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In this study, automatic modification of stresses in rigid parts of a pipe line system is modeled

using the trial results of a second-order explicit Finite Volume (FV) Godunov type scheme for

one-dimensional transient flow in pipes. The developed model for numerical analysis of transient

pressure is based on Riemann solution of continuity equation coupled with the momentum

Equation (including convective term). The implementation of boundary conditions such as

reservoirs, valves, and pipe junctions in the Godunov approach is similar to that of the method

of characteristics (MOC) approach. The computed pressure waves are compared with analytical

solution as well as laboratory measurements for single pipes. The model is applied on two classic

problems (systems consisting of a reservoir, a pipe and a valve). The second-order Godunov

scheme is stable for Courant number less than or equal to unity, and therefore, can be applied

for the problems with variable mesh spacing. In order to show the ability of the developed model

to deal with such cases, the computed maximum pressure distribution along a pipeline with variable

segment coordinates are used for trial modification of pipe thickness and stress distribution.

Key words | convective term, finite volume method, Riemann problem, stress distribution,

water hammer

INTRODUCTION

Transient flow caused by pump shutdowns, or rapid

changes in valve setting, trigger a series of positive and

negative pressure waves large enough to rupture pipelines

or damage other hydraulic devices. Positive pressures may

end up with over stressing in rigid parts and consequent

damages to the pipe line system. Negative pressure waves

can also result in cavitations, pitting and corrosion. Thus,

accurate modeling of water hammer problems in pipes is

vital for proper design and safe operation of pressurized

pipeline systems. Therefore, the design of pipeline systems

requires efficient mathematical models capable of accu-

rately solving water hammer problems.

Various numerical approaches have been introduced

for pipeline transient flow calculation. They include the

Method of Characteristics (MOC) (Ghidaoui & Karney

1994), Finite Difference (Chaudhary & Housaini 1985),

Finite Element (FE) (Jovic 1995), and Finite Volume (FV).

Among these methods, MOC proved to be the most

popular among water hammer experts. However, in order to

improve the shortcomings of the MOC, some numerical

workers tried to combine MOC with other solution

methods (Afshar & Rohani 2008).

The MOC approach transforms the water hammer

partial differential equations into ordinary differential

equations along characteristic lines. The integration of

these ordinary differential equations from one time step to

the next requires that the value of the head and flow at the

foot of each characteristic line be known. This problem can

be overcome by one of the following approaches: (i) using

the MOC-grid scheme; or (ii) using the fixed-grid MOC
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scheme and employ interpolation in pipe direction. For the

later approach, it is impossible to make the Courant number

exactly equal to one in all pipes. Therefore, unwanted

numerical damping and accuracy degradation may associ-

ate with application of MOC, when the Courant number is

less than one (Afshar & Rohani 2008).

Although the implicit FD methods do not have the

Courant number restriction, they suffer from heavy compu-

tational work loads and large storage requirements. Most of

the implicit solvers not only necessitate a dedicated matrix

inverse solvers but also iterative schemes for their solution

procedures. The most important problem with the implicit

method is distortion of the physical path of wave propa-

gations and their region of influence and domain of

dependence. Although the results of solving the water

hammer equations by explicit FD schemes, show that these

second-order FD schemes produce better results than the

first-order MOC, the restriction of choice of Courant number

and requirement for equally spaced gridpoints are someof the

short coming of this method (Chaudhary & Housaini 1985).

FE methods are known for their ability to: (i) use

unstructured grids (meshes), (ii) provide fast convergence

and accurate results, and (iii) provide results in any point of

problem domain ( Jovic 1995). However, the computational

work load of the FE solvers motivates the research works

on improvement of numerical solvers. For instance, Jovic

(1995) used the combined method of MOC and FE for water

hammer modeling in a classical system (a system consisting

of a reservoir, a pipe, and a valve).

FV methods are widely used in the solutions of

hyperbolic systems, such as gas dynamics and shallow

water waves. FV methods are noted for their ability to:

(i) conserve mass and momentum, (ii) provide sharp

resolution of discontinuities without spurious oscillations,

and (iii) use unstructured grid (mesh). The first order FV

method for solution of water hammer problems was highly

similar to MOC with linear space-line interpolation (Zhao

& Ghidaoui 2004). Application of Godunov scheme for the

second order FV solution of continuity and momentum

equations without convective term produced accurate

results for very low Mach numbers (Zhao & Ghidaoui

2004). Using transient friction in second order FV method

has improved the accuracy of the results (Abbasi &

Sabbagh-Yazdi 2009).

