The non-abelian tensor square of p-groups of order p^{4}

Taleea Jalaeeyan Ghorbanzadeh ${ }^{*, \ddagger}$, Mohsen Parvizi*,§
and Peyman Niroomand ${ }^{\dagger}$, $\boldsymbol{\pi}$
*Department of Pure Mathematics
Ferdowsi University of Mashhad, Mashhad, Iran
${ }^{\dagger}$ School of Mathematics and Computer Science
Damghan University, Damghan, Iran
${ }^{\ddagger}$ ta.jalaeeyan@mail.um.ac.ir; jalaeeyan@gmail.com
$\S_{\text {parvizi@um.ac.ir }}$
『niroomand@du.ac.ir; p_niroomand@yahoo.com

Communicated by V. A. Artamonov
Received July 1, 2017
Accepted July 24, 2017
Published November 2, 2017

Abstract

In this paper, in the class of p-groups of order p^{4}, we obtain the non-abelian exterior square, the exterior center, the non-abelian tensor square, the tensor center and the third homotopy group of suspension of an Eilenberg-MacLane space $k(G, 1)$ of such groups.

Keywords: Non-Abelian tensor square; p-group.
AMS Subject Classification: 20F99, 20F14

1. Introduction and Motivation

The concept of non-abelian tensor square which was introduced by Brown and Loday [5], is an applied topic in the K-theory and the homotopy theory. Since then several papers published in this subject and the reader can find more information in [3 5, 6, 10]. Following the terminology in [5], let G and H be two groups act on each other compatibly and on themselves by conjugation, then the non-abelian tensor product of G and H, is the group generated by the symbols $g \otimes h$ with defining relations

$$
g_{1} g \otimes h=\left({ }^{g_{1}} g \otimes^{g_{1}} h\right)\left(g_{1} \otimes h\right) \quad \text { and } \quad g \otimes h h_{1}=(g \otimes h)\left({ }^{h} g \otimes^{h} h_{1}\right)
$$

for all $g, g_{1}, h, h_{1} \in G$. The tensor square of G is the special case of the non-abelian tensor product of two groups G and H when $G=H$.

[^0]
T. J. Ghorbanzadeh, M. Parvizi \& P. Niroomand

The exterior square $G \wedge G$ is obtained by imposing the additional relation $g \otimes g=$ 1_{\otimes} on $G \otimes G$. The image of $g \otimes h$ in $G \wedge G$ is denoted by $g \wedge h$ for all $g, h \in G$. From the defining relations of $G \otimes G$, there exists the commutator map $\kappa: G \otimes G \rightarrow[G, G]$ given by $\kappa(g \otimes h)=[g, h]$ which is a homomorphism. The kernel of κ is denoted by $J_{2}(G)$. Brown and Loday in [6] describe the role of $J_{2}(G)$ in algebraic topology, they showed the third homotopy group of suspension of an Eilenberg-MacLane space $k(G, 1)$ satisfied the condition $\Pi_{3}(S K(G, 1)) \cong J_{2}(G)$. Clearly, κ has all elements $g \otimes g(g \in G)$ in its kernel, hence it induces a homomorphism $\kappa^{\prime}: G \wedge G \rightarrow G^{\prime}$. The kernel of κ^{\prime} which is isomorphic to $\mathcal{M}(G)$, is the Schur multiplier of G (see [4) 6] for more details).

Given an abelian group A, from [13], $\Gamma(A)$ is used to denote the abelian group with generators $\gamma(a)$, for $a \in A$, by defining relations
(i) $\gamma\left(a^{-1}\right)=\gamma(a)$.
(ii) $\gamma(a b c) \gamma(a) \gamma(b) \gamma(c)=\gamma(a b) \gamma(b c) \gamma(c a)$.
for all $a, b, c \in A . \Gamma$ is called the Whitehead's universal quadratic functor. From [6], we have

Theorem 1.1. Let G and H be abelian groups. Then
(i) $\Gamma(G \times H)=\Gamma(G) \times \Gamma(H) \times(G \otimes H)$,
(ii) $\Gamma\left(\mathbb{Z}_{n}\right)= \begin{cases}\mathbb{Z}_{n} & n \text { is odd } \\ \mathbb{Z}_{2 n} & n \text { is even }\end{cases}$

The following diagram shows relation between the non-abelian tensor square, the non-abelian exterior square, the third integral homology group of G and the Whitehead functor Γ, 13.

