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1 Introduction

A large part of the homology theory of Lie algebras is based on the notion of abelian
tensor product. The classical reference ofKnapp [9] devotes several chapters to explain
the deep relations between the theory of extensions of Lie algebras and the theory of
Schur multipliers of Lie algebras. These relations are indeed investigated since a long
time in algebra and topology (see [17]).

The notion of nonabelian tensor product is more recent and is originally due to Ellis
[5] for Lie algebras. One of the main problems, concerning the study of nonabelian
tensor products of Lie algebras, is related to the size of the so-called diagonal ideal (see
the following section for details), because this gives a measure of how far is our Lie
algebra from being abelian. Roughly speaking, given the nonabelian tensor product
L ⊗ N = 〈l ⊗ n | l ∈ L , n ∈ N 〉 of a Lie algebra L by an ideal N (acting in a certain
way on L), we call “diagonal ideal” the set L�N = 〈l ⊗ l | l ∈ N 〉. This is indeed an
abelian ideal of L⊗N , whichmeasure in a certain sense “howmuch” L⊗N is abelian.

Themain results of the present contributiondealwith the size of L�N under suitable
assumptions of finite dimension on N . We begin with a result of decomposition for
L ⊗ N in Theorem 3.6, and a precise condition of splitting is successively shown
in Theorem 3.12. Topological interpretations of Theorems 3.6 and 3.12 are given
in Corollary 3.13, where one can find connections of homotopical nature with the
suspension of an Eilenberg–MacLane space. In order to prove these main results, we
use some homological methods and some computations of linear algebra in a series
of preparatory lemmas. Section 2 introduces the formal definitions and the notions
which will be used in Sect. 3, where the main results are placed.

2 Compatible Actions and Nonabelian Tensor Products

Let F be a fixed field, L , K be two Lie algebras, c ∈ F , l, l ′ ∈ L , k, k′ ∈ K and
[ , ] be the usual Lie bracket. We say that L acts on K if there is an F—bilinear
map (l, k) ∈ L × K �→ l k = [l, k] ∈ K satisfying [l,l ′]k = l( l ′k) − l ′( l k)
and l [k, k′] = [ l k, k′] + [k, l k′]. This notation is standard and follows [4–6]. Of
course, if L is a subalgebra of some Lie algebra P and K is an ideal in P , then the Lie
multiplication in P induces an action of L on K . In fact, l acts on k by l k = [l, k]. Let
L and K be Lie algebras acting on each other, and on themselves by Liemultiplication.
Then these actions are said to be compatible if

kl k′ = k′
( l k) and

l kl ′ = l ′( kl). Now
if L and K are both ideals of some Lie algebra, then the Lie multiplication gives rise
to compatible actions. The nonabelian tensor product L ⊗ K of L and K is the Lie
algebra generated by the symbols l ⊗ k with defining relations

c(l ⊗ k) = cl ⊗ k = l ⊗ ck, (l + l ′) ⊗ k = l ⊗ k + l ′ ⊗ k,

l ⊗ (k + k′) = l ⊗ k + l ⊗ k′, l l ′ ⊗ k = l ⊗ l ′k − l ′ ⊗ l k,

l ⊗ kk′ = k′
l ⊗ k − kl ⊗ k′, [l ⊗ k, l ′ ⊗ k′] = −kl ⊗ l ′k′.

A nonabelian tensor product L ⊗ L is called nonabelian tensor square of L . On the
other hand, if L is abelian, the tensor product we defined above becomes the normal
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tensor product of vector spaces. We will concentrate on L ⊗ N , in which N = K is
an ideal of L .

Following [5, Sect. 2],

L�N = 〈l ⊗ l | l ∈ N 〉

is an ideal of L⊗N (called diagonal ideal of L⊗N ) and lies in the center Z(L⊗N ) of
L ⊗ N . Denoting by l ∧ n the coset l ⊗ n + (L�N ), we may consider the Lie algebra
quotient L ∧ N = L ⊗ N/(L�N ) = 〈l ∧ n | l ∈ L , n ∈ N 〉, called nonabelian
exterior product of L by N .

The Schur multiplier M(L , N ) of the pair (L , N ) is defined to be the abelian Lie
algebra, appearing in the following natural exact sequence of Mayer–Vietoris type

H3(L) −→ H3(L/N ) −→ M(L , N ) −→ M(L) −→ M(L/N ) −→
−→ L

[L , N ] −→ L

[L , L] −→ L

[L , L] + N
−→ 0,

where M(−) and H3(−) are the Schur multiplier and the third homology of a Lie
algebra, respectively (see [1–5,8,13,14]).

