n) time, where n is the total

number of vertices of obstacles and m is the number of

obstacles. Inkulu et al. [2] gave an algorithm that computes the

shortest path in O(T+(m logm)(log n)) time and O(n) space,

where O(T ) is the time to triangulate the polygonal domain.

Kapoor et al. [3] presented an algorithm that preprocesses the

scene in O(n+ h2 log n) time and finds the shortest path for

a query target point t in time O(log n).
Unlike theoretical results, there are some heuristic algo-

rithms for path planning that have similar limitations to our

problem. Liu et al. [4] use OARPER (operational area restric-

tion polar extending recursively) method to evade obstacles

and generates superior path trees and then obtains the desired

path by multi-attribute fuzzy optimization (MAFO) method.

Samar and Kamal [5] give a path planner for Unmanned Aerial

Vehicle (UAV). Wang et al. [6], Chen and Xu [7] and Su and

LI [8] also present path planning algorithms based on genetic

algorithm.

III. PROBLEM DESCRIPTION

We here formally define the problem. In the plane, a set

O = {P1, P2, . . . , Ph} of h disjoint simple polygons, called

obstacles, which totally have n vertices, a source point s, a

target point t and two constant values l and α are given. We

want to find a path in the exterior space of polygons of O,

called the free space, from s to t with the following properties:

• Minimum turning distance: the path consists of straight

line segments, each one of length at least l.
• Connectedness: the consecutive segments are connected

at turn points.

• Maximum turning angle: the turning angles at the turn

points are at most α.

Figure 1 depicts the set O = {P1, P2, P3} of three obstacles,

with n = 14 vertices, source point s and target point t.
Each path from s to t is composed of a chain of segments.

The illustrated path {e1, e2, e3} in the figure have the above

properties if l � |e1|, |e2|, |e3| and θ1, θ2 � α.

IV. PRELIMINARIES

In this section, we introduce some geometric tools used for

solving the problem. In Section IV-A we define regular chains978-1-5386-0804-3/17/$31.00 c© 2017 IEEE
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Fig. 1. Path planning in the presence of polygon obstacles with connectedness,
minimum turning distance, and maximum turning angle properties.

Fig. 2. chain of segments from p to q with condition l1, l2, l3 � l, θ1, θ2 �
α.

of segments. In Section IV-B the ray shooting data structure

briefly explained.

A. Regular chain of segments

In our problem we consider only paths consisting of a

sequence of connected line segments. We call such a sequence

a chain of segments. Each two consecutive segments have a

common endpoint, called the turning point. The angle between

a segment and the extension of the previous segment in the

turning point is called the turning angle. (Figure 2)

We call a chain of segments with all turning angles equal

to α and equal turning distances a regular chain of segments.

Intuitively, it is part of a regular polygon with exterior angle

α.

We here calculate the position of vertices of a regular chain

of segments with different number of turning points, while the

position of the start and the end points are known.

Let C denote a regular chain of segments with A0 as the

starting point and k turning points. We assume the x-axis is

the rightward horizontal line through the origin and the y-

axis is the upward vertical line through the origin. Let Ai,

1 � i � k, be the ith turning point of C and Ak+1 be the last

point. Let e denote the length of the segments of C. For ease

of illustration, we consider A0 as an imaginary turning point

Fig. 3. A regular chain of segments from point A0 to A4 with three turning
points.

and denote its previous point by A−1 (Figure 3). Let β denote

the angle between the extension of A−1A0 and the x-axis.

Since C is a regular chain of segments, the angle between the

extension of A−1A0 and A0A1 is α. Let the angle between

A0A1 and A0Ak+1 (the segment from the starting point to the

end-point) be denoted by θ.

Draw a line from A0 parallel to x-axis and project A1 on

this line. Let H denote the projection point (Figure 3). In

triangle � A0HA1 we have

xA1
− xA0

= |A0A1| cos (α+ β)

yA1
− yA0

= |A0A1| sin (α+ β).

Similarly, we can draw a horizontal line through A1 and

project A2 on this line and get the following equations:

xA2
− xA1

= |A1A2| cos (2α+ β)

yA2
− yA1

= |A1A2| sin (2α+ β)

As it follows, the position of each point Ai, can be calculated

from the following recurring relations:

xAi
− xA(i−1)

= |A(i−1)Ai| cos (iα+ β)

yAi
− yA(i−1)

= |A(i−1)Ai| sin (iα+ β)

Since e = |Ai−1Ai|, for all 1 � i � k+1, we solve the above

recurring relations as follows

xAj
= e

j∑

i=1

cos (iα+ β) + xA0
, (1)

yAj = e

j∑

i=1

sin (iα+ β) + yA0 . (2)

where j = 1, . . . , k + 1.