It has exact rows and central extensions as columns (see [6] for details)

Recall from [7], the concept of tensor and exterior center, respectively,

$$
\begin{aligned}
Z^{\otimes}(G) & =\left\{g \in G \mid g \otimes g_{1}=1_{G \otimes G}, \text { for all } g, g_{1} \in G\right\}, \\
Z^{\wedge}(G) & =\left\{g \in G \mid g \wedge g_{1}=1_{G \wedge G}, \text { for all } g, g_{1} \in G\right\} .
\end{aligned}
$$

A group G is called capable if there exists a group H such that $G \cong H / Z(H)$. The epicenter of G which is denoted by $Z^{*}(G)$ is defined as follows:

Definition 1.2. Let $\psi: E \rightarrow G$ be an arbitrary surjective homomorphism with ker $\psi \subseteq Z(G)$. Then the intersection of all subgroups of the form $\psi(Z(G))$ is denoted by $Z^{*}(G)$.
$Z^{*}(G)$ has the property that G is capable if and only if $Z^{*}(G)=1$. Beyl and Tappe proved $Z^{*}(G)$ is isomorphic to $Z^{\wedge}(G)$, though $Z^{*}(G)$ is defined in a different fashion. The next lemmas, show the relation between $Z^{*}(G), Z^{\otimes}(G)$ and $Z^{\wedge}(G)$, which play important role in this paper

Lemma 1.3 ([2, p. 208]). Let G be any group. Then $Z^{*}(G) \cong Z^{\wedge}(G)$.
Lemma 1.4 ([7, Proposition 16]). Let G be any group. Then $Z^{\otimes}(G) \leq Z^{\wedge}(G)$.
We intend to obtain the structure of $G \wedge G, Z^{\wedge}(G), G \otimes G, Z^{\otimes}(G)$ and $\Pi_{3}(K(G, 1))$, by using the presentation of G, here, we give the presentation of all p-groups of order p^{4} as follows.
Theorem 1.5 ([9, Theorem 1.11]). Let G be a group of order p^{4}, where p is a prime. Then G is isomorphic to exactly one of the following groups:

$$
\begin{aligned}
& G_{1} \cong \mathbb{Z}_{p^{4}}, \quad G_{2} \cong \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{p}, \quad G_{3} \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{2}}, \quad G_{4} \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}, \\
& G_{5} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}, \quad G_{6} \cong \mathbb{Z}_{p} \times E_{1}, \quad G_{7} \cong \mathbb{Z}_{p} \times E_{2}, \\
& G_{8} \cong\left\langle x, y, z \mid x^{p}=y^{p}=z^{p^{2}}=1,[x, z]=[y, z]=1,[x, y]=z^{p}\right\rangle, \\
& G_{9} \cong\left\langle x, y \mid x^{p^{3}}=y^{p}=1, x^{y} \cong x^{1+p^{2}}\right\rangle \\
& G_{10} \cong\left\langle x, y \mid x^{p^{2}}=y^{p}=1,[x, y, x]=[x, y, y]=1\right\rangle, \\
& G_{11} \cong\left\langle x, y \mid x^{p^{2}}=y^{p^{2}}=1,[x, y, x]=[x, y, y]=1,[x, y]=x^{p}\right\rangle \\
& G_{12} \cong\left\langle x, y \mid x^{4}=y^{4}=1,[x, y, x]=[x, y, y]=1,[x, y]=x^{2} y^{2}\right\rangle \\
& G_{13} \cong\left\langle x, y \mid x^{2}=y^{8}=(x y)^{2}=1\right\rangle, \quad G_{14} \cong\left\langle x, y \mid x^{4}=y^{2}=(x y)^{2}\right\rangle \\
& G_{15} \cong\left\langle x, y \mid x^{2}=1, x y x=y^{3}\right\rangle \\
& G_{16} \cong\left\langle x, y \mid x^{p^{2}}=y^{p}=1,[x, y, x]=1,[x, y, y]=x^{p},[x, y, y, y]=1\right\rangle \\
& G_{17} \cong\left\langle x, y \mid x^{p^{2}}=y^{p}=1,[x, y, x]=1,[x, y, y]=x^{n p},[x, y, y, y]=1\right\rangle \\
& G_{18} \cong\left\langle x, y \mid x^{9}=1, x^{3}=y^{3},[x, y, x]=1,[x, y, y]=x^{6},[x, y, y, y]=1\right\rangle, \\
& G_{19} \cong\left\langle x, y \mid x^{p}=1, y^{p}=1,[x, y, x]=[x, y, y, x]=[x, y, y, y]=1\right\rangle, \\
& G_{20} \cong\left\langle x, y \mid x^{p}=1, y^{p}=[x, y, y],[x, y, x]=[x, y, y, x]=[x, y, y, y]=1\right\rangle .
\end{aligned}
$$