In this article, the Godunov type for FV solution of

transient continuity equation coupled with momentum

equation without dropping the convective term (which is

not essential for the cases in which the Mach number is not

very low) is applied for numerical analysis of transient

pressure. After investigation of the accuracy of the model

for computation of transient pressure in a pipe, the model is

developed for automatic modification of stress distribution

along a multi segments pipeline. The paper is organized as

follows. First, the governing equations of water hammer are

given. Second, the FV form of the governing equations is

provided, and then, second-order Godunov scheme for the

FV fluxes are formulated, and, the time integration of the

equations is derived. Third, internal and boundary con-

ditions for solution of the transient flow problem in pipes

are reviewed. Fourth, the schemes are tested using single

pipe systems. Finally, the developed model is verified for the

pipes without and with wall frictions, and then, it is applied

for a real world problem of multi segments pipeline.

GOVERNING EQUATIONS

In the absence of column separation, transient flow in a

closed conduit is often mathematically described by a set of

one-dimensional hyperbolic partial differential equations

including the section averaged incompressible continuity

and momentum (Balino et al. 2001):

›H

›t
þ V

›H

›x
þ

a2

g

›V

›x
¼ 2V sin u ð1Þ

›V

›t
þ V

›V

›x
þ g

›H

›x
¼ 2J ð2Þ

H ¼
P

rg
þ Z ð3Þ

In above equations, t: time; x: distance along the pipe

centerline; H ¼ H(x,t): piezometric head; V ¼ V(x,t): instan-

taneous average fluid velocity; g: gravitational acceleration;

u: the pipe slope; P: pressure; r: fluid density and Z: level.

In the continuity equation, the wave speed, a, is defined as

(Balino et al. 2001),

a ¼
ðK=rÞ

ð1 þKD=EeÞ

� �1=2

ð4Þ
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Here, K: bulk modulus of elasticity of the fluid; E: Young’s

modulus of elasticity for the pipe; r: density of the fluid; and

e: thickness of the pipe.

In the momentum equation, J is the global friction force

due to the wall friction is modeled using the following

formula (Pezzinga 2000):

J ¼
fV Vj j

2D
þ k

›V

›t

� �
2 k a

›V

›x

� �
ð5Þ

where, D is pipe diameter; f is Darcy-Weisbach friction

factor, and k: unsteady friction factor. The nonlinear

convective terms V›H/›x and V›V/›x are included in

Equations (1) and (2). These terms, although small for the

majority of water hammer problems, are not neglected in

this paper. Maintaining the convective terms in the

governing equations makes the scheme applicable to a

wide range of transient flow problems.

FINITE VOLUME FORMULATION

The numerical modeling of the computational domain

involves the discretization of the x axis into reaches, each

of which has a length Dx and the t axis into intervals each of

which has duration Dt. Node (i,n) denotes the point with

coordinate x ¼ [i 2 (1/2)]Dx and t ¼ nDt. A quantity with a

subscript i and a superscript n signifies that this quantity is

evaluated at node (i,n) (Figure 1).

The control volume i is centered at node i and extends

from (i 2 1/2) to (i þ 1/2). That is, the ith control volume is

defined by the interval [(i 2 1)Dx, iDx ]. The boundary

between control volume i and control volume (i þ 1) has a

coordinate (i·Dx) and is referred to either as a control

surface or a cell interface. Quantities at a cell interface are

identified by subscript such as (i 2 1/2) and (i þ 1/2)

(Figure 2).

Based on the Riemann solution, the FV discretization of

Equations (1) and (2) in the ith control volume entails the

following steps: (a) the governing equations are rewritten in

control volume form; (b) the fluxes at a control surface are

approximated using the exact solution of the Riemann

problems; and (c) a time integration to advance the solution

from n to n þ 1 (Zhao & Ghidaoui 2004).

Equations (1) and (2) can be rewritten in non-

conservative form, as (Guinot 2000),

›u

›t
þ

›f ðuÞ

›x
¼ sðuÞ ð6Þ

where fðuÞ ¼ �Au,

A�¼
�V a2=g

g �V

0
@

1
A

and �V: mean value of V to be specified later. Setting �V ¼ 0,

the scheme reverts to the classical water hammer case

where the convective terms are neglected.