In a simple polygon, the sum of the interior angles with d
vertices is equal to (d− 2)π. If we connect A0 to Ak+1, we

have a simple polygon. In this polygon, the interior angle at

A0 and Ak+1 are equal because C is part of a regular polygon.

If d is the number of vertices of the polygon and since k is the
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number of turning points in C, we have k = d− 2 and so the

sum of the interior angles of the simple polygon is (d−2)π =
kπ. The interior angle of the first and the last vertices in the

chain is θ and the other angles are π − α. Therefore we have

k(π − α) + 2θ = kπ, or equivalently θ = kα
2 .

Let the angle between A0Ak+1 and the x-axis be denoted

by γ. If we know the position of A0 and Ak+1, we have the

value of γ. Since γ = β+α+ θ, we can rewrite this equation

to compute β as β = γ − (α+ θ).
If we further know the number of turning points of C, i.e.

k, the length of segments of C can be computed with each of

the following equations

e =
xAk+1

− xA0∑k+1
i=1 cos (iα+ β)

=
yAk+1

− yA0∑k+1
i=1 sin (iα+ β)

.

Obtaining the value of e, the position of each vertex in the

chain will be determined by Equations 1 and 2.

B. Ray shooting

One of the problems we encounter for path planning is to

recognize if a segment intersects a set of segments. Formally,

given a set of segments S = {s1, s2, . . . , sn}, we are asked if

segment t intersect at least one of the segments of S.

It is obvious that this problem could be solved by checking

the intersection of the segment t with all the segments of S
in Θ(n) time. But, since the problem must be solved a lot of

times for a fixed given set of segments, an algorithm with less

query time is more suitable. We use ray shooting algorithm

for this problem. In ray shooting problem, a set of segments

S is known. We need to preprocess the set S such that given

a query ray (its start point and direction), the first intersection

position of the ray with the segments of S will be recognized

quickly. We should also detect the case in which the ray does

not intersect any segment of S.

By the solution of this problem; the problem of intersection

of a segment with a given set of segments will be solved as

follow: first, we preprocess S for solving the ray shooting

problem. During the query time by receiving the segment t,
we shoot a ray from one end-point of t in the direction of

the other end-point. If the first intersection point between this

ray and the segments of S is between the end-points of t,
the answer to our solution is positive, in other words, t has

intersection with the segments of S. On the other hand, if

the intersection position is not between the end-points of t or

there is not any intersection at all, the answer to our problem

is negative.

Different algorithms are suggested for ray shooting prob-

lem. The last results belong to Chan [9] and Chen and

Wang [11]. Chan [9] introduced a randomized algorithm

which inO(n log3 n) preprocessing time and in O(n log2 n)
space, the problem of ray shooting for an arbitrary query

ray will be solved in O(
√
n log2 n) average time. Chen and

Wang [10] constructed a data structure of size O(n + h2) in

O(n + h2 logc n) time that answer ray shooting queries in

O(log n) time. In the preprocessing time bound above, c is a

constant.

Fig. 4. Following the chain c0, where the object moves directly towards v,
it can leave v with an angle in the range [θ1, θ2]. For the chain c1 the valid
leaving angle is in the range [φ1, φ2]. We call this range, valid leave range
of chain c, and denote it by VLR(c).

By combining the latest results about ray shooting and

the technique used by Matouek [11] we concludes that for

any arbitrary parameter b, where n log2 n � b � n2 and a

constant c, a data structure of size O(b) can be constructed

in O(b logc n) preprocessing time such that the problem of

ray shooting for an arbitrary query segment can be solved in

O(( n√
b
) logc n) time.

V. PATH PLANNING ALGORITHM

In this section, we describe our algorithm for finding a path

with the given requirements. Since we prefer to make the path

smooth, we try to spread out the break points along the path

evenly. Therefore, we use regular chains of segments when

moving from an obstacle vertex to another one.