The next theorem gives some information on the nilpotency class, the center and the derived subgroup of groups of order p^{4}. Let $\operatorname{cl}(G)$ denote the nilpotency class of a group G, then

Proposition 1.6 ([12, Proposition 1.1]). Let G be a non-abelian group of order p^{4}. Then
(1) G contains an abelian maximal subgroup.
(2) If $\operatorname{cl}(G)=2$, then $|Z(G)|=p^{2},\left|G^{\prime}\right|=p$ and G contains exactly $p+1$ abelian maximal subgroups, which intersect at $Z(G)$.
(3) If $\operatorname{cl}(G)=3$, then $Z(G)=\gamma_{3}(G)$ has order $p, Z_{2}(G)=G^{\prime}$ has order p^{2}, and G contains a unique abelian maximal subgroup.

2. Non-abelian Tensor Square and Nanabelian Exterior Square of groups of Order p^{4}

Zainal et al. 14 obtained the structure of non-abelian tensor square of groups of order p^{4} when the class of nilpotency is two. Since most of p-groups of order p^{4} have class three, in this section, we obtain the non-abelian tensor square of p-groups of order p^{4} of nilpotency class three. Also, we give the structure of exterior square of p-groups of order p^{4}. The following theorem gives us the structure of non-abelian tensor square of groups of order p^{4} of nilpotency class two, where p is an odd prime.

Theorem 2.1 ([14, Theorem 9]). Let G be a group of order p^{4}, where p is an odd prime. Then

$$
G \otimes G= \begin{cases}\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(3)} & \text { if } G \cong G_{9} \\ \mathbb{Z}_{p}^{(9)} & \text { if } G \cong G_{7} \text { or } G_{8} \\ \mathbb{Z}_{p^{2}}^{(2)} \oplus \mathbb{Z}_{p}^{(2)} & \text { if } G \cong G_{11} \\ \mathbb{Z}_{p}^{(11)} & \text { if } G \cong G_{6} \\ \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(5)} & \text { if } G \cong G_{10}\end{cases}
$$

The next theorem states the structure of tensor square of groups with respect to the direct product of two groups.

Theorem 2.2 ([6, Proposition 11]). Let G and H be groups. Then $(G \times H) \otimes$ $(G \times H)=(G \otimes G) \times\left(G^{a b} \otimes H^{a b}\right) \times\left(H^{a b} \otimes G^{a b}\right) \times(H \otimes H)$.

Blyth et al. [3] give us the structure of non-abelian tensor square of a group G when $G^{a b}$ is finitely generated as follows.

Theorem 2.3 ([3, Corollary 1.4]). Let G be a group such that $G^{a b}$ is finitely generated. If $G^{a b}$ has no element of order two or if G^{\prime} has no complement in G, then $G \otimes G=\Gamma\left(G^{a b}\right) \times G \wedge G$.

The following theorem is a key tool to obtain the structure of $G \wedge G$.
Theorem 2.4 ([7, Proposition 16(iv)]). Let G be a group and $N \unlhd G$, then $G / N \wedge G / N \cong G \wedge G$ if and only if $N \leq Z^{\wedge}(G)$.

