Decomposition of the Nonabelian Tensor Product of Lie Algebras via the Diagonal Ideal

Peyman Niroomand ${ }^{1}{ }_{(D)}$. Farangis Johari ${ }^{2}$. Mohsen Parvizi ${ }^{2}$ • Francesco G. Russo ${ }^{3}$ (D)

Received: 1 May 2016 / Revised: 27 April 2017
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract

We prove a theorem of splitting for the nonabelian tensor product $L \otimes N$ of a pair (L, N) of Lie algebras L and N in terms of its diagonal ideal $L \square N$ and of the nonabelian exterior product $L \wedge N$. A similar circumstance was described few years ago in the special case $N=L$. The interest is due to the fact that the size of $L \square N$ influences strongly the structure of $L \otimes N$.

Keywords Lie algebras • Schur multiplier • Homology • Nonabelian tensor product
Mathematics Subject Classification 17B30 - 17B60 - 17B99

[^0]
1 Introduction

A large part of the homology theory of Lie algebras is based on the notion of abelian tensor product. The classical reference of Knapp [9] devotes several chapters to explain the deep relations between the theory of extensions of Lie algebras and the theory of Schur multipliers of Lie algebras. These relations are indeed investigated since a long time in algebra and topology (see [17]).

The notion of nonabelian tensor product is more recent and is originally due to Ellis [5] for Lie algebras. One of the main problems, concerning the study of nonabelian tensor products of Lie algebras, is related to the size of the so-called diagonal ideal (see the following section for details), because this gives a measure of how far is our Lie algebra from being abelian. Roughly speaking, given the nonabelian tensor product $L \otimes N=\langle l \otimes n \mid l \in L, n \in N\rangle$ of a Lie algebra L by an ideal N (acting in a certain way on L), we call "diagonal ideal" the set $L \square N=\langle l \otimes l \mid l \in N\rangle$. This is indeed an abelian ideal of $L \otimes N$, which measure in a certain sense "how much" $L \otimes N$ is abelian.

The main results of the present contribution deal with the size of $L \square N$ under suitable assumptions of finite dimension on N. We begin with a result of decomposition for $L \otimes N$ in Theorem 3.6, and a precise condition of splitting is successively shown in Theorem 3.12. Topological interpretations of Theorems 3.6 and 3.12 are given in Corollary 3.13, where one can find connections of homotopical nature with the suspension of an Eilenberg-MacLane space. In order to prove these main results, we use some homological methods and some computations of linear algebra in a series of preparatory lemmas. Section 2 introduces the formal definitions and the notions which will be used in Sect. 3, where the main results are placed.

2 Compatible Actions and Nonabelian Tensor Products

Let F be a fixed field, L, K be two Lie algebras, $c \in F, l, l^{\prime} \in L, k, k^{\prime} \in K$ and [,] be the usual Lie bracket. We say that L acts on K if there is an F-bilinear map $(l, k) \in L \times K \mapsto{ }^{l} k=[l, k] \in K$ satisfying ${ }^{\left[l, l^{\prime}\right]} k={ }^{l}\left(l^{\prime} k\right)-l^{\prime}\left({ }^{l} k\right)$ and ${ }^{l}\left[k, k^{\prime}\right]=\left[{ }^{l} k, k^{\prime}\right]+\left[k,{ }^{l} k^{\prime}\right]$. This notation is standard and follows [4-6]. Of course, if L is a subalgebra of some Lie algebra P and K is an ideal in P, then the Lie multiplication in P induces an action of L on K. In fact, l acts on k by ${ }^{l} k=[l, k]$. Let L and K be Lie algebras acting on each other, and on themselves by Lie multiplication. Then these actions are said to be compatible if ${ }^{k}{ }^{l} k^{\prime}={ }^{k^{\prime}}\left({ }^{l} k\right)$ and ${ }^{{ }^{l} k} l^{\prime}={ }^{l^{\prime}}\left({ }^{k} l\right)$. Now if L and K are both ideals of some Lie algebra, then the Lie multiplication gives rise to compatible actions. The nonabelian tensor product $L \otimes K$ of L and K is the Lie algebra generated by the symbols $l \otimes k$ with defining relations