The continuity and momentum equations for control

volume i is obtained by integration Equation (6) with

respect to x from control surface (i 2 1/2) to control surface

(i þ 1/2). The results are:

d

dt

ðiþ1=2

i21=2
u dxþ f iþ1=2 2 f i21=2 ¼

ðiþ1=2

21=2
s dx ð7Þ

The above equation is the statement of laws for incompres-

sible form of the continuity and momentum conservationFigure 1 | Discretization of the space domain.

Figure 2 | One-dimensional control volume.
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for the ith control volume. Let Ui ¼ mean value of u in the

interval [i 2 1/2,i þ 1/2]. Equation (7) becomes:

dU

dt
¼

f i21=2 2 f iþ1=2

Dx
þ

1

Dx

ðiþ1=2

i21=2
sdx ð8Þ

Note that, the fluxes at cell interfaces can be determined

from the Godunov scheme that requires the exact solution

of the Riemann problem. Godunov schemes are conserva-

tive, explicit, and efficient. The formulation of a Godunov

scheme for the mass and momentum flux fiþ1/2 in

Equation (8) for all i and for t [ ½tn; tnþ1� requires the

exact solution of the following Riemann problem (Figure 3):

›u

›t
þ

›f ðuÞ

›x
¼ 0 ð9Þ

where

u nðxÞ ¼
U n

L for x , xiþ1=2

U n
R for x . xiþ1=2

8<
: ð10Þ

U n
L is the average value of u to the left of interface (i þ 1/2)

at n (it can be guessed from the average values u in the left

neighboring cell); and U n
R is average value of u to the right

of interface (i þ 1/2) at n (it can be guessed from the

average values u in the right neighboring cell) (Figure 4).

The exact solution of Equation (9) at (i þ 1/2) for all

internal nodes i and for t [ ½tn; tnþ1� is as follows:

uiþ1=2ðtÞ ¼
Hiþ1=2

Viþ1=2

0
@

1
A ¼

1

2

ðHn
L þHn

RÞ þ
a
g ðV

n
L 2 Vn

RÞ

ðVn
L þ Vn

RÞ þ
g
a ðH

n
L 2Hn

RÞ

0
@

1
A

¼ BU n
L þ CU n

R ð11Þ

Here,

B ¼
1

2

1 a=g

g=a 1

0
@

1
A and C ¼

1

2

1 2a=g

2g=a 1

0
@

1
A:

The volume and incompressible flow momentum fluxes

at (i þ 1/2) for all internal nodes and for t [ ½tn; tnþ1� can be

formulated using the above equation, as follow:

f iþ1=2 ¼ A�iþ1=2uiþ1=2 ¼ A�iþ1=2BU
n
L þ A�iþ1=2CU n

R ð12Þ

In order to evaluate the right-hand side of the above

equation, A�iþ1=2, U n
L, and U n

R are to be approximated.

To estimate A�iþ1=2, the entry associated with the advection

terms, �Viþ1=2, needs to be approximated. Setting �V ¼ 0 is

equivalent to neglecting the advection terms from the

governing equations. In general, an arithmetic mean is

used to evaluate �Viþ1=2.

Second-order Godunov scheme

In present work, the second order scheme of Godunov type

finite volume is adopted. For such a scheme limiters

increase the order of accuracy of a scheme while ensuring

that results are free of spurious oscillations.

By application of following stages at every time step, an

approximation for U n
L and U n

R that is second order in space

and time is obtained using MINMOD limiter (Zhao &

Ghidaoui 2004):

At the first stage:

U n
i2ð1=2Þþ ¼ U n

i 2 0:5DxMINMODðs n
j ;s n

j21Þ ð13Þ

and

U n
iþð1=2Þ2 ¼ U n

i þ 0:5DxMINMODðs n
j ;s

n
j21Þ ð14Þ

Figure 3 | Definition of a Riemann problem. Figure 4 | Sketch of variable at the cell interface.
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where,

MINMODðs n
j ;s

n
j21Þ ¼

min ðs n
j ;s

n
j21Þ if s n

j ;s
n
j21 $ 0

max ðs n
j ;s

n
j21Þ if s n

j ;s
n
j21 # 0

0 otherwise

8>><
>>:

