Asian-European Journal of Mathematics Vol. 11, No. 6 (2018) 1850084 (10 pages) © World Scientific Publishing Company DOI: 10.1142/S1793557118500845

The non-abelian tensor square of p-groups of order p^4

Taleea Jalaeeyan Ghorbanzadeh*,‡, Mohsen Parvizi*,§ and Peyman Niroomand†,¶

*Department of Pure Mathematics Ferdowsi University of Mashhad, Mashhad, Iran

[†]School of Mathematics and Computer Science Damghan University, Damghan, Iran [‡]ta.jalaeeyan@mail.um.ac.ir; jalaeeyan@gmail.com [§]parvizi@um.ac.ir ¶niroomand@du.ac.ir; p_niroomand@yahoo.com

Communicated by V. A. Artamonov Received July 1, 2017 Accepted July 24, 2017 Published November 2, 2017

In this paper, in the class of p-groups of order p^4 , we obtain the non-abelian exterior square, the exterior center, the non-abelian tensor square, the tensor center and the third homotopy group of suspension of an Eilenberg–MacLane space k(G, 1) of such groups.

Keywords: Non-Abelian tensor square; p-group.

AMS Subject Classification: 20F99, 20F14

1. Introduction and Motivation

The concept of non-abelian tensor square which was introduced by Brown and Loday [5], is an applied topic in the K-theory and the homotopy theory. Since then several papers published in this subject and the reader can find more information in [3, 5, 6, 10]. Following the terminology in [5], let G and H be two groups act on each other compatibly and on themselves by conjugation, then the non-abelian tensor product of G and H, is the group generated by the symbols $g \otimes h$ with defining relations

 $g_1g \otimes h = ({}^{g_1}g \otimes {}^{g_1}h)(g_1 \otimes h)$ and $g \otimes hh_1 = (g \otimes h)({}^hg \otimes {}^hh_1)$

for all $g, g_1, h, h_1 \in G$. The tensor square of G is the special case of the non-abelian tensor product of two groups G and H when G = H.

[§]Corresponding author.

T. J. Ghorbanzadeh, M. Parvizi & P. Niroomand

The exterior square $G \wedge G$ is obtained by imposing the additional relation $g \otimes g = 1_{\otimes}$ on $G \otimes G$. The image of $g \otimes h$ in $G \wedge G$ is denoted by $g \wedge h$ for all $g, h \in G$. From the defining relations of $G \otimes G$, there exists the commutator map $\kappa : G \otimes G \to [G, G]$ given by $\kappa(g \otimes h) = [g, h]$ which is a homomorphism. The kernel of κ is denoted by $J_2(G)$. Brown and Loday in [6] describe the role of $J_2(G)$ in algebraic topology, they showed the third homotopy group of suspension of an Eilenberg–MacLane space k(G, 1) satisfied the condition $\Pi_3(SK(G, 1)) \cong J_2(G)$. Clearly, κ has all elements $g \otimes g$ ($g \in G$) in its kernel, hence it induces a homomorphism $\kappa' : G \wedge G \to G'$. The kernel of κ' which is isomorphic to $\mathcal{M}(G)$, is the Schur multiplier of G (see [4, 6] for more details).

Given an abelian group A, from [13], $\Gamma(A)$ is used to denote the abelian group with generators $\gamma(a)$, for $a \in A$, by defining relations

(i)
$$\gamma(a^{-1}) = \gamma(a)$$
.
(ii) $\gamma(abc)\gamma(a)\gamma(b)\gamma(c) = \gamma(ab)\gamma(bc)\gamma(ca)$.

for all $a, b, c \in A$. Γ is called the Whitehead's universal quadratic functor. From [6], we have

Theorem 1.1. Let G and H be abelian groups. Then

(i)
$$\Gamma(G \times H) = \Gamma(G) \times \Gamma(H) \times (G \otimes H),$$

(ii) $\Gamma(\mathbb{Z}_n) = \begin{cases} \mathbb{Z}_n & n \text{ is odd} \\ \mathbb{Z}_{2n} & n \text{ is even} \end{cases}$

The following diagram shows relation between the non-abelian tensor square, the non-abelian exterior square, the third integral homology group of G and the Whitehead functor Γ , [13].