$$
\begin{aligned}
c(l \otimes k) & =c l \otimes k=l \otimes c k, \quad\left(l+l^{\prime}\right) \otimes k=l \otimes k+l^{\prime} \otimes k, \\
l \otimes\left(k+k^{\prime}\right) & =l \otimes k+l \otimes k^{\prime}, \quad{ }^{l} l^{\prime} \otimes k=l \otimes{ }^{l^{\prime}} k-l^{\prime} \otimes{ }^{l} k, \\
l \otimes{ }^{k} k^{\prime} & ={ }^{k^{\prime}} l \otimes k-{ }^{k} l \otimes k^{\prime}, \quad\left[l \otimes k, l^{\prime} \otimes k^{\prime}\right]=-{ }^{k} l \otimes{ }^{l^{\prime}} k^{\prime} .
\end{aligned}
$$

A nonabelian tensor product $L \otimes L$ is called nonabelian tensor square of L. On the other hand, if L is abelian, the tensor product we defined above becomes the normal
tensor product of vector spaces. We will concentrate on $L \otimes N$, in which $N=K$ is an ideal of L.

Following [5, Sect. 2],

$$
L \square N=\langle l \otimes l \mid l \in N\rangle
$$

is an ideal of $L \otimes N$ (called diagonal ideal of $L \otimes N$) and lies in the center $Z(L \otimes N)$ of $L \otimes N$. Denoting by $l \wedge n$ the coset $l \otimes n+(L \square N)$, we may consider the Lie algebra quotient $L \wedge N=L \otimes N /(L \square N)=\langle l \wedge n \mid l \in L, n \in N\rangle$, called nonabelian exterior product of L by N.

The Schur multiplier $M(L, N)$ of the pair (L, N) is defined to be the abelian Lie algebra, appearing in the following natural exact sequence of Mayer-Vietoris type

$$
\begin{aligned}
H_{3}(L) & \longrightarrow H_{3}(L / N) \longrightarrow M(L, N) \longrightarrow M(L) \longrightarrow M(L / N) \longrightarrow \\
& \longrightarrow \frac{L}{[L, N]} \longrightarrow \frac{L}{[L, L]} \longrightarrow \frac{L}{[L, L]+N} \longrightarrow 0,
\end{aligned}
$$

where $M(-)$ and $H_{3}(-)$ are the Schur multiplier and the third homology of a Lie algebra, respectively (see $[1-5,8,13,14]$).

We recall from $[4,5]$ that it is possible to get the following commutative diagram:

where

$$
\kappa_{L, N}: l \otimes n \in L \otimes N \longmapsto[l, n] \in[L, N]
$$

is an epimorphism such that $J_{2}(L, N)=\operatorname{ker} \kappa_{L, N} \subseteq Z(L \otimes N)$ and both

$$
\varepsilon_{L, N}: l \otimes n \in L \otimes N \mapsto(l \otimes n)+L \square N \in L \otimes N / L \square N
$$

and

$$
\kappa_{L, N}^{\prime}: l \wedge n \in L \wedge N \longmapsto[l, n] \in[L, N]
$$

are epimorphisms. Moreover, $M(L, N) \simeq \operatorname{ker} \kappa_{L, N}^{\prime} \subseteq Z(L \wedge N)$. Note that $J_{2}(L, L)=J_{2}(L)$ was described in [5, pp. 109-110]. We also note that the columns of (2.1) are central extensions, while the rows of (2.1) form two long exact sequences. In fact, Γ denotes the quadratic Whitehead functor and ψ is properly defined in [5, Definition, p.107] (see also [18] for a categorical definition of Γ and ψ). The properties of (2.1) are discussed in various contributions and in different perspectives (see [4-7,10-16]).

3 Splitting of \otimes via \square and \wedge

Since the notion of dimension for a Lie algebra is in a certain sense "more geometric than algebraic," we cannot expect full analogies with respect to the results in $[6,8,10$, 16], when we replace this notion with that of order of a group. In fact, we investigated the role of the homological invariants between Lie algebras and finite groups in [1114]. We begin to look for information on the bases of those Lie algebras, which will be involved in the main results of the present paper. The abelian case plays a fundamental role and is discussed in the next result.

