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The time fractional Fokker-Planck equation has been used in many physical
transport problems which take place under the influence of an external force
field. In this paper we examine pseudospectral method based on Gegenbauer
polynomials and Chebyshev spectral differentiation matrix to solve numerically
a class of initial-boundary value problems of the time fractional Fokker-Planck
equation on a finite domain. The presented method reduces the main problem to
a generalized Sylvester matrix equation, which can be solved by the global gen-
eralized minimal residual method. Some numerical experiments are considered
to demonstrate the accuracy and the efficiency of the proposed computational
procedure.
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1 INTRODUCTION

Over the last few years, ordinary and partial differential equations of fractional order have been focused on many stud-
ies due to their frequent appearance in various applications in fluid mechanics, viscoelasticity, biology, physics, and
engineering.1 Consequently, considerable attention has been given to the solutions of fractional ordinary differential, inte-
gral, and fractional partial differential equations of physical interest.2,3 In most fractional partial differential equations, it
is not possible to find the exact analytic solutions, so approximation and numerical techniques should be used.4-10

Recently, the phenomena of anomalous diffusion have been observed in many physical systems, eg, pollutant transport
through porous media, electron transfer in semiconductor and nuclear proliferation.1,2 The study of anomalous diffusion
is also of special significance in chemistry, biology, environmental science, and even in economics.11,12 The fractional
Fokker-Planck equations (FPEs) have been recently treated by a number of authors and are found to be a useful tool for
the description of transport dynamics in complex systems that are governed by anomalous diffusion and non-Markovian
processes.13,14 Fractional derivatives play a key role in modelling particle transport in anomalous diffusion.15,16 For the
description of anomalous transport in the presence of an external field, Metzler and Klafter13 introduced a time-fractional
FPE (TFFPE) as an extension of the FPE.17,18 As a model for subdiffusion in an external potential field v(x), the TFFPE

𝜕w(x, t)
𝜕t

= D1−𝛼
t

[
𝜕

𝜕x
v′(x)
m𝜂𝛼

+ K𝛼
𝜕2

𝜕x2

]
w(x, t) (1)
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has been suggested.14,15 Here, K𝛼 > 0 denotes the generalized diffusion coefficient with dimension [K𝛼] = cm2s−𝛼 , and
𝜂𝛼 is the generalized friction coefficient with dimension [𝜂𝛼] = s𝛼−1. Equation 1 uses the Riemann-Liouville fractional
derivative of order 1 − 𝛼, defined by1,2

D1−𝛼
t w(x, t) = 1

Γ(𝛼)
𝜕

𝜕t ∫
t

0

w(x, s)
(t − s)1−𝛼 ds, (2)

where 0 ≤ 𝛼 < 11,2,17,19 and Γ(x) is the Euler gamma function. For convenience, let f (x) = v′(x)
m𝜂𝛼

, the TFFPE can be written as

𝜕w(x, t)
𝜕t

= D1−𝛼
t

[
𝜕

𝜕x
f (x) + K𝛼

𝜕2

𝜕x2

]
w(x, t). (3)

There have been some attempts in deriving numerical methods and analysis techniques for the fractional FPEs. Ma and
Liu20 have considered a one-dimensional generalized fractional nonlinear FPE and extract the exact solution expressed
by q-exponetial function. Zhuang et al21 proposed an implicit numerical method and 2 solution techniques for improving
its order of convergence for this equation. Liu et al5,6 presented practical numerical methods to solve fractional FPEs.
Pseudo-spectral methods on Gauss or Gauss-Lobatto nodes are high-order methods. A Legendre pseudospectral method
has been developed for the determination of the control parameter in a 3-dimensional diffusion equation in Shamsi and
Dehghan.22 In Izadkhah and Saberi Nadjafi,23 for solving the time fractional convection-diffusion equations with variable
coefficients, Gegenbauer spectral method have been proposed. The aim of this work is to present an effective numerical
method for the TFFPE (3) along with supplementary conditions by considering the Gegenbauer pseudospectral (GPS)
method for the fractional derivative in time, while the spatial derivatives is approximated by pseudospectral method based
on Chebyshev-Gauss-Lobatto (CGL) nodes. Finally, we obtain a generalized Sylvester matrix equation. There are different
schemes for solving a generalized Sylvester matrix equation. Among these approaches, we consider the global GMRES(k)
suggested by Jbilou et al,24 which is also used in Tohidi and Toutounian25 to numerically solve a class of 1-dimensional
parabolic partial differential equations.26,27

Let us turn the attention towards the issue that the advantage of the pseudospectral method based on Gegenbauer poly-
nomials compared with pseudospectral methods based on Legendre polynomials is the parameter 𝜆 in the construction
of Gegenbauer polynomials. Through which, one can exploit appropriate parameter 𝜆 related to the order of fractional
derivative in pseudospectral method. This approach can improve the pseudospectral method compared with other ones.
In the current paper, the temporal derivative is considered in fractional form, and due to this, we approximate the solution
of the time fractional Fokker-Planck by Gegenbauer polynomials in time.

The outline of this paper is considered as follows. In the next Section, we introduce some preliminaries of fractional
calculus and present practical properties of Gegenbauer polynomials. For the sake of simply application of the proposed
method, the problem is reformulated in Section 3. In Section 4, we introduce the GPS method for solving (3) with the
appropriate initial-boundary conditions. Section 5 is devoted to report 2 numerical experiments which demonstrate the
accuracy of the proposed numerical scheme for solving (3) compare with those of the methods presented in Chen et al
and Deng.4,28 And Section 6 includes some concluding remarks.