Let u and v be two obstacle vertices. We want to find all

paths starting from u to v not passing through other vertices

of obstacles. To do this, we examine all regular chains of

segments with different number of break points starting from

u and ending at v. If all edges of a chain do not intersect any

edges of the obstacles, then the desired chain is considered

as a valid path from u to v. In other words, we first look at

the regular chain of segments without any break point, that

is the straight line segment from u to v. If the only edge of

this chain does not intersect any obstacle then we consider

this chain as a valid path from u to v. Similarly, we examine

the regular chain of segments with one break point, two break

points, and so on. We continue this process until the distance

between two adjacent break point in the chain gets smaller than

l. If the first and the last points of a regular chain are fixed,

the distance between two consecutive break points decreases

when the number of break points increases. Therefore there

are a limited number of valid regular chains of segments from

u to v.

Assume the object follows a given regular chain of segments

from u to v when traveling from the start point to the target.

Because of the “maximum turning angle property”, when

the object moves away from v, its leaving angle must be

within a fixed range. This observation is depicted in Figure 4.

Following the chain c0, where the object moves directly

towards v, it can leave v with an angle in the range [θ1, θ2].
Similarly, for the chain c1 with a single break point, the valid

leaving angle is in the range [φ1, φ2]. We call this range, valid

leave range of chain c, and denote it by VLR(c).
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In the following, we construct a graph G = (VG , EG), such

that the shortest path between two vertices in G corresponds to

the shortest path from the starting point s to the target point t
in the original configuration, consisting only of regular chains

of segments. We use Dijkstra’s algorithm to find the shortest

path in G. For an obstacle vertex v and valid leaving range

r = [θ1, θ2], we add a node vr to G. In addition, for each pair

ur and vr′ of nodes in G, if the following conditions hold, we

add an edge from ur to vr′ .

1) There exists a regular chain of segments c from u to v.

2) The chain c does not intersect any obstacle.

3) It leaves u with an angle in the range r.

4) VLR(c) = r′.
The weight of this edge is equal to the length of c.

Now let’s explain how we construct the graph. We consider

the starting point s and the target point t as obstacle vertices.

We have a set of unprocessed graph nodes, denoted by UG ,

which initially contains only node s[0,2π], corresponding to

vertex s with a full valid leaving range. During the construc-

tion of G, we remove a node ur from UG and find all valid

regular chains we could draw from vertex u to other obstacle

vertices which leave u with an angle in the range r. For each

valid chain c with this property from u to a vertex v, let

r′ = VLR(c). We add a new node vr′ to UG , which must

be processed later and added to G. We also add an edge to

the set of edges of G from node ur to node vr′ corresponding

to c. Finally, when ur processed completely, we add it to VG ,

which is the set of vertices of G. We repeat this process until

there is no node in UG .

Lemma 1. For a polygonal domain of n vertices, |VG |, that
is the number of nodes of G, is O( 2πα n2) and |EG |, that is the
number of edges is O(|VG |2).
Proof. For each pair of vertices u and v, we have at most
2π
α + 1 valid regular chains of segments. This is because the

maximum number of break points is 2π
α . For a vertex v and a

valid chain c, a single node will be added to G. Therefore, the

number of nodes is at most equal to the number of different

pairs of vertices times the number of valid regular chains from

the first vertex to the second one, that is O( 2πα n2).
The second claim is trivial as G is a simple graph.

Lemma 2. The shortest path in G from node s[0,2π] to all
nodes tr for some valid leaving range r is equal to the shortest
path in the polygonal domain from vertex s to vertex t that
consists of only regular chains of segments.

Proof. We construct G such that any valid regular chain of

segments from a vertex u to a vertex v have a corresponding

edge in the graph with the same weight as the length of

the chain. We can establish a one to one mapping between

each path in G and each path in the polygonal domain which

consists of only regular chain of segments. Therefore the

shortest path in the plane has a corresponding path in G, which

is the shortest path in G from s[0,2π] to some node in G related

to t.

Corollary 1. From the previous lemma, we conclude that
running Dijkstra’s algorithm on G from s[0,2π] until we reach
some node related to vertex t, solves the path planning problem
in polygonal domain.

Theorem 1. The algorithm for path planning with “maximum
turning angle”, “connectedness” and “minimum turning dis-
tance” properties from the starting point s to the target point
t can be run in O(n4) time, where n is the total number of
obstacle vertices.