ð15Þ

Here,

s n
j21 ¼ ðU n

j 2 U n
j21Þ=Dx ð16Þ

and

s n
j ¼ ðU n

jþ1 2 U n
j Þ=Dx ð17Þ

At the second stage:

U np

iþð1=2Þ2 ¼ U n
iþð1=2Þ2 þ

1

2

Dt

Dx
f ðU n

i2ð1=2Þþ Þ2 f ðU n
iþð1=2Þ2 Þ

h i
ð18Þ

and

U np

i2ð1=2Þþ ¼ U n
i2ð1=2Þþ þ

1

2

Dt

Dx
½f ðU n

i2ð1=2Þþ Þ2 f ðU n
iþð1=2Þ2 Þ� ð19Þ

Finally, the second order scheme is approximated as:

U n
R ¼ U np

iþð1=2Þþ and U n
L ¼ U np

iþð1=2Þ2 ð20Þ

Godunov second-order scheme for the solution of

Equation (6) can be achieved by inserting Equation (20)

into Equation (12).

TIME INTEGRATION

Explicit evaluation of the Equations (11) and (12) can

provide light computational work load if time

stepping restriction (Courant number limit) is considered

proportional to the smallest special interval along the

computational domain. However, low order explicit

schemes usually suffer from numerical instabilities that

may cause serious problems for the solution procedure.

Hence, the time stepping of explicit solution of the

convective part of the hyperbolic type equations should

satisfy the Courant-Friedrichs-Lewy condition (Cr ¼ aDt/

Dx # 1).

The explicit evaluation of Equations (11) and (12)

requires that U n
L and U n

R are properly evaluated in terms of

known nodal values at time stage t n.

BOUNDARY AND INTERNAL CONDITIONS

The techniques for imposing of boundary and internal

conditions are an important step in a numerical simulation.

The boundary and internal conditions in this model are

as follow:

Figure 7 | Bend characteristic parameter in model.

Figure 6 | Bend characteristic parameters.

Figure 5 | Constant level upstream reservoir.
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Head-constant upstream reservoir

The flux at an upstream boundary (i.e. i ¼ 1/2) can be

determined from the Riemann solution. The Riemann

invariant associated with the negative characteristic line is:

H1=2 2
a

g
V1=2 ¼ Hn

1 2
a

g
Vn

1 ð21Þ

Coupling this Riemann invariant with a head-flow bound-

ary relation determines:

Vnþ1
1=2 ¼ Vn

11
2
þ

g

a
H1=2 2Hn

11
2

� �
ð22Þ

For a constant level upstream reservoir (Figure 5), where

Hn
1=2 ¼ Hres, the flux at the upstream boundary is (Zhao &

Ghidaoui 2004):

f 1=2 ¼

�V1=2Hres þ
a2

g ðV
n
1 þ g

a ðHres 2Hn
1ÞÞ

gHres þ �V1=2ðV
n
1 þ g

a ðHres 2Hn
1ÞÞ

2
64

3
75 ð23Þ

Fully closed downstream valve

The flux at a downstream boundary can be determined from

the Riemann solution. The Riemann invariant associated

with the positive characteristic line is:

HNxþ1=2 þ
a

g
VNxþ1=2 ¼ Hn

Nx þ
a

g
Vn

Nx ð24Þ

Downstream boundary condition is valve closure in Tc.

Head-flow boundary relation determines:

Vnþ1
Nxþ1=2 ¼ V steadyð1 2

t

Tc
Þ 0 # t # Tc ð25Þ

Vnþ1
Nxþ1=2 ¼ 0 t . Tc ð26Þ

Hn
Nxþ1=2 2Hn

Nx21=2 2
a

g
ðVnþ1

Nxþ1=2 2 Vn
Nx21=2Þ ¼ 0 ð27Þ

As a result, the flux at the boundary is determined as follows

(Zhao & Ghidaoui 2004):

Figure 10 | Variations in hydraulic head at the valve position for a frictionless pipe

resulted from MOC and present FV solvers and compared with analytical

solution.