2 PRELIMINARIES

2.1 Fractional calculus
In this subsection, we give some basic definitions and properties of the fractional calculus theory which will be used fur-
ther in this paper. For more details see Podlubny.2 For the finite interval [t0,T], we define the Riemann-Liouville fractional
integrals and derivatives.

Definition 2.1. The Riemann-Liouville fractional integral operator of order 𝛼 ≥ 0, of a function w(x, t) with respect
to time is defined as

t0 J𝛼t w(x, t) = 1
Γ(𝛼) ∫

t

t0

(t − 𝜁 )𝛼−1w(x, 𝜁 ) d𝜁, t > t0, 𝛼 > 0, (4)

t0 J0
t w(x, t) = w(x, t). (5)



IZADKHAH ET AL. 3

Definition 2.2. The fractional partial derivative of w(x, t) of order 𝛼, with respect to time, in the Riemann-Liouville
sense defined is as

t0 D𝛼
t w(x, t) = 𝜕

𝜕t
(

t0 J1−𝛼
t w(x, t)

)
, (6)

for 0 ≤ 𝛼 < 1, t > t0.

For ease of use, we will drop the low terminal t0 in definitions (4) and (6) whenever t0 = 0. For 0 < 𝛼 < 1, the following
properties hold2

J𝛼t (D
𝛼
t w(x, t)) = w(x, t) − [J1−𝛼

t w(x, t)]t=0
t𝛼−1

Γ(𝛼)
, (7)

D𝛼
t (J

𝛼
t w(x, t)) = w(x, t). (8)

Also, according to equation 2.66 given in Podlubny,2 we have

J1−𝛼
t

(
𝜕w(x, t)
𝜕t

)
= D𝛼

t w(x, t) − w(x, 0)t−𝛼

Γ(1 − 𝛼)
. (9)

Also, we have an important property of Riemman-Liouville fractional derivative of order 𝛼 > 0 corresponding (6) when
t0 = −1 and w(x, t) ≡ (1 + t)r, r ∈ N0 as following

−1D𝛼
t (1 + t)r = r!

Γ(r − 𝛼 + 1)
(1 + t)r−𝛼, r ∈ N0, (10)

where N0 stands for the set {0, 1, 2, …}.
The following lemma gives us an equivalent form of the Equation 1.

Lemma 2.1. If w(x, t) ∈ C2,1
x,t ([a, b] × [0,T]), then we can rewrite

𝜕w(x, t)
𝜕t

= D1−𝛼
t

[
𝜕

𝜕x
f (x) + K𝛼

𝜕2

𝜕x2

]
w(x, t) (11)

in the following equivalent form

D𝛼
t w(x, t) − w(x, 0)t−𝛼

Γ(1 − 𝛼)
=
[
𝜕

𝜕x
f (x) + K𝛼

𝜕2

𝜕x2

]
w(x, t). (12)

Proof. See Chen et al.4

2.2 Gegenbauer polynomials
Spectral methods typically use special cases of Jacobi polynomials, which are the eigenfunctions of the singular
Strüm-Liouville problem. The Gegenbauer polynomials C(𝜆)

n (x) of order n associated with the real parameter 𝜆, 𝜆 >

− 1
2
, 𝜆 ≠ 0, appear as the eigensolutions to the following singular Strüm-Liouville problem in the finite domain [−1, 1],

− d
dx

(
(1 − x2)𝜆+

1
2

dy(x)
dx

)
= (1 − x2)𝜆−

1
2 𝜚y(x),

and the corresponding eigenvalues are
𝜚𝜆n = n(n + 2𝜆).

With the first 2 polynomials
C(𝜆)

0 (x) = 1, C(𝜆)
1 (x) = 2𝜆x,

the remaining polynomials of the subsequent order are given through the following recurrence formula

C(𝜆)
n+1(x) =

2(𝜆 + n)
n + 1

xC(𝜆)
n (x) − 2𝜆 + n − 1

n + 1
C(𝜆)

n−1(x), n ≥ 1.

The special cases 𝜆 = 0, 1 and 1
2

correspond to the Chebyshev polynomials of first kind, second kind, and Legendre
polynomials, respectively. Actually, for Chebyshev polynomials of first kind, we have29
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Tn(x) =
n
2
lim
𝜆→0

C(𝜆)
n (x)
𝜆

, n ≥ 1.

The weight function for the Gegenbauer polynomials is w𝜆(x) = (1 − x2)𝜆−
1
2 , while they satisfy the weighted orthogonality

relation29

∫
1

−1
C(𝜆)

m (x)C(𝜆)
n (x)w𝜆(x) dx = 𝛾𝜆n𝛿mn,

where

𝛾𝜆n = 21−2𝜆𝜋Γ(n + 2𝜆)
n!(n + 𝜆)Γ2(𝜆)

,

and 𝛿mn is the Kronecker delta function. As mentioned in Szegö,29 the sequence of Gegenbauer polynomials {C(𝜆)
n (x)}∞n=0

forms a complete L2
w𝜆
[−1, 1]-orthogonal system, where L2

w𝜆
[−1, 1] is the weighted space defined by

L2
w𝜆 [−1, 1] ∶= {u|u is measurable and ||u||w𝜆 < ∞},

equipped with the following norm

||u||w𝜆 =
(
∫

1

−1
|u(x)|2w𝜆(x) dx

) 1
2

,

and the following inner product

(u, v)w𝜆 = ∫
1

−1
u(x)v(x)w𝜆(x) dx, ∀u, v ∈ L2

w𝜆[−1, 1].