Proposition 3.1 Let N be an ideal of dimension m with basis $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of an abelian Lie algebra L ofdimension n with basis $\left\{y_{1}, y_{2}, \ldots, y_{m}, y_{m+1}, y_{m+2}, \ldots, y_{n}\right\}$, where $y_{i}=x_{i}$ for $1 \leq i \leq m$. Then

$$
L \otimes N \cong(L \square N) \oplus\left\langle y_{j} \otimes x_{t} \mid 1 \leq t \leq m, 1 \leq t<j \leq n\right\rangle .
$$

Proof The decomposition of $L \otimes N$ follows directly from the fact that in this case it is the normal tensor product of vector spaces. In fact, we have

$$
\begin{aligned}
L & \cong \bigoplus_{i=m+1}^{n}\left\langle y_{i}\right\rangle \oplus \bigoplus_{j=1}^{m}\left\langle x_{j}\right\rangle, \text { where } N \cong \bigoplus_{j=1}^{m}\left\langle x_{j}\right\rangle, \\
L & \otimes N \cong\left\langle x_{i} \otimes x_{t}+x_{t} \otimes x_{i}, x_{i} \otimes x_{i} \mid 1 \leq i<t \leq m\right\rangle \\
& \oplus\left\langle y_{j} \otimes x_{t} \mid 1 \leq t \leq m, 1 \leq t<j \leq n\right\rangle, \\
L & \square N \cong\left\langle x_{i} \otimes x_{t}+x_{t} \otimes x_{i}, x_{i} \otimes x_{i} \mid 1 \leq i<t \leq m\right\rangle
\end{aligned}
$$

A first result of splitting may be formulated in the abelian case.
Corollary 3.2 Let N be an ideal of a finite-dimensional abelian Lie algebra L. Then

$$
L \otimes N \cong(L \square N) \oplus(L \wedge N)
$$

Proof This follows from Proposition 3.1.
We are ready to prove a crucial result of the present section.
Proposition 3.3 Let N be an ideal of a Lie algebra L such that $N /[N, L]$ is of dimension m with basis $\left\{y_{1}+[N, L], y_{2}+[N, L], \ldots, y_{m}+[N, L]\right\}$ and $L /[N, L]$ is of dimension n with basis $\left\{y_{1}+[N, L], y_{2}+[N, L], \ldots, y_{n}+[N, L]\right\}$. Then

$$
\begin{aligned}
& \frac{L}{[N, L]} \otimes \frac{N}{[N, L]} \cong\left(\frac{L}{[N, L]} \square \frac{N}{[N, L]}\right) \\
& \oplus\left\langle\left(y_{j}+[N, L]\right) \otimes\left(y_{i}+[N, L]\right) \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle
\end{aligned}
$$

Proof Essentially, we do two observations. The first is that $[L /[N, L], N /[N, L]]=$ 0 . The second is that the actions of $L /[N, L]$ and $N /[N, L]$ on each other are given by Lie bracket and so are trivial. Then we may conclude

$$
\frac{L}{[N, L]} \otimes \frac{N}{[N, L]} \cong\left(\frac{L}{[N, L]}\right)^{a b} \otimes \frac{N}{[N, L]}
$$

that is, the nonabelian tensor product $L /[N, L] \otimes N /[N, L]$ is isomorphic to the usual abelian tensor product $(L /[N, L])^{a b} \otimes N /[N, L]$. Therefore, we apply Corollary 3.2

$$
\left(\frac{L}{[N, L]}\right)^{a b} \otimes \frac{N}{[N, L]} \cong\left(\left(\frac{L}{[N, L]}\right)^{a b} \square \frac{N}{[N, L]}\right) \oplus\left(\left(\frac{L}{[N, L]}\right)^{a b} \wedge \frac{N}{[N, L]}\right)
$$

where the abelian Lie algebra factor $(L /[N, L])^{a b} \wedge N /[N, L]$ admits a basis exactly of the form $\left\{\left(y_{j}+[L, L]\right) \otimes\left(y_{i}+[N, L]\right) \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\}$ (note that $\left.(L /[N, L])^{a b}=(L /[N, L]) /([L, L] /[N, L]) \cong L /[L, L]\right)$ and the other abelian Lie algebra factor is $(L /[N, L])^{a b} \square N /[N, L] \cong L /[N, L] \square N /[N, L]$. Then the result follows from Proposition 3.1.