We recall from [4,5] that it is possible to get the following commutative diagram:

0 0
⏐
⏐
�

⏐
⏐
�

�
(

N
[N ,L]

)

−−−−→ J2(L , N ) −−−−→ M(L , N ) −−−−→ 0
∥
∥
∥

⏐
⏐
�

⏐
⏐
�

�
(

N
[N ,L]

)
ψ−−−−→ L ⊗ N

εL ,N−−−−→ L ∧ N −−−−→ 0

κL ,N

⏐
⏐
� κ ′

L ,N

⏐
⏐
�

[L , N ] [L , N ]
⏐
⏐
�

⏐
⏐
�

0 0

(2.1)

where

κL ,N : l ⊗ n ∈ L ⊗ N �−→ [l, n] ∈ [L , N ]

is an epimorphism such that J2(L , N ) = ker κL ,N ⊆ Z(L ⊗ N ) and both

εL ,N : l ⊗ n ∈ L ⊗ N �→ (l ⊗ n) + L�N ∈ L ⊗ N/L�N
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and

κ ′
L ,N : l ∧ n ∈ L ∧ N �−→ [l, n] ∈ [L , N ]

are epimorphisms. Moreover, M(L , N ) � ker κ ′
L ,N ⊆ Z(L ∧ N ). Note that

J2(L , L) = J2(L) was described in [5, pp. 109–110]. We also note that the columns
of (2.1) are central extensions, while the rows of (2.1) form two long exact sequences.
In fact, � denotes the quadratic Whitehead functor and ψ is properly defined in [5,
Definition, p.107] (see also [18] for a categorical definition of � and ψ). The proper-
ties of (2.1) are discussed in various contributions and in different perspectives (see
[4–7,10–16]).

3 Splitting of ⊗ via � and ∧
Since the notion of dimension for a Lie algebra is in a certain sense “more geometric
than algebraic,” we cannot expect full analogies with respect to the results in [6,8,10,
16], when we replace this notion with that of order of a group. In fact, we investigated
the role of the homological invariants between Lie algebras and finite groups in [11–
14]. We begin to look for information on the bases of those Lie algebras, which will be
involved in the main results of the present paper. The abelian case plays a fundamental
role and is discussed in the next result.

Proposition 3.1 Let N be an ideal of dimension m with basis {x1, x2, . . . , xm} of an
abelianLie algebra L of dimensionn with basis {y1, y2, . . . , ym, ym+1, ym+2, . . . , yn},
where yi = xi for 1 ≤ i ≤ m. Then

L ⊗ N ∼= (L � N ) ⊕ 〈y j ⊗ xt | 1 ≤ t ≤ m, 1 ≤ t < j ≤ n〉.

Proof The decomposition of L ⊗ N follows directly from the fact that in this case it
is the normal tensor product of vector spaces. In fact, we have

L ∼=
n

⊕

i=m+1

〈yi 〉 ⊕
m

⊕

j=1

〈x j 〉, where N ∼=
m

⊕

j=1

〈x j 〉,

L ⊗ N ∼= 〈xi ⊗ xt + xt ⊗ xi , xi ⊗ xi | 1 ≤ i < t ≤ m〉
⊕ 〈y j ⊗ xt | 1 ≤ t ≤ m, 1 ≤ t < j ≤ n〉,

L � N ∼= 〈xi ⊗ xt + xt ⊗ xi , xi ⊗ xi | 1 ≤ i < t ≤ m〉.

��
A first result of splitting may be formulated in the abelian case.

Corollary 3.2 Let N be an ideal of a finite-dimensional abelian Lie algebra L . Then

L ⊗ N ∼= (L � N ) ⊕ (L ∧ N ).

123



Decomposition of the Nonabelian Tensor Product of Lie…

Proof This follows from Proposition 3.1. ��
We are ready to prove a crucial result of the present section.

Proposition 3.3 Let N be an ideal of a Lie algebra L such that N/[N , L] is of
dimension m with basis {y1 + [N , L], y2 + [N , L], . . . , ym + [N , L]} and L/[N , L]
is of dimension n with basis {y1 + [N , L], y2 + [N , L], . . . , yn + [N , L]}. Then

L

[N , L] ⊗ N

[N , L]
∼=

(
L

[N , L] � N

[N , L]
)

⊕ 〈(y j + [N , L]) ⊗ (yi + [N , L]) | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉.

Proof Essentially, we do two observations. The first is that [L/[N , L], N/[N , L]] =
0. The second is that the actions of L/[N , L] and N/[N , L] on each other are given
by Lie bracket and so are trivial. Then we may conclude

L

[N , L] ⊗ N

[N , L]
∼=

(
L

[N , L]
)ab

⊗ N

[N , L] ,

that is, the nonabelian tensor product L/[N , L]⊗N/[N , L] is isomorphic to the usual
abelian tensor product (L/[N , L])ab ⊗ N/[N , L]. Therefore, we apply Corollary 3.2
(

L

[N , L]
)ab

⊗ N

[N , L]
∼=

(
(

L

[N , L]
)ab

� N

[N , L]

)

⊕
(

(
L

[N , L]
)ab

∧ N

[N , L]

)

,

where the abelian Lie algebra factor (L/[N , L])ab ∧ N/[N , L] admits a basis exactly
of the form {(y j + [L , L]) ⊗ (yi + [N , L]) | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n} (note
that (L/[N , L])ab = (L/[N , L])/([L , L]/[N , L]) ∼= L/[L , L]) and the other abelian
Lie algebra factor is (L/[N , L])ab � N/[N , L] ∼= L/[N , L] � N/[N , L]. Then the
result follows from Proposition 3.1. ��

We may reformulate the proposition above in the following way.