The analytic form of the Gegenbauer polynomials C𝜆
n(t) of degree n, associated with the parameter 𝜆 is given by30

C(𝜆)
n (t) =

Γ(𝜆 + 1
2
)

Γ(2𝜆)

n∑
r=0

(−1)n−rΓ(n + r + 2𝜆)
2rΓ(𝜆 + r + 1

2
)(n − r)!r!

(t + 1)r. (13)

We prove the following theorem, which is needed in the sequel.

Theorem 1. Let C(𝜆)
n (t), t ∈ [−1, 1] denotes the Gegenbauer polynomial of degree n, associated with the parameter 𝜆,

and suppose 𝛼 > 0. Then the derivative of order 𝛼 in the Riemman-Liouville sense for C(𝜆)
n (t) is

−1D𝛼
t (C

(𝜆)
n (t)) =

n∑
r=0

b(𝜆,𝛼)
n,r (t + 1)r−𝛼,

where

b(𝜆,𝛼)
n,r = (−1)n−r(2𝜆)n+r

2r(n − r)!(𝜆 + 1
2
)rΓ(r + 1 − 𝛼)

,

and the notation (𝛽)k stands for Pochhammer symbol which defined by (𝛽)0 = 1 and (𝛽)k = 𝛽(𝛽 + 1) · · · (𝛽 + k − 1).

Proof. Taking the Riemman-Liouville fractional derivative −1D𝛼
t of C(𝜆)

n (t) in finite series representation (13), by using
(10), we have

−1D𝛼
t (C

(𝜆)
n (t)) =

Γ(𝜆 + 1
2
)

Γ(2𝜆)

n∑
r=0

(−1)n−rΓ(n + r + 2𝜆)
2rΓ(𝜆 + r + 1

2
)(n − r)!r!

−1D𝛼
t ((t + 1)r)

=
Γ(𝜆 + 1

2
)

Γ(2𝜆)

n∑
r=0

(−1)n−rΓ(n + r + 2𝜆)
2rΓ(𝜆 + r + 1

2
)(n − r)!r!

r!
Γ(r − 𝛼 + 1)

(t + 1)r−𝛼

=
n∑

r=0

(−1)n−r(2𝜆)n+r

2r(n − r)!(𝜆 + 1
2
)rΓ(r + 1 − 𝛼)

(t + 1)r−𝛼.

(14)

The last expression in (14), is obtained by using Pochhammer notation. Thus, the proof is completed.
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For computing the coefficients b(𝜆,𝛼)
n,r , we use the following recursive formula:

b(𝜆,𝛼)
n,r+1 = −(2𝜆 + n + r)(n − r)

2(𝜆 + 1
2
+ r)(r + 1 − 𝛼)

b(𝜆,𝛼)
n,r , r = 0, 1, … ,n,

with
b(𝜆,𝛼)

n,0 = (−1)n(2𝜆)n

n!Γ(1 − 𝛼)
,

for any integer n ∈ N0.

2.3 Spectral differentiation matrix
For applying the pseudospectral method, we use the CGL nodes zN,0, … , zN,N

31 defined by

zN,j = cos
(
𝜋j
N

)
, j = 0, 1, … ,N. (15)

Let lN,j(x), j = 0, 1, … ,N, be the Lagrange polynomials based on CGL nodes, that are expressed as

lN,j(x) =
N∏
i=0
i≠j

x − zN,i

zN,j − zN,i
, j = 0, … ,N,

with Kronecker property

lN,j(zN,k) = 𝛿jk =
{

1, j = k,
0, j ≠ k.

In pseudospectral methods, it is crucial that to express the derivatives l(m)
N,j (x) in terms of lN,j(x), ie,

l(m)
N,j (x) =

N∑
k=0

l(m)
N,j (zN,k)lN,k(x), j = 0, … ,N. (16)

Let 𝝓N(x) = [lN,0(x), lN,1(x), … , lN,N(x)], and �̃�N(𝜉) denotes the (N − 1)-dimensional row vector obtained from 𝝓N(𝜉) by
removing the first and last components. Then, from (16) we have

𝝓
(m)
N (x) = 𝝓N(x)D

(m)
N+1, (17)

and
�̃�
(m)
N (𝜉) = 𝝓N(𝜉)D̃

(m)
N+1, (18)

where D(m)
N+1 is the differentiation matrix of order m with the following entries:[

D(m)
N+1

]
i+1,j+1

= l(m)
N,j (zN,i), i, j = 0, … ,N,

and D̃(m)
N+1 denotes the matrix obtained from D(m)

N+1 by removing the first and last columns. Note that the subscript N + 1
in D(m)

N+1 stands for dimension.
More computationally practical methods for deriving these entries, in accurate and stable manner, can be found in

Canuto et al, Baltensperger and Trummer, Costa and Don, and Weideman and Reddy.31-34 For 2 special cases m = 1 and
m = 2, D(m)

N+1 has the following explicit formula in terms of CGL nodes31:

[
D(1)

N+1

]
p+1,l+1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c̄p

c̄l

(−1)p+l

zN,p−zN,l
, p ≠ l,

− zN,l

2(1−z2
N,l)
, 1 ≤ p = l ≤ N − 1,

2N2+1
6
, p = l = 0,

− 2N2+1
6
, p = l = N,

(19)
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and

[
D(2)