We may reformulate the proposition above in the following way.
Corollary 3.4 Let N be an ideal of a Lie algebra L such that $L /[N, L]$ is finitedimensional. Then

$$
L /[N, L] \otimes N /[N, L] \cong(L /[N, L] \square N /[N, L]) \oplus(L /[N, L] \wedge N /[N, L])
$$

A crucial step, which is fundamental for our aims, deals with the description of the natural epimorphism

$$
\begin{equation*}
\pi: l \otimes n \in L \otimes N \longmapsto(l+[N, L]) \otimes(n+[N, L]) \in \frac{L}{[N, L]} \otimes \frac{N}{[N, L]} \tag{3.1}
\end{equation*}
$$

and its restriction

$$
\begin{equation*}
\pi_{\mid}: n \otimes n \in L \square N \longmapsto(n+[N, L]) \otimes(n+[N, L]) \in \frac{L}{[N, L]} \square \frac{N}{[N, L]} \tag{3.2}
\end{equation*}
$$

Assuming that N is an ideal in L, there are two homomorphisms

$$
\begin{equation*}
\tau_{1}: l \otimes\left[n, l^{\prime}\right] \in L \otimes[N, L] \longmapsto l \otimes\left[n, l^{\prime}\right] \in L \otimes N \tag{3.3}
\end{equation*}
$$

$$
\tau_{2}:\left[n, l^{\prime}\right] \otimes n^{\prime} \in[N, L] \otimes N \longmapsto\left[n, l^{\prime}\right] \otimes n^{\prime} \in L \otimes N
$$

which are very useful in the proof of the next lemma. The kernel of (3.1) is studied in the next result. We inform the reader that we will use the notion of Lie pairing in the next proof (see [5]).

Lemma 3.5 Let N be an ideal of a Lie algebra L, π as in (3.1), τ_{1}, τ_{2} as in (3.3) and $M=\operatorname{Im} \tau_{1}+\operatorname{Im} \tau_{2}$. Then $\operatorname{ker} \pi=M$.

Proof Since M is an ideal of $L \otimes N$, we may consider the map

$$
\bar{\pi}:(l \otimes n)+M \in \frac{L \otimes N}{M} \mapsto(l+[N, L]) \otimes(n+[N, L]) \in \frac{L}{[N, L]} \otimes \frac{N}{[N, L]}
$$

On the other hand, it is well defined the map

$$
\alpha:(l+[N, L], n+[N, L]) \in \frac{L}{[N, L]} \times \frac{N}{[N, L]} \mapsto(l \otimes n)+M \in \frac{L \otimes N}{M} .
$$

Now for all $l_{1}, l_{2} \in L$ and $n_{1}, n_{2} \in N$

$$
\begin{aligned}
& \alpha\left(\left[l_{1}+[N, L], l_{2}+[N, L]\right], n_{1}+[N, L]\right) \\
& \quad=\left(\left[l_{1}, l_{2}\right] \otimes n_{1}\right)+M=\left(l_{1} \otimes\left[l_{2}, n_{1}\right]-l_{2} \otimes\left[l_{1}, n_{1}\right]\right)+M \\
& \quad=\alpha\left(l_{1}+[N, L],\left[l_{2}, n_{1}\right]+[N, L]\right)-\alpha\left(l_{2}+[N, L],\left[l_{1}, n_{1}\right]+[N, L]\right)
\end{aligned}
$$