Proof. The running time of Dijkstra’s algorithm on a graph

with |V | vertices and |E| edges is O(|E|+ |V | log |V |) using

Fibonacci heap data structure. According to Lemma 1, the

running time on G will be O( 4π
2

α2 n4). Since π and α are

constants, the claim proved.

VI. EXTENSION: PROBLEM IN THE QUERY MODE

In the original problem, it was assumed that the target point

t is given at the same time as the other input. In this section we

divide the algorithm into two parts, preprocessing phase, and

query phase. In the preprocessing phase, the set of obstacles

and the starting point are given and in the query phase the

target point is determined. The problem in this mode is suitable

when we want to find the best moving path to different position

of the target in a fixed environment.

We solve the problem in the query mode as follows. Given

the set of obstacles and the starting point in the preprocessing

phase, we construct the graph G and run Dijkstra’s algorithm

on G to find the shortest path from s[0,2π] to all other nodes.

In the query phase, given the target point t, we consider each

node ur in G and find the valid regular chain of segments from

u to t with the smallest number of break points and leaving

angle in the range r. If there exists such a chain, we add the

length of the chain to the length of the shortest path to ur and

store it as a possible path from s to t. The final solution is the

shortest path among such possible paths.

Theorem 2. For the problem of path planning with “maxi-
mum turning angle”, “connectedness” and “minimum turning
distance” properties, we can preprocess a data structure in
O(n4) time, using O(n4) space to answer the query for any
target point t in O(n2) time. In these upper bounds n is the
total number of obstacle vertices.

Proof. We can construct the graph using O(n4) space and run

Dijkstra’s algorithm in O(n4) time as proved in Lemma 1 and

Theorem 1, respectively. In the query time, we need to process

each node of a graph in O(1) time to find a possible path to

t. Processing all nodes and finding the shortest path to t takes

O(|VG|) = O(n2) time.

VII. ALGORITHM EVALUATION

In this section we report our experiments to evaluate the

algorithm in practice. We evaluate the algorithm in two cases.

In the first case, we run the algorithm on two different polyg-

onal domain. These configurations are depicted in Figure 5

and 6. The results can be seen in Table I. As it can be seen,
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Fig. 5. The first configuration with α = π/6 and l = 50.

Fig. 6. The second configuration with α = π/6 and l = 50.

Fig. 7. A polygonal domain with 9 obstacles and 39 vertices is illustrated in
which we find a path with α = π/18 and l = 60.

the length of the path found by the algorithm, the length of

the shortest path with the required properties and the relative

error of the result are shown for each configuration.

In the second case, we use six different polygonal domains

with various size, and run the algorithm to find the required

preprocessing and query time of the algorithm for each one.

In these test cases, the maximum turning angle α = π/9 and

the minimum turning distance l = 60. For each test case, the

number of obstacles and vertices, and the preprocessing and

query time in milliseconds are shown in Table II.

In Figure 7 a polygonal domain with 9 obstacles and 39

vertices is illustrated in which we find a path with α = π/18
and l = 60.

VIII. CONCLUSION

In this paper we studied the problem of path planning for a

robot with “maximum turning angle” and “minimum turning

distance” in a polygonal domain. We proposed an algorithm

to find a path with the given requirements. We prove that

the required space and the running time of the algorithm are

O(n4). We further decompose the algorithm into two parts,

the preprocessing phase and the query phase, to reduce the

running time of the algorithm when a set of target points are

going to be used in a fixed polygonal domain.

Although our main goal was not to find the shortest path,

as presented by the experiments, the solution is not much

longer than the shortest path. For future work, we try to

improve the algorithm and find the shortest path with the given

requirements.
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TABLE I
COMPARING THE RESULT OF THE ALGORITHM WITH THE SHORTEST PATH IN TWO DIFFERENT CONFIGURATIONS.

Test case #Obstacles #Vertices Shortest path Path length Relative error

1 1 3 652.30 662.14 1.51%

2 2 7 693.51 712.31 2.71%

TABLE II
PREPROCESSING AND QUERY TIME OF THE ALGORITHM FOR POLYGONAL DOMAINS WITH VARIOUS SIZES.

Test case #Obstacles #Vertices Preprocessing time (ms) Query time (ms)

1 1 3 2 3

2 2 7 25 3

3 9 39 1166 18

4 26 100 2033 26

5 84 300 28860 188

6 180 500 223134 570
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