N+1

]
p+1,l+1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−1)p+l

c̄l

z2
N,p+zN,pzN,l−2(

1−z2
N,p

)
(zN,p−zN,l)2 ,

1≤p≤N−1
0≤l≤N,p≠l

,

−
(N2−1)

(
1−z2

N,p

)
+3

3
(

1−z2
N,p

)2 , 1 ≤ p = l ≤ N − 1,

2
3
(−1)l

c̄l

(2N2+1)(1−zN,l)−6
(1−zN,l)2

, p = 0, 1 ≤ l ≤ N,

2
3
(−1)l+N

c̄l

(2N2+1)(1+zN,l)−6
(1+zN,l)2

, p = N, 0 ≤ l ≤ N − 1,

N4−1
15
, p = l = 0, p = l = N,

(20)

where

c̄j =
{

2, j = 0,N,
1, j = 1, … ,N − 1. (21)

3 PROBLEM REFORMULATION

In this section, we reformulate the TFFPE:

𝜕w(x, t)
𝜕t

= D1−𝛼
t

[
𝜕

𝜕x
f (x) + K𝛼

𝜕2

𝜕x2

]
w(x, t), a ≤ x ≤ b, 0 < t ≤ T (22)

subject to the initial condition

w(x, 0) = 𝜑(x), a ≤ x ≤ b, (23)

and the boundary conditions

w(a, t) = g1(t), w(b, t) = g2(t), 0 < t ≤ T. (24)

We assume that the problem (Equations 22-24) have a unique solution w(x, t) ∈ C2,1
x,t ([a, b] × [0,T]). By using Lemma

2.1, Equation 22 can be considered as follows:

D𝛼
t w(x, t) − w(x, 0)t−𝛼

Γ(1 − 𝛼)
= 𝜕

𝜕x
(f (x)w(x, t)) + K𝛼

𝜕2

𝜕x2 w(x, t). (25)

To simplify our method, we reformulate the problem (Equations 22-24), by applying the transformation

v(x, t) = w(x, t) + 𝜇(x, t),

with

𝜇(x, t) = x − b
b − a

g1(t) +
a − x
b − a

g2, (26)

which transforms the boundary conditions (24) to the homogeneous boundary conditions. So, we have the following
problem,

D𝛼
t v(x, t) − v(x, 0)t−𝛼

Γ(1 − 𝛼)
= 𝜕

𝜕x
(f (x)v(x, t)) + K𝛼

𝜕2

𝜕x2 v(x, t) + 𝜓(x, t), 0 < t ≤ T, a ≤ x ≤ b, (27)

with the initial condition

v(x, 0) = �̃�(x), a ≤ x ≤ b, (28)

and the homogeneous boundary conditions

v(a, t) = v(b, t) = 0, 0 < t ≤ T, (29)
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where

𝜓(x, t) = D𝛼
t 𝜇(x, t) −

𝜇(x, 0)t−𝛼

Γ(1 − 𝛼)
− 𝜕

𝜕x
(f (x)𝜇(x, t)), (30)

�̃�(x) = 𝜑(x) + 𝜇(x, 0). (31)

We note that 𝜕2

𝜕x2𝜇(x, t) ≡ 0. In addition, for considering the problem (Equations 27-29) on the domain 𝜉 ∈ Λ = [−1, 1]
in space and 𝜏 ∈ I = [−1, 1] in time, we also use the following change of variables:

t = T(𝜏 + 1)
2

, 𝜏 ∈ I,

and
x = 1

2
((b − a)𝜉 + (b + a)), 𝜉 ∈ Λ.

So, the problem (Equations 27-29) can be written as follows:

(T∕2)−𝛼
[

−1D𝛼
𝜏u(𝜉, 𝜏) − u(𝜉,−1)(𝜏 + 1)−𝛼

Γ(1 − 𝛼)

]
=
( 2

b − a

)
𝜕

𝜕𝜉
(F(𝜉)u(𝜉, 𝜏)) + K𝛼

( 2
b − a

)2 𝜕2

𝜕𝜉2 u(𝜉, 𝜏)

+ Ψ(𝜉, 𝜏), (𝜉, 𝜏) ∈ Λ × I,
(32)

u(𝜉,−1) = �̄�(𝜉), 𝜉 ∈ Λ, (33)

u(−1, 𝜏) = u(1, 𝜏) = 0, 𝜏 ∈ I, (34)

where

u(𝜉, 𝜏) ∶= v
(

1
2
((b − a)𝜉 + (b + a)), T(𝜏 + 1)

2

)
, F(𝜉) ∶= f

(1
2
((b − a)𝜉 + (b + a))

)
,

Ψ(𝜉, 𝜏) ∶= 𝜓

(
1
2
((b − a)𝜉 + (b + a)), T(𝜏 + 1)

2

)
, �̄�(𝜉) ∶= �̃�

(1
2
((b − a)𝜉 + (b + a))

)
.

Moreover, by the Riemman-Liouville definition of fractional derivative (6) for t0 = −1, we have

−1D𝛼
𝜏u(𝜉, 𝜏) = 1

Γ(1 − 𝛼)
𝜕

𝜕𝜏 ∫
𝜏

−1
(𝜏 − s)−𝛼u(𝜉, s) ds, 0 ≤ 𝛼 < 1. (35)

4 DESCRIPTION OF THE METHOD

According to the idea of spectral method, we consider the approximate solution of the problem (Equations 32-34) in the
following form

U(𝜉, 𝜏) =
N−1∑
j=1

M∑
k=0

uj,klN,j(𝜉)C(𝜆)
k (𝜏), (36)

where uj,k, j = 1, … ,N − 1, k = 0, … ,M are the unknown coefficients to be determined. We mention that, in (36), due
to the homogeneous boundary conditions, in (36) j varies from 1 to N − 1.