Similarly, it is easy to see that

$$
\begin{aligned}
& \alpha\left({ }^{n_{1}+[N, L]} l_{1}+[N, L], \quad l_{1}+[N, L]\right. \\
& \left.n_{2}+[N, L]\right) \\
& \quad=-\left[\alpha\left(l_{1}+[N, L], n_{1}+[N, L]\right), \alpha\left(l_{2}+[N, L], n_{2}+[N, L]\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha\left(l_{1}+[N, L],\left[n_{1}, n_{2}\right]+[N, L]\right) \\
& \quad=\alpha\left({ }^{n_{2}+[N, L]} l_{1}+[N, L], n_{1}+[N, L]\right)-\alpha\left({ }^{n_{1}+[N, L]} l_{1}+[N, L], n_{2}+[N, L]\right) .
\end{aligned}
$$

Thus α is a Lie pairing and induces the homomorphism

$$
\bar{\alpha}: \frac{L}{[N, L]} \otimes \frac{N}{[N, L]} \longrightarrow \frac{L \otimes N}{M}
$$

such that $\bar{\pi} \circ \bar{\alpha}=\bar{\alpha} \circ \bar{\pi}=1$. Therefore,

$$
\frac{L}{[N, L]} \otimes \frac{N}{[N, L]} \simeq \frac{L \otimes N}{M}
$$

and the result follows.
The first main result of this paper is the following.
Theorem 3.6 Let N be an ideal of a Lie algebra L such that $N /[N, L]$ is of dimension m with basis $\left\{y_{1}+[N, L], y_{2}+[N, L], \ldots, y_{m}+[N, L]\right\}$ and $L /[N, L]$ is of dimension n with basis $\left\{y_{1}+[N, L], y_{2}+[N, L], \ldots, y_{n}+[N, L]\right\}$. Then

$$
L \otimes N \simeq(L \square N)+\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M
$$

where $\left\{y_{i} \otimes y_{t}+y_{t} \otimes y_{i}, y_{i} \otimes y_{i} \mid 1 \leq i<t \leq m\right\}$ is a basis of $L \square N, \pi$ as in (3.1) and $M=\operatorname{ker} \pi$. Moreover, $\operatorname{dim}(L \otimes N) \leq m(m+1) / 2$.

Proof We consider π in (3.1) and apply Proposition 3.3, concluding that

$$
\begin{aligned}
& \frac{L}{[N, L]} \otimes \frac{N}{[N, L]} \cong\left(\frac{L}{[N, L]} \square \frac{N}{[N, L]}\right) \\
& \quad \oplus\left\langle\left(y_{j}+[N, L]\right) \otimes\left(y_{i}+[N, L]\right) \mid 1 \leq j \leq m, 1 \leq j<i \leq n\right\rangle \\
& =\pi\left((L \square N)+\left\langle y_{j} \otimes y_{i} \mid 1 \leq j \leq m, 1 \leq j<i \leq n\right\rangle\right)
\end{aligned}
$$

Since (3.1) is surjective, we have just shown that

$$
\pi(L \otimes N) \simeq \pi\left((L \square N)+\left\langle y_{j} \otimes y_{i} \mid 1 \leq j \leq m, 1 \leq j<i \leq n\right\rangle\right)
$$

and knowing $M=\operatorname{ker} \pi$ by Lemma 3.5, this means

$$
L \otimes N \simeq(L \square N)+\left(\left\langle y_{j} \otimes y_{i} \mid 1 \leq j \leq m, 1 \leq j<i \leq n\right\rangle+M\right)
$$

The first part of the result follows. About the rest, assume that $X=\left\{x_{\alpha} \mid \alpha \in I\right\}$ is a basis of $[N, L]$ (eventually with infinite $|I|$) and $B=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ for some $y_{1}, y_{2}, \ldots, y_{m} \in L$. Then $D=X \cup B$ generates N and $L \square N$ is generated by $\left\{d_{1} \otimes d_{1},\left(d_{1} \otimes d_{2}\right)+\left(d_{2} \otimes d_{1}\right) \mid d_{1}, d_{2} \in D\right\}$. On the other hand, we have $d \otimes d=0$ if $d \in X$ and $(a \otimes b)+(b \otimes a)=0$ if at least one among a and b lies in X. Therefore, $\left\{d_{1} \otimes d_{1},\left(d_{1} \otimes d_{2}\right)+\left(d_{2} \otimes d_{1}\right) \mid d_{1}, d_{2} \in X\right\}$ is also a basis of $L \square N$. From this, we may conclude that $\left\{y_{i} \otimes y_{t}+y_{t} \otimes y_{i}, y_{i} \otimes y_{i} \mid 1 \leq i<t \leq m\right\}$ is a basis of $L \square N$ and that $\operatorname{dim}(L \otimes N) \leq m(m+1) / 2$.