For the non-abelian groups of order 16, we have
Theorem 2.5. Let G be a group of order 16. Then

$$
G \wedge G \cong \begin{cases}\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} & \text { if } G \cong G_{12} \\ \mathbb{Z}_{8} & \text { if } G \cong G_{13} \\ \mathbb{Z}_{4} & \text { if } G \cong G_{14} \text { or } G_{15}\end{cases}
$$

Proof. We have the result by the HAP package of GAP 8].
For abelian groups of order p^{4}, we have
Theorem 2.6. Let G be an abelian groups of order p^{4}. Then

$$
G \wedge G \cong \begin{cases}1 & \text { if } G \cong G_{1} \\ \mathbb{Z}_{p} & \text { if } G \cong G_{2} \\ \mathbb{Z}_{p^{2}} & \text { if } G \cong G_{3} \\ \mathbb{Z}_{p}^{(3)} & \text { if } G \cong G_{4} \\ \mathbb{Z}_{p}^{(6)} & \text { if } G \cong G_{5}\end{cases}
$$

Proof. Since the derived subgroup of an abelian group is trivial, so $G \wedge G \cong \mathcal{M}(G)$, now we have the result by [9, Table 1].

For odd p, we have
Theorem 2.7. Let G be a group of order p^{4}, where p is an odd prime. Then

$$
G \wedge G \cong \begin{cases}\mathbb{Z}_{p} & \text { if } G \cong G_{9} \\ \mathbb{Z}_{p}^{(3)} & \text { if } G \cong G_{7}, G_{8}, G_{10}, G_{16}, G_{17}, G_{20} \\ \mathbb{Z}_{p^{2}} & \text { if } G \cong G_{11}, \\ \mathbb{Z}_{p}^{(5)} & \text { if } G \cong G_{6} \\ \mathbb{Z}_{p}^{(4)} & \text { if } G \cong G_{19} \\ \mathbb{Z}_{3}^{(3)} & \text { if } G \cong G_{18}\end{cases}
$$

Proof. Let $G \cong G_{6}$, by Theorem $2.1 G \otimes G \cong \mathbb{Z}_{p}^{(11)}$. On the other hand, $G^{a b} \cong \mathbb{Z}_{p}^{(3)}$, and $\Gamma\left(G^{a b}\right) \cong \mathbb{Z}_{p}^{(6)}$. So by Theorem [2.3] we have $G \wedge G \cong \mathbb{Z}_{p}^{(5)}$. The proof for the other cases except G_{16}, G_{17}, G_{19} and G_{20} is completely similar. When $G \cong G_{16}, G_{17}$ or G_{20}, then $Z^{\wedge}(G)=Z(G) \cong \mathbb{Z}_{p}$, so by Theorem[2.4] $G \wedge G \cong G / Z(G) \wedge G / Z(G) \cong$ $E_{1} \wedge E_{1}$, using [10, Lemma 2.1, Corollary 2.3], $G \wedge G \cong \mathbb{Z}_{p}^{(3)}$.

Let $G \cong G_{19}$. We know $|G \wedge G|=|\mathcal{M}(G)|\left|G^{\prime}\right|$. By [9] Table 3], $|\mathcal{M}(G)|=p^{2}$ and $\left|G^{\prime}\right|=p^{2},|G \wedge G|=p^{4}$. Using [11, Theorem 2], the exponent of $G \otimes G$ is p, since the exponent of G is p. Therefore, the exponent of $G \wedge G$ is p and hence $G \wedge G$ is an elementary abelian group so $G \wedge G \cong \mathbb{Z}_{p}^{(4)}$.

For non-abelian groups of order 16, we have
Lemma 2.8. Let G be a non-abelian group of order 16 . Then $G \otimes G \cong \mathbb{Z}_{2}^{(3)} \oplus \mathbb{Z}_{4}^{(2)}$ if $G \cong G_{12}$ and $G \otimes G \cong \mathbb{Z}_{8} \oplus \mathbb{Z}_{2}^{(3)}$ if $G \cong G_{13}, G_{14}$ or G_{15}.

Proof. The result is obtained directly by HAP package programming from GAP 8.

In the next theorem, we obtain the non-abelian tensor square of p-groups of order p^{4} of nilpotency class three.

Theorem 2.9. Let G be a group of order p^{4}, where p is an odd prime. Then

$$
G \otimes G \cong \begin{cases}\mathbb{Z}_{p}^{(6)} & \text { if } G \cong G_{16}, G_{17} \text { or } G_{20} \\ \mathbb{Z}_{3}^{(6)} & \text { if } G \cong G_{18} \\ \mathbb{Z}_{p}^{(7)} & \text { if } G \cong G_{19}\end{cases}
$$