By defining the unknown vector function

Θ(𝜏) = [𝜃1(𝜏), 𝜃2(𝜏), … , 𝜃N−1(𝜏)]T , (37)

with

𝜃j(𝜏) =
M∑

k=0
uj,kC(𝜆)

k (𝜏), (38)

we have

U(𝜉, 𝜏) =
N−1∑
j=1
𝜃j(𝜏)lN,j(𝜉) = �̃�N(𝜉)Θ(𝜏), (39)
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and

−1D𝛼
𝜏U(𝜉, 𝜏) = �̃�N(𝜉) −1D𝛼

𝜏Θ(𝜏). (40)

In addition, we consider the spectral approximation

FN(𝜉) = 𝝓N(𝜉)F (41)

for F(𝜉), where F = [F(zN,0),F(zN,1), … ,F(zN,N)]T.
By using (39), (41), (17), and (18), we have( 2

b − a

)
𝜕

𝜕𝜉
(F(𝜉)U(𝜉, 𝜏)) +

( 2
b − a

)2
K𝛼

𝜕2

𝜕𝜉2 U(𝜉, 𝜏)

≃
( 2

b − a

)
𝜕

𝜕𝜉
(FN(𝜉)U(𝜉, 𝜏)) +

( 2
b − a

)2
K𝛼

𝜕2

𝜕𝜉2 U(𝜉, 𝜏)

=
[( 2

b − a

) d
d𝜉

(
FN(𝜉)�̃�N(𝜉)

)
+
( 2

b − a

)2
K𝛼

d2

d𝜉2 �̃�N(𝜉)
]
Θ(𝜏),

=
[( 2

b − a

)(
𝝓N(𝜉)D

(1)
N+1F�̃�N(𝜉) + FN(𝜉)𝝓N(𝜉)D̃

(1)
N+1

)
+
( 2

b − a

)2
K𝛼𝝓N(𝜉)D̃

(2)
N+1

]
Θ(𝜏).

(42)

By using the notation [A](p) for the pth row of the matrix A, we note that

𝝓N(𝜉)D̃
(1)
N+1 = �̃�N(𝜉) ̂̃D

(1)
N+1 + r(1)(𝜉), (43)

𝝓N(𝜉)D̃
(2)
N+1 = �̃�N(𝜉) ̂̃D

(2)
N+1 + r(2)(𝜉), (44)

𝝓N(𝜉)D
(1)
N+1 = �̃�N(𝜉)D̂

(1)
N+1 + r̃(1)(𝜉), (45)

where

r(1)(𝜉) =
[
D̃(1)

N+1

]
(1)

lN,0(𝜉) +
[
D̃(1)

N+1

]
(N+1)

lN,N(𝜉),

r(2)(𝜉) =
[
D̃(2)

N+1

]
(1)

lN,0(𝜉) +
[
D̃(2)

N+1

]
(N+1)

lN,N(𝜉),

r̃(1)(𝜉) =
[
D(1)

N+1

]
(1)

lN,0(𝜉) +
[
D(1)

N+1

]
(N+1)

lN,N(𝜉),

and ̂̃D
(1)
N+1,

̂̃D
(2)
N+1, and D̂(1)

N+1 are the matrices obtained from D̃(1)
N+1, D̃

(2)
N+1, and D(1)

N+1, respectively, by removing the first and
the last rows. As we will see, there is no need to compute the 3 terms r(1)(𝜉), r(2)(𝜉), and r̃(1)(𝜉) in (43) to (45), because
these are eliminated during the collocation procedure with CGL points.

By substituting (43) to (45) in (42), we have( 2
b − a

)
𝜕

𝜕𝜉
(FN(𝜉)U(𝜉, 𝜏)) +

( 2
b − a

)2
K𝛼

𝜕2

𝜕𝜉2 U(𝜉, 𝜏)

=
[( 2

b − a

)(
�̃�N(𝜉)D̂

(1)
N+1F�̃�N(𝜉) + FN(𝜉)�̃�N(𝜉) ̂̃D

(1)
N+1

)
+
( 2

b − a

)2
K𝛼�̃�N(𝜉) ̂̃D

(2)
N+1 + r(𝜉)

]
Θ(𝜏),

(46)

where

r(𝜉) =
( 2

b − a

) [
r̃(1)(𝜉)F�̃�N(𝜉) + FN(𝜉)r(1)(𝜉) +

( 2
b − a

)
K𝛼r(2)(𝜉)

]
.

It is important to note that r(𝜉) in the internal CGL points (15) is a zero vector of dimension N − 1, because

r̃(1)(zi,N) = 0, r(1)(zi,N) = 0, r(2)(zi,N) = 0, i = 1, 2, … ,N − 1. (47)
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Now, we consider (32) to (34) for the approximate solution U(𝜉, 𝜏), given in (36), instead of the exact solution u(𝜉, 𝜏).
We substitute (40) and (46) in (32) and collocate the resulting equation in the internal grid points zi,N, i = 1, 2, … ,N − 1.
This and the fact that the �̃�N(zN,p) is the pth row of the identity matrix IN−1, imply that

−1D𝛼
𝜏 𝜃p(𝜏) =

(T
2

)𝛼[ ( 2
b − a

)(
[D̂(1)

N+1](p)F𝜃p(𝜏) + F(zN,p)[ ̂̃D
(1)
N+1](p)Θ(𝜏)

)
+
( 2

b − a

)2
K𝛼[ ̂̃D

(2)
N+1](p)Θ(𝜏) + Ψ(zN,p, 𝜏)

]
+ �̄�(zN,p)

(𝜏 + 1)−𝛼

Γ(1 − 𝛼)
.