We can be more precise with the description of the kernel of (3.1), when we consider the restriction (3.2). The following result is in this direction.

Lemma 3.7 Let N be an ideal of a Lie algebra L such that $N /[N, L]$ is of dimension m with basis $\left\{y_{1}+[N, L], y_{2}+[N, L], \ldots, y_{m}+[N, L]\right\}$ and $L /[N, L]$ is of dimension n with basis $\left\{y_{1}+[N, L], y_{2}+[N, L], \ldots, y_{n}+[N, L]\right\}$. If π_{\mid}is as in (3.2) and M as in Lemma 3.5, then $\operatorname{ker} \pi_{\mid}=(L \square N) \cap\left(\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M\right)$.

Proof Since $\pi_{\mid}\left((L \square N) \cap\left(\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M\right)\right)=0$, it is clear that $(L \square N) \cap\left(\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M\right) \subseteq$ ker π_{\mid}. Vice versa, we know from Lemma 3.5 that ker $\pi=M=M \cap(L \square N)$; thus, ker $\pi \mid \subseteq$ $\left(\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M\right) \cap(L \square N)$. The result follows.

Then Theorem 3.6 may be reformulated in an alternative way.
Corollary 3.8 In the same assumptions of Theorem 3.6 and with π_{\mid}as in (3.2),

$$
(L \otimes N) / \operatorname{ker} \pi_{\mid} \simeq(L /[N, L] \square N /[N, L]) \oplus(L \wedge N)
$$

Proof First of all, Lemma 3.7 implies ker $\pi \mid \subseteq L \square N$ and we know that $L \square N \subseteq$ $Z(L \otimes N)$, so ker $\pi \mid$ is normal in $L \otimes N$ and we may consider the quotient $L \otimes N / \operatorname{ker} \pi \mid$. Now we apply Theorem 3.6 and get

$$
\begin{aligned}
& \frac{L \otimes N}{\operatorname{ker} \pi_{\mid}} \cong \frac{(L \square N) \oplus\left(\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M\right)}{\operatorname{ker} \pi_{\mid}} \\
& \cong \frac{L \square N}{\operatorname{ker} \pi_{\mid}} \oplus \frac{\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M}{\operatorname{ker} \pi_{\mid}}
\end{aligned}
$$

Note that $L \square N / \operatorname{ker} \pi_{\mid} \cong(L /[N, L] \square N /[N, L])$ and $L \wedge N \cong\left(\left\langle y_{j} \otimes y_{i}\right| 1 \leq\right.$ $i \leq m, 1 \leq i<j \leq n\rangle+M) / \operatorname{ker} \pi \mid$. This completes the result.

In order to proceed with the proof of our second main theorem, we recall some elementary facts, which follow from the exactness of (2.1). The following lemma is a direct consequence of [5, Propositions 16 and 17] when $N \neq L$.

Lemma 3.9 [See [5], Propositions 16 and 17] Let K be an abelian Lie algebra of $\operatorname{dim} K=m$. Then

$$
\operatorname{dim} \Gamma(K)=\operatorname{dim} K \square K=m(m+1) / 2 .
$$

An application of the above lemma can be found in the next result and it involves again the epimorphism π_{\mid}in (3.2).