It has exact rows and central extensions as columns (see [6] for details)

Recall from [7], the concept of tensor and exterior center, respectively,

$$Z^{\otimes}(G) = \{g \in G | g \otimes g_1 = 1_{G \otimes G}, \text{ for all } g, g_1 \in G\},\$$
$$Z^{\wedge}(G) = \{g \in G | g \wedge g_1 = 1_{G \wedge G}, \text{ for all } g, g_1 \in G\}.$$

A group G is called capable if there exists a group H such that $G \cong H/Z(H)$. The epicenter of G which is denoted by $Z^*(G)$ is defined as follows:

Definition 1.2. Let $\psi : E \to G$ be an arbitrary surjective homomorphism with ker $\psi \subseteq Z(G)$. Then the intersection of all subgroups of the form $\psi(Z(G))$ is denoted by $Z^*(G)$.

 $Z^*(G)$ has the property that G is capable if and only if $Z^*(G) = 1$. Beyl and Tappe proved $Z^*(G)$ is isomorphic to $Z^{\wedge}(G)$, though $Z^*(G)$ is defined in a different fashion. The next lemmas, show the relation between $Z^*(G)$, $Z^{\otimes}(G)$ and $Z^{\wedge}(G)$, which play important role in this paper

Lemma 1.3 ([2, p. 208]). Let G be any group. Then $Z^*(G) \cong Z^{\wedge}(G)$.

Lemma 1.4 ([7, Proposition 16]). Let G be any group. Then $Z^{\otimes}(G) \leq Z^{\wedge}(G)$.

We intend to obtain the structure of $G \wedge G, Z^{\wedge}(G), G \otimes G, Z^{\otimes}(G)$ and $\Pi_3(K(G,1))$, by using the presentation of G, here, we give the presentation of all *p*-groups of order p^4 as follows.

Theorem 1.5 ([9, Theorem 1.11]). Let G be a group of order p^4 , where p is a prime. Then G is isomorphic to exactly one of the following groups:

$$\begin{split} G_{1} &\cong \mathbb{Z}_{p^{4}}, \quad G_{2} \cong \mathbb{Z}_{p^{3}} \times \mathbb{Z}_{p}, \quad G_{3} \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{2}}, \quad G_{4} \cong \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}, \\ G_{5} &\cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}, \quad G_{6} \cong \mathbb{Z}_{p} \times E_{1}, \quad G_{7} \cong \mathbb{Z}_{p} \times E_{2}, \\ G_{8} &\cong \langle x, y, z | x^{p} = y^{p} = z^{p^{2}} = 1, [x, z] = [y, z] = 1, [x, y] = z^{p} \rangle, \\ G_{9} &\cong \langle x, y | x^{p^{3}} = y^{p} = 1, x^{y} \cong x^{1+p^{2}} \rangle, \\ G_{10} &\cong \langle x, y | x^{p^{2}} = y^{p} = 1, [x, y, x] = [x, y, y] = 1 \rangle, \\ G_{11} &\cong \langle x, y | x^{p^{2}} = y^{p^{2}} = 1, [x, y, x] = [x, y, y] = 1, [x, y] = x^{p} \rangle, \\ G_{12} &\cong \langle x, y | x^{4} = y^{4} = 1, [x, y, x] = [x, y, y] = 1, [x, y] = x^{2} y^{2} \rangle, \\ G_{13} &\cong \langle x, y | x^{2} = y^{8} = (xy)^{2} = 1 \rangle, \quad G_{14} \cong \langle x, y | x^{4} = y^{2} = (xy)^{2} \rangle, \\ G_{15} &\cong \langle x, y | x^{2} = 1, xyx = y^{3} \rangle, \\ G_{16} &\cong \langle x, y | x^{p^{2}} = y^{p} = 1, [x, y, x] = 1, [x, y, y] = x^{p}, [x, y, y, y] = 1 \rangle, \\ G_{17} &\cong \langle x, y | x^{p^{2}} = y^{p} = 1, [x, y, x] = 1, [x, y, y] = x^{np}, [x, y, y, y] = 1 \rangle, \\ G_{18} &\cong \langle x, y | x^{p} = 1, x^{3} = y^{3}, [x, y, x] = 1, [x, y, y] = x^{6}, [x, y, y, y] = 1 \rangle, \\ G_{19} &\cong \langle x, y | x^{p} = 1, y^{p} = 1, [x, y, x] = [x, y, y, x] = [x, y, y, y] = 1 \rangle. \\ G_{20} &\cong \langle x, y | x^{p} = 1, y^{p} = [x, y, y], [x, y, x] = [x, y, y, x] = [x, y, y, y] = 1 \rangle. \end{split}$$