(48)

Based on the above relation, we can establish the following matrix form:

−1D𝛼
𝜏Θ(𝜏) =

(T
2

)𝛼[ ( 2
b − a

)(
diag(D̂(1)

N+1F) + diag(F̃) ̂̃D
(1)
N+1

)
+
( 2

b − a

)2
K𝛼

̂̃D
(2)
N+1

]
Θ(𝜏) +

(T
2

)𝛼
Ω(𝜏) + Φ(𝜏), (49)

where F̃ is the vector obtained from F by removing the first and last components, and

Φ(𝜏) = (𝜏 + 1)−𝛼

Γ(1 − 𝛼)
[�̄�(z1,N), �̄�(z2,N), … , �̄�(zN−1,N)]T ,

Ω(𝜏) = [Ψ(z1,N , 𝜏),Ψ(z2,N , 𝜏), … ,Ψ(zN−1,N , 𝜏)]T .

Here, we use notation “diag(v)” for a vector v, which means a diagonal matrix that puts the vector v on the main diagonal.
On the other hand, from (37) and (38), the vector function Θ(𝜏) can be written as follows:

Θ(𝜏) = ΛuΥ𝜆
M(𝜏), (50)

where Λu is a (N − 1) × (M + 1) matrix with unknown entries (uj,k), 1 ≤ j ≤ N − 1, 0 ≤ k ≤ M, and

Υ𝜆
M(𝜏) =

[
C(𝜆)

0 (𝜏),C(𝜆)
1 (𝜏), … ,C(𝜆)

M (𝜏)
]T
.

By using (50), the approximate solution U(𝜉, 𝜏), given in (39), can be written as follows:

U(𝜉, 𝜏) = �̃�N(𝜉)ΛuΥ𝜆
M(𝜏). (51)

By Theorem 1, we have

−1D𝛼
𝜏Θ(𝜏) = ΛuΥ𝜆,𝛼

M (𝜏), (52)

with

Υ𝜆,𝛼

M (𝜏) =

[
b(𝜆,𝛼)

0,0 (1 + 𝜏)−𝛼, b(𝜆,𝛼)
1,0 (1 + 𝜏)−𝛼 + b(𝜆,𝛼)

1,1 (1 + 𝜏)1−𝛼, … ,

M∑
r=0

b(𝜆,𝛼)
M,r (1 + 𝜏)r−𝛼

]T

.

By substituting (51) and (52) in (49), we get

ΛuΥ𝜆,𝛼

M (𝜏) =
((T

2

)𝛼 [( 2
b − a

)(
diag(D̂(1)

N+1F) + diag(F̃) ̂̃D
(1)
N+1

)
+
( 2

b − a

)2
K𝛼

̂̃D
(2)
N+1

])
ΛuΥ𝜆

M(𝜏)

+
(T

2

)𝛼
Ω(𝜏) + Φ(𝜏).

(53)

For determining the matrix of unknowns Λu, we collocate (53) in 𝜏M,j,j = 0, 1, … ,M, where 𝜏M,i, i = 0, 1, … M, are the
real simple roots of the Gegenbauer polynomial of degree M + 1 associated with the parameter 𝜆, and we obtain

ΛuΥ𝜆,𝛼

M (𝜏M,j) + MΛuΥ𝜆
M(𝜏M,j) =

(T
2

)𝛼
Ω(𝜏M,j) + Φ(𝜏M,j), j = 0, 1, … ,M, (54)

where

M = −
(T

2

)𝛼 [( 2
b − a

)(
diag(D̂(1)

N+1F) + diag(F̃) ̂̃D
(1)
N+1

)
+
( 2

b − a

)2
K𝛼

̂̃D
(2)
N+1

]
.
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Finally, Equation 54 can be summarized in the following generalized Sylvester matrix equation

ΛuΥ𝜆,𝛼

M + MΛuΥ𝜆
M = C, (55)

where C = (T
2
)𝛼Ω + Φ is a (N − 1) × (M + 1) matrix and the matrices Ω,Φ, Υ𝜆

M and Υ𝜆,𝛼

M are defined as follows:

Ω = [Ω(𝜏M,0),Ω(𝜏M,1), … ,Ω(𝜏M,M)],
Φ = [Φ(𝜏M,0),Φ(𝜏M,1), … ,Φ(𝜏M,M)],

Υ𝜆
M =

[
Υ𝜆

M(𝜏M,0),Υ𝜆
M(𝜏M,1), … ,Υ𝜆

M(𝜏M,M)
]
,

and

Υ𝜆,𝛼

M =
[
Υ𝜆,𝛼

M (𝜏M,0),Υ𝜆,𝛼

M (𝜏M,1), … ,Υ𝜆,𝛼

M (𝜏M,M)
]
.