Proof. (i) Let G be isomorphic to one of groups G_{16}, G_{17} or G_{20}, we have $G^{\prime} \cong \mathbb{Z}_{p}^{(2)}$ and $G^{a b} \cong \mathbb{Z}_{p}^{(2)}$. By Theorem [2.4] $G \wedge G \cong \mathbb{Z}_{p}^{(3)}$. On the other hand, by Theorem [1.1, we have $\Gamma\left(G^{a b}\right) \cong \Gamma\left(\mathbb{Z}_{p}^{(2)}\right) \cong \mathbb{Z}_{p}^{(3)}$. $G^{a b}$ is a finitely generated abelian group with no element of order 2. Then by Theorem 2.3, we have $G \otimes G \cong \Gamma\left(G^{a b}\right) \times G \wedge G \cong \mathbb{Z}_{p}^{(6)}$.
(ii) Let $G \cong G_{18}$, which is defined for $p=3$, by using HAP package programming from GAP [8] we have $G \otimes G \cong \mathbb{Z}_{3}^{(6)}$.
(iii) The proof for the case $G \cong G_{19}$ is completely similar to (i), except $\mathcal{M}(G) \cong$ $\mathbb{Z}_{p}^{(2)}$, we have $G \otimes G \cong \mathbb{Z}_{p}^{(7)}$.

3. Tensor Center and Exterior Center of Groups of Order \boldsymbol{p}^{4}

This section is devoted to obtaining the structure of $Z^{\otimes}(G)$ and $Z^{\wedge}(G)$ when G is a groups of order p^{4}. In the next theorem, the tensor center of an arbitrary finite abelian group is determined.

Lemma 3.1 ([7, Proposition 1.8]). Let G be a finite abelian p-group of order p^{4}. Then $Z^{\otimes}(G)=1$.

Following theorem is an important tool for the next investigations.
Theorem 3.2 ([7, Proposition $16(\mathrm{v})]$). Let G be a group and $N \unlhd G$, then $G / N \otimes G / N \cong G \otimes G$ if and only if $N \leq Z^{\otimes}(G)$

The authors in [9, Theorem 4.20] calculated the epicenter of all groups of order p^{4}. Now by Lemma $1.3 Z^{*}(G) \cong Z^{\wedge}(G)$ so the following corollary is trivial.

Corollary 3.3. Let G be a group of order p^{4}, where p is prime. Then

$$
Z^{\wedge}(G) \cong \begin{cases}1 & \text { if } G \cong G_{3}, G_{5}, G_{6}, G_{11}, G_{12}, G_{13} \text { or } G_{19} \\ \mathbb{Z}_{p} & \text { if } G \cong G_{4}, G_{7}, G_{8}, G_{10}, G_{16}, G_{17} \text { or } G_{20} \\ \mathbb{Z}_{p^{4}} & \text { if } G \cong G_{1}, \\ \mathbb{Z}_{p^{2}} & \text { if } G \cong G_{2} \text { or } G_{9} \\ \mathbb{Z}_{2} & \text { if } G \cong G_{14} \text { or } G_{15} \\ \mathbb{Z}_{3} & \text { if } G \cong G_{18}\end{cases}
$$

In the next theorem, we obtain tensor center of all groups of order p^{4}.
Theorem 3.4. Let G be a group of order p^{4}, where p is prime. Then
$Z^{\otimes}(G) \cong \begin{cases}1 & \text { if } G \cong G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{10}, G_{11}, G_{12}, G_{13}, G_{14}, G_{15} \text { or } G_{19}, \\ \mathbb{Z}_{p} & \text { if } G \cong G_{7}, G_{8}, G_{9}, G_{16}, G_{17} \text { or } G_{20}, \\ \mathbb{Z}_{3} & \text { if } G \cong G_{18} .\end{cases}$
Proof. (i) The groups $G_{1}, G_{2}, G_{3}, G_{4}$ and G_{5} are all abelian so the result follows by Lemma 3.1. Let G be isomorphic to one of groups $G_{6}, G_{11}, G_{12}, G_{13}$ or G_{19}. Using Lemmas 1.4 and 3.3, G is capable and $Z^{\otimes}(G) \leq Z^{\wedge}(G)=Z^{*}(G) \cong 1$, so $Z^{\otimes}(G) \cong 1$.
(ii) Let $G \cong G_{14}$ or G_{15}, by looking at the table [7], we get the result.
(iii) Let $G \cong G_{7}$. Using Theorem 3.2 and putting $N=G^{\prime} \cong \mathbb{Z}_{p}$, we have $G / N \otimes$ $G / N \cong \mathbb{Z}_{p}^{(3)} \otimes \mathbb{Z}_{p}^{(3)} \cong \mathbb{Z}_{p}^{(9)}$. On the other hand, $G^{\prime} \leq Z^{\otimes}(G)$ by Theorem 2.1. Again, using Lemmas 1.4 and 3.3, we have $Z^{\otimes}(G) \cong \mathbb{Z}_{p}$.
(iv) Let G be isomorphic to one of groups $G_{8}, G_{9}, G_{10}, G_{16}, G_{17}, G_{18}$, or G_{20}, the proof is completely similar to (iii).