The next theorem gives some information on the nilpotency class, the center and the derived subgroup of groups of order p^4 . Let cl(G) denote the nilpotency class of a group G, then

Proposition 1.6 ([12, Proposition 1.1]). Let G be a non-abelian group of order p^4 . Then

- (1) G contains an abelian maximal subgroup.
- (2) If cl(G) = 2, then $|Z(G)| = p^2$, |G'| = p and G contains exactly p + 1 abelian maximal subgroups, which intersect at Z(G).
- (3) If cl(G) = 3, then $Z(G) = \gamma_3(G)$ has order $p, Z_2(G) = G'$ has order p^2 , and G contains a unique abelian maximal subgroup.

2. Non-abelian Tensor Square and Nanabelian Exterior Square of groups of Order p^4

Zainal *et al.* [14] obtained the structure of non-abelian tensor square of groups of order p^4 when the class of nilpotency is two. Since most of *p*-groups of order p^4 have class three, in this section, we obtain the non-abelian tensor square of *p*-groups of order p^4 of nilpotency class three. Also, we give the structure of exterior square of *p*-groups of order p^4 . The following theorem gives us the structure of non-abelian tensor square of groups of order p^4 of nilpotency class three. Also, we give the structure of non-abelian tensor square of non-abelian tensor square of groups of order p^4 of nilpotency class two, where *p* is an odd prime.

Theorem 2.1 ([14, Theorem 9]). Let G be a group of order p^4 , where p is an odd prime. Then

$$G \otimes G = \begin{cases} \mathbb{Z}_{p^2} \oplus \mathbb{Z}_p^{(3)} & \text{if } G \cong G_9, \\ \mathbb{Z}_p^{(9)} & \text{if } G \cong G_7 \text{ or } G_8, \\ \mathbb{Z}_{p^2}^{(2)} \oplus \mathbb{Z}_p^{(2)} & \text{if } G \cong G_{11}, \\ \mathbb{Z}_p^{(11)} & \text{if } G \cong G_6, \\ \mathbb{Z}_{p^2} \oplus \mathbb{Z}_p^{(5)} & \text{if } G \cong G_{10}. \end{cases}$$

The next theorem states the structure of tensor square of groups with respect to the direct product of two groups.

Theorem 2.2 ([6, Proposition 11]). Let G and H be groups. Then $(G \times H) \otimes (G \times H) = (G \otimes G) \times (G^{ab} \otimes H^{ab}) \times (H^{ab} \otimes G^{ab}) \times (H \otimes H).$

Blyth *et al.* [3] give us the structure of non-abelian tensor square of a group G when G^{ab} is finitely generated as follows.

Theorem 2.3 ([3, Corollary 1.4]). Let G be a group such that G^{ab} is finitely generated. If G^{ab} has no element of order two or if G' has no complement in G, then $G \otimes G = \Gamma(G^{ab}) \times G \wedge G$.

The following theorem is a key tool to obtain the structure of $G \wedge G$.

Theorem 2.4 ([7, Proposition 16(iv)]). Let G be a group and $N \leq G$, then $G/N \wedge G/N \cong G \wedge G$ if and only if $N \leq Z^{\wedge}(G)$.

For the non-abelian groups of order 16, we have

Theorem 2.5. Let G be a group of order 16. Then

$$G \wedge G \cong \begin{cases} \mathbb{Z}_2 \oplus \mathbb{Z}_4 & \text{if } G \cong G_{12}, \\ \mathbb{Z}_8 & \text{if } G \cong G_{13}, \\ \mathbb{Z}_4 & \text{if } G \cong G_{14} \text{ or } G_{15}. \end{cases}$$

Proof. We have the result by the HAP package of GAP [8].

For abelian groups of order p^4 , we have

Theorem 2.6. Let G be an abelian groups of order p^4 . Then

$$G \wedge G \cong \begin{cases} 1 & \text{if } G \cong G_1, \\ \mathbb{Z}_p & \text{if } G \cong G_2, \\ \mathbb{Z}_{p^2} & \text{if } G \cong G_3, \\ \mathbb{Z}_p^{(3)} & \text{if } G \cong G_4, \\ \mathbb{Z}_p^{(6)} & \text{if } G \cong G_5. \end{cases}$$

Proof. Since the derived subgroup of an abelian group is trivial, so $G \wedge G \cong \mathcal{M}(G)$, now we have the result by [9, Table 1].