We note that the generalized Sylvester matrix Equation 55 has a unique solution if the matrix(
(Υ𝜆,𝛼

M )T ⊗ IN−1 + (Υ𝜆
M)T ⊗M

)
is nonsingular, which throughout this paper, we assume that this condition is verified. As

Jbilou et al24 and Bouhamidi and Jbilou,35 for solving the generalized Sylvester matrix Equation 55, the restarted global
generalized minimal residual (GMRES) algorithm, denoted by GlGMRES(k), can be used. We exploit the modified global
Arnoldi algorithm described as Algorithm 1 to construct an F-orthonormal basis V1,V2, … ,Vk for the corresponding
matrix Krylov subspace k(A,V1), associated with the matrix Equation 55. In Algorithm 1, ||A||F is the Ferobenius norm
of the matrix A, defined by ||A||F =

√
tr(ATA), where tr(B) denotes the trace of the matrix B. As mentioned in Bouhamidi

and Jbilou,35 to save memory and CPU-time requirements, the global GMRES method should be used in a restarted
mode. The restarted global GMRES algorithm for solving generalized Sylvester Equation 55 is summarized as Algorithm
2. We note that 𝛾k+1 is the last component of the vector gk = ||R0||FQ̃ke1.
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Further remarks. The functions 𝜇 and Ψ are used during discretization. These functions are defined in Equations 26
and 30, in a complex form. However, it is not necessary to obtain 𝜇 and Ψ in closed form. Because we just need the values
of 𝜇 and Ψ in collocation points (zN,p, 𝜏M,j) to construct the final generalized Silvester matrix Equation 55. By using (26)
and (30), we obtain the values of 𝜇 and Ψ in the collocation points. Also, we mention that the partial derivative can be
approximated by using differentiation matrix and GPS approximation.

5 NUMERICAL ILLUSTRATIONS

This section is devoted to the numerical experiments, for demonstrating the effectiveness of the GPS method to solve
numerically the TFFPE (Equations 22-24). We implemented the GPS method with MATLAB 8.5 software in a PC laptop
COREi3 with 2.13 GHz of CPU and 4 GB of RAM.

We used the global GMRES(20) Algorithm 2, for solving the associated generalized Sylvester matrix Equation 55, with
the stopping criterion ||R||F < 10−8, where R = C − Λ̃uΥ𝜆,𝛼

M − MΛ̃uΥ𝜆
M for Λ̃u as an approximation of Λu. We calculated

the computational order of the method presented in this article with

C-order = log2

(
E∞(M1,N1)
E∞(M2,N2)

)
,

where E∞(M,N) = max |w(xi,T) − W(xi,T)| for approximate solution W(x, t) of exact solution w(x, t).

Example 5.1. Consider the following TFFPE:

𝜕w(x, t)
𝜕t

= D1−𝛼
t

[
𝜕

𝜕x
(−1) + 𝜕2

𝜕x2

]
w(x, t), 0 ≤ x ≤ 1, 0 < t ≤ T, 0 ≤ 𝛼 < 1,

subject to the initial condition
w(x, 0) = x(1 − x), 0 ≤ x ≤ 1,

and the boundary conditions

w(0, t) = − 3t𝛼
Γ(1 + 𝛼)

− 2t2𝛼

Γ(1 + 2𝛼)
, 0 < t ≤ T,

w(1, t) = − t𝛼
Γ(1 + 𝛼)

− 2t2𝛼

Γ(1 + 2𝛼)
, 0 < t ≤ T.

In this problem f(x) = −1, x ∈ [0, 1],K𝛼 = 1. The exact solution of the above problem is

w(x, t) = x(1 − x) + (2x − 3) t𝛼
Γ(1 + 𝛼)

− 2t2𝛼

Γ(1 + 2𝛼)
,

which may be verified by direct differentiation and substitution in the fractional differential equation, using the formula

D1−𝛼
t tp =

Γ(p + 1)
Γ(p + 𝛼)

tp+𝛼−1.

For 𝛼 = 0.5 and T = 100, by using the GPS method with 𝜆 = 0.5 and taking M = 1 and N = 4, we obtained the exact

solution of this problem in CPUtime = 0.0029 s. We also presented in Table 1 the error ||en|| = (
h
∑M−1

i=1 (w(xi, tn) − wi,n)2
) 1

2

of the GL-BDIA and L1-CDIA methods (given in Chen et al4), and CPU time (s) of them by setting h = k = 1
5
,

1
10
,

1
20
,

1
40

.

TABLE 1 The error ||en|| for the GL-BDIA and the L1-CDIA methods defined in Chen
et al4 for Example 5.1

k h ||en|| for GL-BDIA CPU Time, s ||en|| for L1-CDIA CPU Time, s
1
5

1
5

1.68e-002 0.150 2.69e-006 0.101
1

10
1

10
8.77e-003 0.768 1.02e-006 0.475

1
20

1
20

4.49e-003 5.085 3.98e-007 2.629
1

40
1

40
2.27e-003 37.334 1.59e-007 19.167
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TABLE 2 The maximum error and computational
orders obtained by the Gegenbauer pseudospectral
method for Example 5.2

M N E∞(M,N) C-order CPU Time, s

6 6 7.94e-004 … 0.205
6 8 9.33e-005 3.0892 0.512
8 8 8.82e-005 0.0811 1.191
8 10 5.86e-005 0.5898 2.530

TABLE 3 The maximum error of the
predictor-corrector approach combined with
the method of line28 for Example 5.2

k max |Wh,k(xi, 0.3) − w(xi, 0.3)|
0.00012 2.04e-004
0.00006 1.46e-004
0.00003 1.18e-004
0.000015 1.040e-004