4. Third Homotopy Group of Groups of Order p^{4}

This section tries to devise the structure of the third homotopy group of all groups of order p^{4}. First of all, we present the structure of $\Pi_{3}(K(G, 1))$ when G is an abelian group of order p^{4}. It is useful to mention that $\Pi_{3}(S K(G, 1)) \cong J_{2}(G)$.

Lemma 4.1. Let G be an abelian group of order p^{4}, where p is an odd prime. Then

$$
J_{2}(G) \cong \begin{cases}\mathbb{Z}_{p}^{(4)} & \text { if } G \cong G_{1} \\ \mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p}^{(3)} & \text { if } G \cong G_{2} \\ \mathbb{Z}_{p^{2}}^{(4)} & \text { if } G \cong G_{3} \\ \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(8)} & \text { if } G \cong G_{4} \\ \mathbb{Z}_{p}^{(16)} & \text { if } G \cong G_{5}\end{cases}
$$

T. J. Ghorbanzadeh, M. Parvizi \& P. Niroomand

Proof. It is trivial.

For non-abelian groups of order 16, we have
Lemma 4.2. Let G be a non-abelian group of order 16. Then

$$
J_{2}(G) \cong \begin{cases}\mathbb{Z}_{2}^{(4)} \oplus \mathbb{Z}_{4} & \text { if } G \cong G_{12} \\ \mathbb{Z}_{2}^{(4)} & \text { if } G \cong G_{13} \\ \mathbb{Z}_{2}^{(2)} \oplus \mathbb{Z}_{4} & \text { if } G \cong G_{14} \text { or } G_{15}\end{cases}
$$

Proof. Thanks to GAP group system [8], we have the result.
Lemma 4.3. Let $G \cong G_{18}$. Then we have $J_{2}(G) \cong \mathbb{Z}_{3}^{(4)}$.
Proof. The result is obtained by GAP 8].
Blyth et al. [3] proved the following theorem that helps us to obtain $J_{2}(G)$ for p-groups of order p^{4}.

Theorem 4.4 ([3, Corollary 1.4]). Let G be a group such that $G^{a b}$ is a finitely generated abelian group with no elements of order 2 . Then $J_{2}(G) \cong \Gamma\left(G^{a b}\right) \times \mathcal{M}(G)$.

Finally, we obtain the structure of $J_{2}(G)$, of non-abelian groups of order p^{4} where p is an odd prime.

Lemma 4.5. Let G be a non-abelian group of order p^{4}, where p is an odd prime. Then

$$
J_{2}(G) \cong \begin{cases}\mathbb{Z}_{p}^{(10)} & \text { if } G \cong G_{6} \\ \mathbb{Z}_{p}^{(8)} & \text { if } G \cong G_{7} \text { or } G_{8}, \\ \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(2)} & \text { if } G \cong G_{9} \\ \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(4)} & \text { if } G \cong G_{10} \\ \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(3)} & \text { if } G \cong G_{11} \\ \mathbb{Z}_{p}^{(4)} & \text { if } G \cong G_{16}, G_{17} \text { or } G_{20} \\ \mathbb{Z}_{p}^{(5)} & \text { if } G \cong G_{19}\end{cases}
$$

Proof. Using Theorem 4.4, we have the result.
The authors in 9 gave some tables containing the structure of $\mathcal{M}(G), \mathcal{M}^{(2)}(G), Z^{*}(G)$ and $Z_{2}^{*}(G)$ for all groups of order p^{4}. Here, we complete these tables by adding the structure of $G \wedge G, Z^{\wedge}(G), G \otimes G, Z^{\otimes}(G)$ and $J_{2}(G)$. Table contains results for abelian groups.