For odd p, we have

Theorem 2.7. Let G be a group of order p^4 , where p is an odd prime. Then

$$G \wedge G \cong \begin{cases} \mathbb{Z}_p & \text{if } G \cong G_9, \\ \mathbb{Z}_p^{(3)} & \text{if } G \cong G_7, G_8, G_{10}, G_{16}, G_{17}, G_{20}, \\ \mathbb{Z}_p^{22} & \text{if } G \cong G_{11}, \\ \mathbb{Z}_p^{(5)} & \text{if } G \cong G_6, \\ \mathbb{Z}_p^{(4)} & \text{if } G \cong G_{19}, \\ \mathbb{Z}_3^{(3)} & \text{if } G \cong G_{18}. \end{cases}$$

Proof. Let $G \cong G_6$, by Theorem 2.1 $G \otimes G \cong \mathbb{Z}_p^{(11)}$. On the other hand, $G^{ab} \cong \mathbb{Z}_p^{(3)}$, and $\Gamma(G^{ab}) \cong \mathbb{Z}_p^{(6)}$. So by Theorem 2.3, we have $G \wedge G \cong \mathbb{Z}_p^{(5)}$. The proof for the other cases except G_{16}, G_{17}, G_{19} and G_{20} is completely similar. When $G \cong G_{16}, G_{17}$ or G_{20} , then $Z^{\wedge}(G) = Z(G) \cong \mathbb{Z}_p$, so by Theorem 2.4, $G \wedge G \cong G/Z(G) \wedge G/Z(G) \cong$ $E_1 \wedge E_1$, using [10, Lemma 2.1, Corollary 2.3], $G \wedge G \cong \mathbb{Z}_p^{(3)}$.

Let $G \cong G_{19}$. We know $|G \wedge G| = |\mathcal{M}(G)||G'|$. By [9, Table 3], $|\mathcal{M}(G)| = p^2$ and $|G'| = p^2$, $|G \wedge G| = p^4$. Using [11, Theorem 2], the exponent of $G \otimes G$ is p, since the exponent of G is p. Therefore, the exponent of $G \wedge G$ is p and hence $G \wedge G$ is an elementary abelian group so $G \wedge G \cong \mathbb{Z}_p^{(4)}$. For non-abelian groups of order 16, we have

Lemma 2.8. Let G be a non-abelian group of order 16. Then $G \otimes G \cong \mathbb{Z}_2^{(3)} \oplus \mathbb{Z}_4^{(2)}$ if $G \cong G_{12}$ and $G \otimes G \cong \mathbb{Z}_8 \oplus \mathbb{Z}_2^{(3)}$ if $G \cong G_{13}, G_{14}$ or G_{15} .

Proof. The result is obtained directly by HAP package programming from GAP [8]. \Box

In the next theorem, we obtain the non-abelian tensor square of p-groups of order p^4 of nilpotency class three.

Theorem 2.9. Let G be a group of order p^4 , where p is an odd prime. Then

$$G \otimes G \cong \begin{cases} \mathbb{Z}_p^{(6)} & \text{if } G \cong G_{16}, G_{17} \text{ or } G_{20}, \\ \mathbb{Z}_3^{(6)} & \text{if } G \cong G_{18}, \\ \mathbb{Z}_p^{(7)} & \text{if } G \cong G_{19}. \end{cases}$$

- **Proof.** (i) Let G be isomorphic to one of groups G_{16}, G_{17} or G_{20} , we have $G' \cong \mathbb{Z}_p^{(2)}$ and $G^{ab} \cong \mathbb{Z}_p^{(2)}$. By Theorem 2.4, $G \wedge G \cong \mathbb{Z}_p^{(3)}$. On the other hand, by Theorem 1.1, we have $\Gamma(G^{ab}) \cong \Gamma(\mathbb{Z}_p^{(2)}) \cong \mathbb{Z}_p^{(3)}$. G^{ab} is a finitely generated abelian group with no element of order 2. Then by Theorem 2.3, we have $G \otimes G \cong \Gamma(G^{ab}) \times G \wedge G \cong \mathbb{Z}_p^{(6)}$.
- (ii) Let $G \cong G_{18}$, which is defined for p = 3, by using HAP package programming from GAP [8] we have $G \otimes G \cong \mathbb{Z}_3^{(6)}$.
- (iii) The proof for the case $G \cong G_{19}$ is completely similar to (i), except $\mathcal{M}(G) \cong \mathbb{Z}_p^{(2)}$, we have $G \otimes G \cong \mathbb{Z}_p^{(7)}$.