0 0.05 0.1 0.15 0.2 0.25 0.3

2
4

6
8

10

0.096

0.098

0.1

0.102

0.104

tx

U
(x

,t
)

FIGURE 1 Plot of the approximate solution obtained by the Gegenbauer pseudospectral method with N = 8,M = 6, 𝜆 = 0.2, and 𝛼 = 0.2
for Example 5.2 [Colour figure can be viewed at wileyonlinelibrary.com]

Example 5.2. As the last example, we consider the following TFFPE28:

𝜕w(x, t)
𝜕t

= D1−𝛼
t

[
𝜕

𝜕x

(
− sin x + 6

6

)
+ 2 𝜕

2

𝜕x2

]
w(x, t), 1 ≤ x ≤ 11, 0 < t ≤ T, 0 < 𝛼 ≤ 1,

subject to the initial condition
w(x, 0) = 0.10, 1 ≤ x ≤ 11,

and the boundary conditions
w(0, t) = 0.10, 0 < t ≤ T,

w(1, t) = 0.10, 0 < t ≤ T,

In this problem, f (x) = − sin x+6
6

, x ∈ [1, 11],K𝛼 = 2. Here, we consider the numerical solution of L1-CDIA scheme,
given in Chen et al4 (with k = 0.000015 and h = 0.03125) as the exact solution of this problem. For comparison, we
present the results obtained for W(xi, 0.3) = U(2xi − 1, 1), in which xi = 1 + ih, for i = 1, 2, … ,N, where N = b−a

h
.

Table 2 represents the numerical results of the GPS method for 𝛼 = 0.8 and T = 0.3 with 𝜆 = 0.8 and different values of
M and N. The results of the predictor-corrector approach combined with the method of line,28 and the L1-FDIA method4

for 𝛼 = 0.8, h = 0.0625, T = 0.3, and different time step sizes k, are presented in Tables 3 and 4, respectively. Moreover,
the approximate solutions of the problem, obtained by the GPS method, with 𝛼 = 0.2 and 𝜆 = 0.2 for N = 8,M = 6 and
N = 12,M = 8, are plotted in Figures 1 and 2, respectively. Tables 5 and 6 show that the numerical results have a stability
behavior of GPS method. In Tables 5 and 6, we consider 𝛼 = 0.8 with 𝜆 = 0.8 and 𝛼 = 0.2 with 𝜆 = 0.2, respectively.
Comparison of Legendre pseudospectral method (𝜆 = 0.5) and GPS method with 𝛼 = 0.2 and 𝜆 = 0.2 are presented in
Table 7. These results confirm the accuracy of the proposed spectral approach.

http://wileyonlinelibrary.com
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FIGURE 2 Plot of the approximate solution obtained by the Gegenbauer pseudospectral method with N = 12,M = 8, 𝜆 = 0.2, and 𝛼 = 0.2
for Example 5.2 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 The maximum error of the
L1-FDIA method for Example 5.2

k max |Wh,k(xi, 0.3) − w(xi, 0.3)|
0.00024 1.3936e-004
0.00012 1.3942e-004
0.00006 1.3949e-004
0.00003 1.3947e-004

TABLE 5 Numerical results for Example 5.2 with 𝛼 = 0.8 and 𝜆 = 0.8

GPS for GPS for
x M = 8 and N = 8 M = 10 and N = 10 Exact Results

1.5 0.100690 0.100676 0.100688
3.5 0.104495 0.104494 0.104499
5.5 0.097624 0.097593 0.097564
7.5 0.097653 0.097674 0.097702
9.5 0.104340 0.104338 0.104316

Abbreviation: GPS, Gegenbauer pseudospectral.

TABLE 6 Numerical results for Example 5.2 with 𝛼 = 0.2and
𝜆 = 0.2

GPS for GPS for
x M = 8 and N = 8 M = 10 and N = 10 Exact Results

1.5 0.101049 0.101045 0.101068
3.5 0.106167 0.106184 0.106230
5.5 0.098053 0.097976 0.097918
7.5 0.096852 0.096887 0.096909
9.5 0.104731 0.104748 0.104748

Abbreviation: GPS, Gegenbauer pseudospectral.

TABLE 7 Comparison of Legendre pseudospectral method(𝜆 = 0.5) and
Gegenbauer pseudospectral method with 𝛼 = 0.2and 𝜆 = 0.2for Example 5.2

M N E∞(M,N) C-order CPU Time, s Legendre Pseudospectral

6 6 1.1875e-003 … 0.201 1.1862e-003
6 8 1.5068e-004 2.9784 0.519 1.5107e-004
8 8 1.5024e-004 0.0042 1.238 1.5054e-004
8 10 6.1002e-005 1.3003 2.541 6.1415e-005

From Tables 3-5, we observed that the approximate solutions obtained by the GPS method are more accurate than those
of the methods presented in.4,28 So we can conclude that the GPS method is an effective method for solving the TFFPE.

http://wileyonlinelibrary.com
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6 CONCLUSION

We have presented a GPS method for solving numerically a 1-dimensional TFFPE using Chebyshev spectral differenti-
ation matrix in spatial direction. As we observed, the new method reduces the main problem to a generalized Sylvester
matrix equation, which can be solved by the global GMRES(k) algorithm. Numerical illustrations show that the proposed
method is effective and approximate solutions are satisfactory for small M and N. It is worth pointing out that the proposed
GPS method can be extended for 2-dimensional fractional partial differential equations, which are our future works.
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