Table 2 contains results for p-groups when $p=2,3$. It is important to note that the group of type (18) is just defined for $p=3$ and the group of type (20) for $p=3$

The non-abelian tensor square of p-groups of order p^{4}

Table 1.

	Type of G	$G \wedge G$	$G \otimes G$	$Z^{\wedge}(G)$	$Z^{\otimes}(G)$	$J_{2}(G)$
$p \geq 2$	G_{1}	1	$\mathbb{Z}_{p^{4}}$	$\mathbb{Z}_{p^{4}}$	1	$\mathbb{Z}_{p^{4}}$
$p \geq 2$	G_{2}	\mathbb{Z}_{p}	$\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p^{2}}$	1	$\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{p}^{(3)}$
$p \geq 2$	G_{3}	$\mathbb{Z}_{p^{2}}$	$\mathbb{Z}_{p^{2}}^{(4)}$	1	1	$\mathbb{Z}_{p^{2}}^{(4)}$
$p \geq 2$	G_{4}	$\mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(8)}$	\mathbb{Z}_{p}	1	$\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(8)}$
$p \geq 2$	G_{5}	$\mathbb{Z}_{p}^{(6)}$	$\mathbb{Z}_{p}^{(16)}$	1	1	$\mathbb{Z}_{p}^{(16)}$

Table 2.

	Type of G	$G \wedge G$	$G \otimes G$	$Z^{\wedge}(G)$	$Z^{\otimes}(G)$	$J_{2}(G)$
$p=2$	G_{6}	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}^{(2)}$	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}^{(8)}$	1	1	$\mathbb{Z}_{2}^{(9)}$
$p=2$	G_{7}	$\mathbb{Z}_{2}^{(3)}$	$\mathbb{Z}_{4}^{(2)} \oplus \mathbb{Z}_{2}^{(7)}$	\mathbb{Z}_{2}	1	$\mathbb{Z}_{4}^{(2)} \oplus \mathbb{Z}_{2}^{(6)}$
$p=2$	G_{8}	$\mathbb{Z}_{2}^{(3)}$	$\mathbb{Z}_{2}^{(9)}$	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\mathbb{Z}_{2}^{(8)}$
$p=2$	G_{9}	\mathbb{Z}_{2}	$\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}^{(3)}$	\mathbb{Z}_{4}	1	$\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}^{(2)}$
$p=2$	G_{11}	\mathbb{Z}_{4}	$\mathbb{Z}_{4}^{(3)} \oplus \mathbb{Z}_{2}$	\mathbb{Z}_{2}	1	$\mathbb{Z}_{2}^{(2)} \oplus \mathbb{Z}_{4}^{(2)}$
$p=2$	G_{12}	$\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$	$\mathbb{Z}_{2}^{(3)} \oplus \mathbb{Z}_{4}^{(2)}$	1	1	$\mathbb{Z}_{2}^{(4)} \oplus \mathbb{Z}_{4}$
$p=2$	G_{13}	\mathbb{Z}_{8}	$\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}^{(3)}$	1	1	$\mathbb{Z}_{2}^{(4)}$
$p=2$	G_{14}	\mathbb{Z}_{4}	$\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}^{(3)}$	\mathbb{Z}_{2}	1	$\mathbb{Z}_{2}^{(2)} \oplus \mathbb{Z}_{4}$
$p=2$	G_{15}	\mathbb{Z}_{4}	$\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}^{(3)}$	\mathbb{Z}_{2}	1	$\mathbb{Z}_{2}^{(2)} \oplus \mathbb{Z}_{4}$
$p=3$	G_{18}	$\mathbb{Z}_{3}^{(3)}$	$\mathbb{Z}_{3}^{(6)}$	\mathbb{Z}_{3}	\mathbb{Z}_{3}	$\mathbb{Z}_{3}^{(4)}$
$p=3$	G_{19}	$\mathbb{Z}_{3}^{(3)}$	$\mathbb{Z}_{3}^{(6)}$	\mathbb{Z}_{3}	\mathbb{Z}_{3}	$\mathbb{Z}_{3}^{(4)}$
$p=3$	G_{20}	$\mathbb{Z}_{3}^{(3)}$	$\mathbb{Z}_{3}^{(6)}$	\mathbb{Z}_{3}	\mathbb{Z}_{3}	$\mathbb{Z}_{3}^{(4)}$

Table 3.