3. Tensor Center and Exterior Center of Groups of Order p^4

This section is devoted to obtaining the structure of $Z^{\otimes}(G)$ and $Z^{\wedge}(G)$ when G is a groups of order p^4 . In the next theorem, the tensor center of an arbitrary finite abelian group is determined.

Lemma 3.1 ([7, Proposition 1.8]). Let G be a finite abelian p-group of order p^4 . Then $Z^{\otimes}(G) = 1$.

Following theorem is an important tool for the next investigations.

Theorem 3.2 ([7, Proposition 16(v)]). Let G be a group and $N \leq G$, then $G/N \otimes G/N \cong G \otimes G$ if and only if $N \leq Z^{\otimes}(G)$

The authors in [9, Theorem 4.20] calculated the epicenter of all groups of order p^4 . Now by Lemma 1.3, $Z^*(G) \cong Z^{\wedge}(G)$ so the following corollary is trivial.

Corollary 3.3. Let G be a group of order p^4 , where p is prime. Then

$$Z^{\wedge}(G) \cong \begin{cases} 1 & \text{if } G \cong G_3, G_5, G_6, G_{11}, G_{12}, G_{13} \text{ or } G_{19}, \\ \mathbb{Z}_p & \text{if } G \cong G_4, G_7, G_8, G_{10}, G_{16}, G_{17} \text{ or } G_{20}, \\ \mathbb{Z}_{p^4} & \text{if } G \cong G_1, \\ \mathbb{Z}_{p^2} & \text{if } G \cong G_2 \text{ or } G_9, \\ \mathbb{Z}_2 & \text{if } G \cong G_{14} \text{ or } G_{15}, \\ \mathbb{Z}_3 & \text{if } G \cong G_{18}. \end{cases}$$

In the next theorem, we obtain tensor center of all groups of order p^4 .

Theorem 3.4. Let G be a group of order p^4 , where p is prime. Then

$$Z^{\otimes}(G) \cong \begin{cases} 1 & \text{if } G \cong G_1, G_2, G_3, G_4, G_5, G_6, G_{10}, G_{11}, G_{12}, G_{13}, G_{14}, G_{15} \text{ or } G_{19}, \\ \mathbb{Z}_p & \text{if } G \cong G_7, G_8, G_9, G_{16}, G_{17} \text{ or } G_{20}, \\ \mathbb{Z}_3 & \text{if } G \cong G_{18}. \end{cases}$$

- **Proof.** (i) The groups G_1 , G_2 , G_3 , G_4 and G_5 are all abelian so the result follows by Lemma 3.1. Let G be isomorphic to one of groups G_6 , G_{11} , G_{12} , G_{13} or G_{19} . Using Lemmas 1.4 and 3.3, G is capable and $Z^{\otimes}(G) \leq Z^{\wedge}(G) = Z^*(G) \cong 1$, so $Z^{\otimes}(G) \cong 1$.
- (ii) Let $G \cong G_{14}$ or G_{15} , by looking at the table [7], we get the result.
- (iii) Let $G \cong G_7$. Using Theorem 3.2 and putting $N = G' \cong \mathbb{Z}_p$, we have $G/N \otimes G/N \cong \mathbb{Z}_p^{(3)} \otimes \mathbb{Z}_p^{(3)} \cong \mathbb{Z}_p^{(9)}$. On the other hand, $G' \leq Z^{\otimes}(G)$ by Theorem 2.1. Again, using Lemmas 1.4 and 3.3, we have $Z^{\otimes}(G) \cong \mathbb{Z}_p$.
- (iv) Let G be isomorphic to one of groups $G_8, G_9, G_{10}, G_{16}, G_{17}, G_{18}$, or G_{20} , the proof is completely similar to (iii).

