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ABSTRACT 

 

This paper presents a new optimization algorithm for topology optimization of freely vibrating 

continuum structures for optimal simple and repeated natural eigenfrequencies. Finite element method 

(FEM) is used to formulate the topology optimization. The modified solid isotropic material with 

penalization (SIMP) model is used to avoid artificial modes in low density areas. During the optimization 

process a simple frequency may become multiple. However, the sensit ivity of repeated eigenfrequencies 

is not unique. To capture this behavior, s ensitivity of them are calculated by the mathematical 

perturbation analysis. The eigenvalue topology optimization is considered as a max-min formulation. In 

order to solve the problem, the method of moving asymptotes (MMA) is used. 

Two dimensional, plane elasticity problems with different sets of boundary condition and 

attachment of a concentrated non-structural mass are considered. Numerical results show the validity  and 

supremacy of the proposed approach. 
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1. INTRODUCTION 

 
The topology optimization of the continuum structure has great impact in the field  of the structural 

optimization and has been extensively developed in the last several decades. For structural topology 

optimization design several optimization approaches such as the homogenization approach [1, 2], the 

classical solid isotropic material with penalization (SIMP) approach [3, 4], and the evolutionary structural 

optimization approach [5, 6], have been developed. 

Although optimization procedure is time-consuming, with the development of computer 

technology, topology optimization is increasingly becoming a powerful tool for solving structural design 

problems for optimal eigenfrequencies. However, the number of papers that deal with topology 

optimization of dynamic problem is limited. Problems of passive design again vibration and noise are of a 

great impact in many engineering fields. Keeping the eigenfrequencies of a structure away from the 

external excitation frequencies is a frequent goal of the design of the vibrating structure to avoid 

resonance. 

The first attempt at eigenvalue topology optimization was considered by Diaz and Kikuchi [7] 

dealt with the reinforcement of given 2D structures. Tenek and Hagiwara  [8] dealt with maximizing the 

eigenfrequencies of plates using the homogenization method and mathematical programming. The 

problem objective function is defined as scalar weighted sum of the first five eigenfrequencies see [9]. 

Olhoff and Du [10] dealt with topology optimization for minimum dynamic compliance of 

continuum structure subjected to force vibration. Maximizing the gap between two adjacent frequencies 

have been considered in the papers  [11]. Topology optimization was applied to maximize fundamental 

frequency of two-dimensional structures with additional non-structural concentrated mass  [12, 13]. The 
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objective of optimization problem is formulated by bound formulation which make the proper treatment 

of multiple eigenvalues easier [11, 14]. The topology optimization formulation of couple-stress 

continuum structures is investigated for maximizing the first natural frequency   [15]. 

The simultaneous optimization of material properties and the topology of functionally graded (FG) 

structures was proposed in the context of minimum compliance [16, 17]. 

In this paper, we present topology optimization of two-dimensional functionally graded material 

for optimal values of fundamental eigenfrequency. Also possibility of multiple eigenfrequency is 

considered and Sensitivity of them are computed by the results of mathematical perturbation analysis  

[18]. Spurious modes related to subregions with low values of material density is captured by using the 

modified SIMP [14]. The topology optimization is formulated by a bound formulation. The problem of 

eigenvalue topology optimization is solved by the (MMA) [19].  
 

2. FORMULATION OF TOPOLOGY OPTIMIZATION AND MATERIA MODEL 

 

2.1 Maximization of fundamental eigenfrequency 

 
Based on the finite element analysis the dynamic behavior of continuum structure can be depicted 

by the general eigenvalue problem 

2
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where 
i
 is the i’th natural eigenfrequency and 

i
u is the corresponding eigenvector. 

The eigenvalue optimization problem can be considered as max-min formulation 
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where N is total number of degrees of freedom of the admissible design domain, and f and 
0

V are 

respectively the prescribed volume fraction and design domain volume, x denotes the vector of element 

material densities, 
min

x  represent a vector of lower bound for x . 

The max-min problem may equivalently be written by a bound variable formulation that has an 

advantage when we have multiple eigenfrequencies . 

 

2.2 The classical SIMP model 

The purpose of the topology optimization process is to find the void -solid distribution of known 

amount of the given material. By considering the SIMP model, the element elasticity matrix may be 

considered as 
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where e
x

and 
0

e
E

 are respectively the element material density and elasticity matrix of homogeneous 

solid. To attain a solution which be composed of solid and void region  the penalization factor p is used. 

Also the element mass matrix based on the SIMP model may be considered as  

               
0

( ) 
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e ee e
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where
0

e
M

is the mass matrix corresponding to the element with fully solid material, and usually the 

1.q  

 

2.3 The modified SIMP model 

If 3p  and 1q , the SIMP model for eigenvalue topology optimization may cause artificial 

eigenmodes related to very small corresponding eigenfrequencies. Following Du and Olhof [14] we may 

replace (2) by the modified SIMP model 
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In this equation the two coefficients  
1

c  and  
2

c  enforce the continuity at the value 0.1
e

x  of 

the element material density. 

 

3. SENSITIVITY CALCULATION 

 

If we assume the eigenfrequency is simple, then the corresponding eigenvector will be unique. 

Therefore it is differentiable with respect to design variables. To calculate the sensitivity of unimo dal 

eigenvalue we differentiate (1) with respect to 
e

x , and achieve 
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By using the equation (7) and (9), the sensitivity of i’th natural eigenfrequency becomes 
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A unimodal eigenfrequency may become multiple during optimization. In this paper the 

sensitivities of repeated eigenfrequencies are calculated based on the result of the mathematical 

perturbation analysis  [18]. 

 

4. OPTIMIZATION ALGORITHM 

 

The proposed iterative procedure is illustrated in a flowchart as Figure 1. The bound variable 

formulation of eigenvalue topology optimization is carried out in the self-programming matlab software. 

Checherboard and mesh-dependency problem usually arise in topology optimization problem. To prevent 

those problems, we have used the mesh-independent filter as described in [4] by weighted averaging of 

sensitivities over the neighbouring elements (see e.g. Hassani and Hinton  [20]). 
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Fig. 1. Flowchart of the proposed optimization algorithm 

 

5. NUMERICAL EXAMPLES 

 

In this section an illustrative examples is presented which show validity of the proposed method. It 

has been modeled by four-node plane stress elements. In this example we want to maximize the 

fundamental eigenfrequency of a beam-like 2D structure with simply supported ends shown in Figure 2. 

The material volume fraction is 50%. The length, width, and thickness of the beam are respectively 8 m, 1 

m and 1 m. Young’s modulus is            , poisson’s ratio is  0.3   and mass density is  1  . The existing 

material is uniformly distributed over the design domain. The first natural frequency of the initial design 

is    =68.7 rad/s. The optimal topology is shown Figure 3. The fundamental frequency of the optimal 

design is     =166.44 rad/s. The result is agree with the result in Huang et.al. [21] and has relative error 

less than 3%. 
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6. Conclusions 

In this paper the bound variable optimization problem has been solved by using MMA. The 

modified SIMP model has been employed to handle the localized eigenmodes in low density areas. An 

algorithm has been developed for eigenvalue topology optimization problem. A numerical example for 

two-dimensional plane elasticity problem is presented which show validity of the proposed method. 
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