Lemma 3.10 Let N be an ideal of a Lie algebra L such that $\operatorname{dim} N /[N, L]=m$ and $\operatorname{dim} L /[N, L]$ is finite. If $\operatorname{dim} L /[N, L] \square N /[N, L]=m(m+1) / 2$, then $\operatorname{ker} \pi_{\mid}=0$ and

$$
L /[N, L] \square N /[N, L] \cong L \square N \cong \Gamma(N /[N, L])
$$

Proof We inform the reader that the notation for the elements $\gamma(n+[N, L])$ of $\Gamma\left(\frac{N}{[N, L]}\right)$ follows the original notation of Whitehead in [18] (see also [4,5]). By Lemma 3.9, $\operatorname{dim} \Gamma(N /[N, L])=m(m+1) / 2$. Thus the composition

$$
\begin{aligned}
& \pi_{\mid} \circ \psi: \gamma(n+[N, L]) \in \Gamma\left(\frac{N}{[N, L]}\right) \\
& \longmapsto(n+[N, L]) \square(n+[N, L]) \in \frac{L}{[N, L]} \square \frac{N}{[N, L]}
\end{aligned}
$$

maps a basis of $\Gamma(N /[N, L])$ injectively into a part of a basis of $L /[L, N] \square N /[L, N]$. Then $\pi_{\mid} \circ \psi$ is an isomorphism. Therefore, ψ is injective. We conclude $\operatorname{dim} L \square N=$ $\operatorname{dim} L /[L, N] \square N /[L, N]=\operatorname{dim} \Gamma(N /[N, L])=m(m+1) / 2$. Hence ker $\pi_{\mid}=0$ and the result follows.

In general, the columns of (2.1) are short exact sequences, but not the rows. However, even the rows of (2.1) become short exact sequences.

Corollary 3.11 Let N be an ideal of a Lie algebra L such that $\operatorname{dim} N /[N, L]=m$ and $\operatorname{dim} L /[N, L]$ is finite. If $\operatorname{dim} L /[N, L] \square N /[N, L]=m(m+1) / 2$, then the following

is a commutative diagram with short exact sequences as rows.
Proof Application of Lemma 3.10 to (2.1).
Of course, if L is a Lie algebra of finite dimension, then its factors $L /[N, L]$ and $N /[N, L]$ are of finite dimension (and consequently $L /[N, L] \square N /[N, L]$). Then Corollary 3.11 is true, even if the whole L is of finite dimension. The second main result of this section may be formulated again with the weak restriction of finite dimension on the factor $L /[N, L]$ (and not on the whole L).

Theorem 3.12 Let N be an ideal of a Lie algebra L such that $\operatorname{dim} N /[N, L]=m$ and $\operatorname{dim} L /[N, L]$ is finite. If $\operatorname{dim} L /[N, L] \square N /[N, L]=m(m+1) / 2$, then

$$
L \otimes N \cong(L \square N) \oplus(L \wedge N)
$$

Proof From Lemma 3.10, ker $\pi_{\mid}=0$ and so we may apply Corollary 3.8, getting $L \otimes N \cong(L /[N, L] \square N /[N, L]) \oplus(L \wedge N)$. Now one has to note that $L \square N \cong$ $L /[N, L] \square N /[N, L]$ again by Lemma 3.10 and the result follows.

The role of the Lie algebra $J_{2}(L, N)$ has been investigated in [5] when $N=L$ and it is related to the homotopy theory in the sense of [5, Theorems 27, 28]. There is not a version of [5, Theorems 27, 28], when $N \neq L$, even if some ideas can be found in [7, Theorems 1, 2, 4, 5] for the case of groups. This emphasizes the following consequence of Theorem 3.12.

Corollary 3.13 Let N be an ideal of a Lie algebra L such that $\operatorname{dim} N /[N, L]=m$ and $\operatorname{dim} L /[N, L]$ is finite. If $\operatorname{dim} L /[N, L] \square N /[N, L]=m(m+1) / 2$, then

$$
J_{2}(L, N) \cong(L \square N) \oplus M(L, N)
$$

Proof By Theorem 3.12,

$$
\begin{aligned}
J_{2}(L, N) & =\left((L \square N) \oplus\left(\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M\right)\right) \cap J_{2}(L, N) \\
& =(L \square N) \oplus\left(\left(\left\langle y_{j} \otimes y_{i} \mid 1 \leq i \leq m, 1 \leq i<j \leq n\right\rangle+M\right) \cap J_{2}(L, N)\right) .
\end{aligned}
$$

The rest follows by diagram (2.1), specifically by $J_{2}(L, N) /(L \square N) \cong M(L, N)$.