4. Third Homotopy Group of Groups of Order p^4

This section tries to devise the structure of the third homotopy group of all groups of order p^4 . First of all, we present the structure of $\Pi_3(K(G, 1))$ when G is an abelian group of order p^4 . It is useful to mention that $\Pi_3(SK(G, 1)) \cong J_2(G)$.

Lemma 4.1. Let G be an abelian group of order p^4 , where p is an odd prime. Then

$$J_2(G) \cong \begin{cases} \mathbb{Z}_p^{(4)} & \text{if } G \cong G_1, \\ \mathbb{Z}_p^3 \oplus \mathbb{Z}_p^{(3)} & \text{if } G \cong G_2, \\ \mathbb{Z}_{p^2}^{(4)} & \text{if } G \cong G_3, \\ \mathbb{Z}_{p^2} \oplus \mathbb{Z}_p^{(8)} & \text{if } G \cong G_4, \\ \mathbb{Z}_p^{(16)} & \text{if } G \cong G_5. \end{cases}$$

T. J. Ghorbanzadeh, M. Parvizi & P. Niroomand

Proof. It is trivial.

For non-abelian groups of order 16, we have

Lemma 4.2. Let G be a non-abelian group of order 16. Then

$$J_{2}(G) \cong \begin{cases} \mathbb{Z}_{2}^{(4)} \oplus \mathbb{Z}_{4} & \text{if } G \cong G_{12}, \\ \mathbb{Z}_{2}^{(4)} & \text{if } G \cong G_{13}, \\ \mathbb{Z}_{2}^{(2)} \oplus \mathbb{Z}_{4} & \text{if } G \cong G_{14} \text{ or } G_{15}. \end{cases}$$

Proof. Thanks to GAP group system [8], we have the result.

Lemma 4.3. Let $G \cong G_{18}$. Then we have $J_2(G) \cong \mathbb{Z}_3^{(4)}$.

Proof. The result is obtained by GAP [8].

Blyth *et al.* [3] proved the following theorem that helps us to obtain $J_2(G)$ for *p*-groups of order p^4 .

Theorem 4.4 ([3, Corollary 1.4]). Let G be a group such that G^{ab} is a finitely generated abelian group with no elements of order 2. Then $J_2(G) \cong \Gamma(G^{ab}) \times \mathcal{M}(G)$.

Finally, we obtain the structure of $J_2(G)$, of non-abelian groups of order p^4 where p is an odd prime.

Lemma 4.5. Let G be a non-abelian group of order p^4 , where p is an odd prime. Then

$$J_{2}(G) \cong \begin{cases} \mathbb{Z}_{p}^{(10)} & \text{if } G \cong G_{6}, \\ \mathbb{Z}_{p}^{(8)} & \text{if } G \cong G_{7} \text{ or } G_{8}, \\ \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(2)} & \text{if } G \cong G_{9}, \\ \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(4)} & \text{if } G \cong G_{10}, \\ \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{p}^{(3)} & \text{if } G \cong G_{11}, \\ \mathbb{Z}_{p}^{(4)} & \text{if } G \cong G_{16}, G_{17} \text{ or } G_{20}, \\ \mathbb{Z}_{p}^{(5)} & \text{if } G \cong G_{19}. \end{cases}$$

Proof. Using Theorem 4.4, we have the result.

The authors in [9] gave some tables containing the structure of $\mathcal{M}(G), \mathcal{M}^{(2)}(G), Z^*(G)$ and $Z_2^*(G)$ for all groups of order p^4 . Here, we complete these tables by adding the structure of $G \wedge G, Z^{\wedge}(G), G \otimes G, Z^{\otimes}(G)$ and $J_2(G)$. Table 1 contains results for abelian groups.

Table 2 contains results for p-groups when p = 2, 3. It is important to note that the group of type (18) is just defined for p = 3 and the group of type (20) for p = 3