	Type of G	$G \wedge G$	$G \otimes G$	$Z^{\wedge}(G)$	$Z^{\otimes}(G)$	$J_{2}(G)$
$p>2$	G_{6}	$\mathbb{Z}_{p}^{(5)}$	$\mathbb{Z}_{p}^{(11)}$	1	1	$\mathbb{Z}_{p}^{(10)}$
$p>2$	G_{7}	$\mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p}^{(9)}$	\mathbb{Z}_{p}	\mathbb{Z}_{p}	$\mathbb{Z}_{p}^{(8)}$
$p>2$	G_{8}	$\mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p}^{(9)}$	\mathbb{Z}_{p}	\mathbb{Z}_{p}	$\mathbb{Z}_{p}^{(8)}$
$p>2$	G_{9}	\mathbb{Z}_{p}	$\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p^{2}}$	\mathbb{Z}_{p}	$\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(2)}$
$p>2$	G_{10}	$\mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(5)}$	\mathbb{Z}_{p}	1	$\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(4)}$
$p>2$	G_{11}	$\mathbb{Z}_{p^{2}}$	$\mathbb{Z}_{p^{2}}^{(2)} \oplus \mathbb{Z}_{p}^{(2)}$	1	1	$\mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(3)}$
$p>2$	G_{16}	$\mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p}^{(6)}$	\mathbb{Z}_{p}	\mathbb{Z}_{p}	$\mathbb{Z}_{p}^{(4)}$
$p>2$	G_{17}	$\mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p}^{(6)}$	\mathbb{Z}_{p}	\mathbb{Z}_{p}	$\mathbb{Z}_{p}^{(4)}$
$p>3$	G_{19}	$\mathbb{Z}_{p}^{(4)}$	$\mathbb{Z}_{p}^{(7)}$	1	1	$\mathbb{Z}_{p}^{(5)}$
$p>3$	G_{20}	$\mathbb{Z}_{p}^{(3)}$	$\mathbb{Z}_{p}^{(6)}$	\mathbb{Z}_{p}	\mathbb{Z}_{p}	$\mathbb{Z}_{p}^{(4)}$

T. J. Ghorbanzadeh, M. Parvizi \& P. Niroomand

is isomorphic to the group of type (19). We obtain the results of this table by GAP 8 .

Finally, Table 3 contains results of the remained p-groups of order p^{4}.

References

1. F. R. Beyl, U. Felgner and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979) 161-177.
2. F. R. Beyl and J. Tappe, Group Extensions, Representations and the Schur Multiplicator, Lecture Notes in Mathematics, Vol. 958 (Springer, Berlin Heidelberg New York, 1982).
3. R. D. Blyth, F. Fumagalli and M. Morigi, Some structural results on the non-abelian tensor square of groups, J. Group Theory 13(1) (2010) 83-94.
4. R. Brown and J. L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311-335.
5. R. Brown and J. L. Loday, Excision homotopique en basse dimension, C.R Acad. Sci. Paris SI Math. 298(15) (1984) 353-356.
6. R. Brown, D. L. Johnson and E. F. Robertson, Some computations of non-abelian tensor products of groups, J. Algebra 111 (1987) 177-202.
7. G. Ellis, Tensor products and q-crossed modules, J. Lond. Math. Soc. 51(2) (1995) 243-258.
8. The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.8.5, (2016), http://www.gap-system.org/.
9. T. J. Ghorbanzadeh, M. Prvizi and P. Niroomand, on 2-nilpotent multiplier of p groups of order p^{4}, submitted.
10. M. R. R. Moghaddam and P. Niroomand, Some properties of certain subgroups of tensor squares of p-groups, Comm. Algebra $\mathbf{4 0}$ (3) (2012) 1188-1193.
11. P. Moravec, The exponents of non-abelian tensor products of groups, J. Pure Appl. Algebra 212(7) (2008) 1840-1848.
12. E. Schenkman, Group Theory (Princeton, N. J. Van Nostrand, 1965).
13. J. H. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950) 51-110.
14. R. Zainal, N. M. Mohd Ali, N. H. Sarmin and S. Rashid, On the non-abelian tensor square of groups of order p^{4} where p is an odd prime, Sci. Asia 39 (2013) 16-18.

[^0]: §Corresponding author.