Acknowledgements We thank the referees for their comments. The fourth author (F.G.R.) acknowledges NRF (South Africa) for the Grant Nos. CPRR 14071175245 and CSUR 93652. The third author was supported by a grant from Ferdowsi University of Madhhad-Graduate Studys (No. 31659).

References

1. Araskhan, M., Rismanchian, M.R.: Some properties on the Schur multiplier of a pair of Lie algebras. J. Algebra Appl. 11, 1250011 (2012)
2. Araskhan, M., Rismanchian, M.R.: Some inequalities for the dimension of the Schur multiplier of a pair of (nilpotent) Lie algebras. J. Algebra 352, 173-179 (2012)
3. Edalatzadeh, B., Saeedi, F., Salemkar, A.R.: The commutator subalgebra and Schur multiplier of a pair of nilpotent Lie algebras. J. Lie Theory 21, 491-498 (2011)
4. Ellis, G.J.: Nonabelian exterior products of Lie algebras and an exact sequence in the homology of Lie algebras. J. Pure Appl. Algebra 46, 111-115 (1987)
5. Ellis, G.J.: A nonabelian tensor product of Lie algebras. Glasg. Math. J. 33, 101-120 (1991)
6. Ellis, G.J.: The Schur multiplier of a pair of groups. Appl. Categ. Struct. 6, 355-371 (1998)
7. Ellis, G.J.: Relative derived functors and the homology of groups. Cah. Topol. Géom. Différ. Catég. 31, 121-135 (1990)
8. Guin, D.: Cohomologie et homologie nonabéliennes des groupes. J. Pure Appl. Algebra 50, 109-137 (1988)
9. Knapp, A.W.: Lie Groups, Lie Algebras and Cohomology. Princeton University Press, Princeton (1988)
10. Mashayekhy, B., Mirebrahimi, H., Vasagh, Z.: A topological approach to the nilpotent multipliers of a free product. Georgian Math. J. 21, 89-96 (2014)
11. Niroomand, P., Russo, F.G.: A restriction on the Schur multiplier of a nilpotent Lie algebra. Electron. J. Linear Algebra 22, 1-9 (2011)
12. Niroomand, P.: Some properties on the tensor square of Lie algebras. J. Algebra Appl. 11, 1250085 (2012)
13. Niroomand, P., Parvizi, M., Russo, F.G.: Some criteria for detecting capable Lie algebras. J. Algebra 384, 36-44 (2013)
14. Niroomand, P., Russo, F.G.: Some restrictions on the Betti numbers of a nilpotent Lie algebra. Bull. Belg. Math. Soc. Simon Stevin 21, 403-413 (2014)
15. Niroomand, P., Russo, F.G.: On the size of the third homotopy group of the suspension of an EilenbergMacLane space. Turk. J. Math. 38, 664-671 (2014)
16. Otera, D.E., Russo, F.G., Tanasi, C.: Some algebraic and topological properties of the nonabelian tensor product. Bull. Korean Math. Soc. 50, 1069-1077 (2013)
17. Rotman, J.: An Introduction to Homological Algebra. Academic Press, San Diego (1979)
18. Whitehead, J.H.C.: A certain exact sequence. Ann. Math. 52, 51-110 (1950)

[^0]: Communicated by Miin Huey Ang.
 \boxtimes Peyman Niroomand
 p_niroomand@yahoo.com
 Farangis Johari
 farangisjohary@yahoo.com
 Mohsen Parvizi
 parvizi@math.um.ac.ir
 Francesco G. Russo
 francescog.russo@yahoo.com
 1 School of Mathematics and Computer Science, Damghan University, Damghan, Iran
 2 Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
 3 Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag X1, Rondebosch, Cape Town 7701, South Africa