			Table 1.			
	Type of G	$G\wedge G$	$G\otimes G$	$Z^{\wedge}(G)$	$Z^{\otimes}(G)$	$J_2(G)$
$p \ge 2$	G_1	1	\mathbb{Z}_{p^4}	\mathbb{Z}_{p^4}	1	\mathbb{Z}_{p^4}
$p \geq 2$	G_2	\mathbb{Z}_p	$\mathbb{Z}_{p^3}\oplus\mathbb{Z}_p^{(3)}$	\mathbb{Z}_{p^2}	1	$\mathbb{Z}_{p^3}\oplus\mathbb{Z}_p^{(3)}$
$p \ge 2$	G_3	\mathbb{Z}_{p^2}	$\mathbb{Z}_{p^2}^{(4)}$	1	1	$\mathbb{Z}_{p^2}^{(4)}$
$p \ge 2$	G_4	$\mathbb{Z}_p^{(3)}$	$\mathbb{Z}_{p^2}\oplus\mathbb{Z}_p^{(8)}$	\mathbb{Z}_p	1	$\mathbb{Z}_{p^2} \oplus \mathbb{Z}_p^{(8)}$
$p \ge 2$	G_5	$\mathbb{Z}_p^{(6)}$	$\mathbb{Z}_p^{(16)}$	1	1	$\mathbb{Z}_p^{(16)}$

Table 2.

	Type of G	$G\wedge G$	$G\otimes G$	$Z^{\wedge}(G)$	$Z^{\otimes}(G)$	$J_2(G)$
p = 2	G_6	$\mathbb{Z}_4\oplus\mathbb{Z}_2^{(2)}$	$\mathbb{Z}_4\oplus\mathbb{Z}_2^{(8)}$	1	1	$\mathbb{Z}_2^{(9)}$
p=2	G_7	$\mathbb{Z}_2^{(3)}$	$\mathbb{Z}_4^{(2)} \oplus \mathbb{Z}_2^{(7)}$	\mathbb{Z}_2	1	$\mathbb{Z}_4^{(2)} \oplus \mathbb{Z}_2^{(6)}$
p=2	G_8	$\mathbb{Z}_2^{(3)}$	$\mathbb{Z}_2^{(9)}$	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_2^{(8)}$
p=2	G_9	\mathbb{Z}_2	$\mathbb{Z}_8\oplus\mathbb{Z}_2^{(3)}$	\mathbb{Z}_4	1	$\mathbb{Z}_8 \oplus \mathbb{Z}_2^{(2)}$
p=2	G_{11}	\mathbb{Z}_4	$\mathbb{Z}_4^{(3)} \oplus \mathbb{Z}_2$	\mathbb{Z}_2	1	$\mathbb{Z}_2^{(2)} \oplus \mathbb{Z}_4^{(2)}$
p=2	G_{12}	$\mathbb{Z}_4 \oplus \mathbb{Z}_2$	$\mathbb{Z}_2^{(3)} \oplus \mathbb{Z}_4^{(2)}$	1	1	$\mathbb{Z}_2^{(4)} \oplus \mathbb{Z}_4$
p=2	G_{13}	\mathbb{Z}_8	$\mathbb{Z}_8 \oplus \mathbb{Z}_2^{(3)}$	1	1	$\mathbb{Z}_2^{(4)}$
p=2	G_{14}	\mathbb{Z}_4	$\mathbb{Z}_8\oplus\mathbb{Z}_2^{(3)}$	\mathbb{Z}_2	1	$\mathbb{Z}_2^{(2)}\oplus\mathbb{Z}_4$
p=2	G_{15}	\mathbb{Z}_4	$\mathbb{Z}_8\oplus\mathbb{Z}_2^{(3)}$	\mathbb{Z}_2	1	$\mathbb{Z}_2^{(2)}\oplus\mathbb{Z}_4$
p=3	G_{18}	$\mathbb{Z}_3^{(3)}$	$\mathbb{Z}_3^{(6)}$	\mathbb{Z}_3	\mathbb{Z}_3	$\mathbb{Z}_3^{(4)}$
p = 3	G_{19}	$\mathbb{Z}_3^{(3)}$	$\mathbb{Z}_3^{(6)}$	\mathbb{Z}_3	\mathbb{Z}_3	$\mathbb{Z}_3^{(4)}$
p = 3	G_{20}	$\mathbb{Z}_3^{(3)}$	$\mathbb{Z}_3^{(6)}$	\mathbb{Z}_3	\mathbb{Z}_3	$\mathbb{Z}_3^{(4)}$

Table	2
rable	э.