Table 1 | Geometrical and hydraulic parameters for test case without friction

Pipe diameter (m) 0.5

Pipe length (m) 1000

DW friction factor 0.00

Unsteady friction factor 0.00

Wave speed (m/s) 1000

Reservoir head-upstream (m) 0

Initial mean velocity (m/s) 1.02

Cause of transients Downstream instantaneous
fully valve closure

Figure 9 | A simple reservoir-pipe-valve configuration.

Figure 8 | A sample graph for bend head loss coefficient (associate with angle u ¼ p/2)

application of developed model (s ¼ rgH £ D/2t).
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fNxþ1=2 ¼

2
664

�VNxþ1=2ðHNx þ
a
g V

n
Nx 2

a
g VNxþ1=2Þ þ

a
g VNxþ1=2

gðHNx þ
a
g V

n
Nx 2

a
g VNxþ1=2Þ þ �VNxþ1=2VNxþ1=2

3
775
ð28Þ

Bend effect

The local bends in the pipeline may cause a head loss.

Therefore, the following local head loss must be considered

in J as the global friction force due to the bend effect at the

nodal point associate with the bend location.

hlb ¼ K
V2

1

2g
ð29Þ

The parameter K is the bend head loss coefficient which

depends to the bend angle (u), pipe diameter (D), relative

friction (1/D) and bending length of the pipes which

depends to the bend radius r as shown in Figures 6 and 7.

The bend head loss coefficient may be calculated for

certain angles as shown in Figure 8 and stored for in the

computer for the use of computations. However, inter-

polation between the bend head loss coefficients for various

angles would help calculating accurate coefficient for

desired bend angle.

AUTOMATIC MODIFICATION OF STRESS

DISTRIBUTION PIPELINE SEGMENTS

The maximum pressure distribution along the pipe line

which is computed by the developed flow solver and the

pipe specifications (D and t) as well as its material property

(sallowable ¼ S.F £ syield) can be used for calculation of pipe

Figure 13 | Variations in Pressure head traces at valve position of a frictionless pipe

computed by present FV solver for various mesh(Cr ¼ 0.1) with analytical

solution.

Figure 12 | Pressure head traces at valve position of a frictionless pipe computed by

present FV solver for various mesh (Cr ¼ 0.1).

Figure 11 | Pressure head traces at valve position of a frictionless pipe computed by

present FV solver for various Cr numbers.

Table 2 | Properties for the test case with friction

Pipe diameter (m) 0.022

Pipe length (m) 37.20

DW friction factor 0.034

Unsteady friction factor 0.00

Wave speed (m/s) 1319

Reservoir head-upstream (m) 32.0

Discharge (L/s) 0.114

Density (kg/m3) 1000

Viscosity (m2/s) 1.02

Cause of transients Downstream valve closure
in 0.009 seconds
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thickness. Hence, using the maximum pressure values at

segments of a pipe line system which are resulted from the

developed model, distribution of maximum circumferential

stresses along in the segments of the pipe line system can be

computed using following relation,

s ¼
rgH £D

2t
ð30Þ

Long the pipe line system either the pipe segments

geometric features (thicknesses or diameters) or their

material properties can be modified via some iterative

application of developed model for transient pressure pipe.

Therefore, variable specification can be considered for a

multi segments pipe line system.

For instance, the pipe thickness (t) of each segment can

be modified by some trial iterations of the flow solver and

using following relations.

t ¼
rgHmaxD

2sallowable
ð31Þ

Note that, the pressure distributions in pipe segments

may vary as consequences of changing the pipe segments

specifications, while, the pipe segments specifications

should be modified as results of for a computed pressure

distributions in pipe segments. Therefore, a trial iterative

procedure is needed to achieve the uniform stress distri-

bution along a multi segments pipe line system.

PRESSURE VERIFICATION RESULTS

In this section, the accuracy and efficiency of FV model

(which is developed using Godunov scheme in solving

transient continuity and equation of motion for water

hammer problems) is assessed. First, the analytical solution

results for a single frictionless pipe case are used for

assessment of the Cr. Number on the accuracy of the

results. Then, the computed results for a case with

considerable pipe friction are compared with laboratory

measurements.

Test case without friction

The first test case consists of a simple reservoir-pipe-valve

configuration (Figure 9). The geometrical and hydraulic

parameters for this frictionless test case are given in Table 1.

This problem is solved by previous workers using a

Godunov scheme for solving the continuity equation and

momentum equation in which the convective term is

omitted (Zhao & Ghidaoui 2004).

MOC results (Zhao & Ghidaoui 2004) as well as

analytical solution are used to investigate the accuracy of

proposed model which uses Godunov scheme for FV

solution of the continuity equation coupled with momen-

tum equation, which includes the convective term.

Figure 10 shows the comparison of the results com-

puted by present FV method with analytical solutions and

results of the MOC for the variations in hydraulic head at

the valve as a function of time. As expected, the head traces

results by both schemes (MOC and FV) exhibit numerical

dissipation for Cr ¼ 0.1, but the numerical dissipation in FV

is considerably less than the MOC. It worth noting that, the

finite volume solution using Godunov scheme corresponds

to the analytical solution when Cr ¼ 1.0. But for Courant

Table 3 | Initial properties for application of the developed model for automatic modification

Yield stress (N/m2) Unsteady friction coefficient Mod. Of elasticity (kg/m2) Diameter (m) Darcy factor

2,400 £ 105 0.015 2.07 £ 1011 2.6 0.015

Figure 14 | Variations in hydraulic head at the valve position for a pipe with friction

resulted from MOC and present FV solvers and compared with laboratory

measurements.
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numbers less than one, the minor numerical dissipations

appear in the FV solution results (Figures 11, 12 and 13).

Test case with friction

For the second test case, laboratory data (Bergant &

Simpson 1994) for a closure of a valve downstream in

0.009 seconds of a pipe with wall roughness are used to

investigate the accuracy of present FV method. The

geometric, kinematics, and dynamic parameters of this test

are summarized in Table 2.

In Figure 14 the results of present FV and MOC solvers

(Bergant & Simpson 1994) are compared with laboratory

measurements. As can be seen in Figure 14, although the

time period of the pressure waves are computed reasonably

by both numerical models, present FV solver produce much

better distribution of the pressure values than the MOC.

APPLICATION OF THE MODEL FOR STRESS

MODIFICATION

In order to present the ability of the developed model to

deal with variation of the pipe characteristics (i.e. segment

lengths, coordinates, slopes and thicknesses) is assessed.

In this section, the developed model is applied for

automatic modification of the pipe segments specification

in a serial pipe line system which is presented in Figure 15.

The details of initial assumption for the pipe line system are

tabulated in Table 3.

Considering sudden closure of the downstream valve of

the pipe line system, assumed uniform conditions for the

geometrical features and material properties along the pipe

line would result non-uniform stress distribution in the

segments of the pipe line. After some automatic trial

iterations, conservative uniform distribution of the maxi-

mum and minimum working stresses along the pipe line

segments is achieved (Figures 16 and 17).

Figure 16 | Relatively uniform distribution of maximum and minimum stresses along a

pipeline resulted from automatic modifications ðs ¼ rgHD=2tÞ.

Figure 15 | A serial pipe line system with variable segments specifications considered for application of the developed model for automatic stress modification.
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CONCLUSION

In this article, firstly, the accuracy and efficiency of a

second-order Godunov-type FV model for coupled solution

of transient velocity and pressure fields are investigated.

The numerical model solves continuity equation and

momentum equation (with convective term) in a coupled

manner. The results of present FV solver are compared with

numerical data produced by a MOC model, analytical

solution as well as measured data reported by other

researchers for frictionless and rough pipes, respectively.

Finally, the computational tool is developed for automatic

modification of the pipe line segment specifications.

The conclusions on the results of present numerical

investigations are as follows:

† The nonlinear convective terms to the mathematical

equations do not disturb the solutions to the water

hammer problems.

† The present Godunov-type FV solver can be used for the

water hammer problems in which the convection effect is

not negligible (i.e. transient flow in pipes with large

sections).

† The characteristics of pressure waves for transient flow

in frictionless and frictional pipes computed by present

FV solver are in close agreements with analytical and

experimental data.

† For the Godunov-type FV flow solver part of the model,

numerical dissipation is less than MOC, and therefore,

the FV solver provides more accuracy than the MOC for

certain Courant numbers less than one.

† The developed model is able to use the maximum

computed pressure distribution along the pipeline with

variable specifications (i.e. segment lengths, coordinates,

slopes and thicknesses) to automatically modify the pipe

segments thicknesses, in such a way that uniform stress

distribution results all over the pipe segments.
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