	Type of G	$G\wedge G$	$G\otimes G$	$Z^{\wedge}(G)$	$Z^{\otimes}(G)$	$J_2(G)$
p > 2	G_6	$\mathbb{Z}_p^{(5)}$	$\mathbb{Z}_p^{(11)}$	1	1	$\mathbb{Z}_p^{(10)}$
p > 2	G_7	$\mathbb{Z}_p^{(3)}$	$\mathbb{Z}_p^{(9)}$	\mathbb{Z}_p	\mathbb{Z}_p	$\mathbb{Z}_p^{(8)}$
p > 2	G_8	$\mathbb{Z}_p^{(3)}$	$\mathbb{Z}_p^{(9)}$	\mathbb{Z}_p	\mathbb{Z}_p	$\mathbb{Z}_p^{(8)}$
p > 2	G_9	\mathbb{Z}_p	$\mathbb{Z}_{p^2}\oplus\mathbb{Z}_p^{(3)}$	\mathbb{Z}_{p^2}	\mathbb{Z}_p	$\mathbb{Z}_{p^2} \oplus \mathbb{Z}_p^{(2)}$
p > 2	G_{10}	$\mathbb{Z}_p^{(3)}$	$\mathbb{Z}_{p^2} \oplus \mathbb{Z}_p^{(5)}$	\mathbb{Z}_p	1	$\mathbb{Z}_{p^2} \oplus \mathbb{Z}_p^{(4)}$
p > 2	G_{11}	\mathbb{Z}_{p^2}	$\mathbb{Z}_{p^2}^{(2)} \oplus \mathbb{Z}_p^{(2)}$	1	1	$\mathbb{Z}_{p^2}\oplus\mathbb{Z}_p^{(3)}$
p > 2	G_{16}	$\mathbb{Z}_p^{(3)}$	$\mathbb{Z}_p^{(6)}$	\mathbb{Z}_p	\mathbb{Z}_p	$\mathbb{Z}_p^{(4)}$
p > 2	G_{17}	$\mathbb{Z}_p^{(3)}$	$\mathbb{Z}_p^{(6)}$	\mathbb{Z}_p	\mathbb{Z}_p	$\mathbb{Z}_p^{(4)}$
p > 3	G_{19}	$\mathbb{Z}_p^{(4)}$	$\mathbb{Z}_p^{(7)}$	1	1	$\mathbb{Z}_p^{(5)}$
p > 3	G_{20}	$\mathbb{Z}_p^{(3)}$	$\mathbb{Z}_p^{(6)}$	\mathbb{Z}_p	\mathbb{Z}_p	$\mathbb{Z}_p^{(4)}$

is isomorphic to the group of type (19). We obtain the results of this table by GAP [8].

Finally, Table 3 contains results of the remained p-groups of order p^4 .

References

- F. R. Beyl, U. Felgner and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979) 161–177.
- F. R. Beyl and J. Tappe, Group Extensions, Representations and the Schur Multiplicator, Lecture Notes in Mathematics, Vol. 958 (Springer, Berlin Heidelberg New York, 1982).
- R. D. Blyth, F. Fumagalli and M. Morigi, Some structural results on the non-abelian tensor square of groups, J. Group Theory 13(1) (2010) 83–94.
- R. Brown and J. L. Loday, Van Kampen theorems for diagrams of spaces, *Topology* 26 (1987) 311–335.
- R. Brown and J. L. Loday, Excision homotopique en basse dimension, C.R Acad. Sci. Paris SI Math. 298(15) (1984) 353–356.
- R. Brown, D. L. Johnson and E. F. Robertson, Some computations of non-abelian tensor products of groups, J. Algebra 111 (1987) 177–202.
- G. Ellis, Tensor products and q-crossed modules, J. Lond. Math. Soc. 51(2) (1995) 243–258.
- The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.8.5, (2016), http://www.gap-system.org/.
- 9. T. J. Ghorbanzadeh, M. Prvizi and P. Niroomand, on 2-nilpotent multiplier of p-groups of order p^4 , submitted.
- M. R. R. Moghaddam and P. Niroomand, Some properties of certain subgroups of tensor squares of p-groups, *Comm. Algebra* 40(3) (2012) 1188–1193.
- P. Moravec, The exponents of non-abelian tensor products of groups, J. Pure Appl. Algebra 212(7) (2008) 1840–1848.
- 12. E. Schenkman, Group Theory (Princeton, N. J. Van Nostrand, 1965).
- 13. J. H. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950) 51–110.
- R. Zainal, N. M. Mohd Ali, N. H. Sarmin and S. Rashid, On the non-abelian tensor square of groups of order p⁴ where p is an odd prime, *Sci. Asia* **39** (2013) 16–18.