Corollary 3.4 Let N be an ideal of a Lie algebra L such that L/[N , L] is finite-
dimensional. Then

L/[N , L] ⊗ N/[N , L] ∼= (L/[N , L] � N/[N , L]) ⊕ (L/[N , L] ∧ N/[N , L]).

A crucial step, which is fundamental for our aims, deals with the description of the
natural epimorphism

π : l ⊗ n ∈ L ⊗ N �−→ (l + [N , L]) ⊗ (n + [N , L]) ∈ L

[N , L] ⊗ N

[N , L] (3.1)

and its restriction

π| : n ⊗ n ∈ L � N �−→ (n+[N , L]) ⊗ (n+[N , L]) ∈ L

[N , L] � N

[N , L] . (3.2)
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Assuming that N is an ideal in L , there are two homomorphisms

τ1 : l ⊗ [n, l ′] ∈ L ⊗ [N , L] �−→ l ⊗ [n, l ′] ∈ L ⊗ N , (3.3)

τ2 : [n, l ′] ⊗ n′ ∈ [N , L] ⊗ N �−→ [n, l ′] ⊗ n′ ∈ L ⊗ N

which are very useful in the proof of the next lemma. The kernel of (3.1) is studied in
the next result. We inform the reader that we will use the notion of Lie pairing in the
next proof (see [5]).

Lemma 3.5 Let N be an ideal of a Lie algebra L, π as in (3.1), τ1, τ2 as in (3.3) and
M = Im τ1 + Im τ2. Then ker π = M.

Proof Since M is an ideal of L ⊗ N , we may consider the map

π̄ : (l ⊗ n) + M ∈ L ⊗ N

M
�→ (l + [N , L]) ⊗ (n + [N , L]) ∈ L

[N , L] ⊗ N

[N , L] .

On the other hand, it is well defined the map

α : (l + [N , L], n + [N , L]) ∈ L

[N , L] × N

[N , L] �→ (l ⊗ n) + M ∈ L ⊗ N

M
.

Now for all l1, l2 ∈ L and n1, n2 ∈ N

α([l1 + [N , L], l2 + [N , L]] , n1 + [N , L])
= ([l1, l2] ⊗ n1) + M = (l1 ⊗ [l2, n1] − l2 ⊗ [l1, n1]) + M

= α(l1 + [N , L], [l2, n1] + [N , L]) − α(l2 + [N , L], [l1, n1] + [N , L]).

Similarly, it is easy to see that

α(n1+[N ,L]l1 + [N , L] , l1+[N ,L]n2 + [N , L])
= −[α(l1 + [N , L], n1 + [N , L]) , α(l2 + [N , L], n2 + [N , L])]

and

α(l1 + [N , L] , [n1, n2] + [N , L])
= α(n2+[N ,L]l1 + [N , L] , n1 + [N , L]) − α(n1+[N ,L]l1 + [N , L] , n2 + [N , L]).

Thus α is a Lie pairing and induces the homomorphism

ᾱ : L

[N , L] ⊗ N

[N , L] −→ L ⊗ N

M
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such that π̄ ◦ ᾱ = ᾱ ◦ π̄ = 1. Therefore,

L

[N , L] ⊗ N

[N , L] � L ⊗ N

M

and the result follows. ��
The first main result of this paper is the following.

Theorem 3.6 Let N be an ideal of a Lie algebra L such that N/[N , L] is of dimension
m with basis {y1+[N , L], y2+[N , L], . . . , ym+[N , L]} and L/[N , L] is of dimension
n with basis {y1 + [N , L], y2 + [N , L], . . . , yn + [N , L]}. Then

L ⊗ N � (L � N ) + 〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M,

where {yi ⊗ yt + yt ⊗ yi , yi ⊗ yi | 1 ≤ i < t ≤ m} is a basis of L � N, π as in (3.1)
and M = ker π . Moreover, dim(L ⊗ N ) ≤ m(m + 1)/2.

Proof We consider π in (3.1) and apply Proposition 3.3, concluding that

L

[N , L] ⊗ N

[N , L]
∼=

(
L

[N , L] � N

[N , L]
)

⊕ 〈(y j + [N , L]) ⊗ (yi + [N , L]) | 1 ≤ j ≤ m, 1 ≤ j < i ≤ n〉
= π

(

(L�N ) + 〈y j ⊗ yi | 1 ≤ j ≤ m, 1 ≤ j < i ≤ n〉 )

.

Since (3.1) is surjective, we have just shown that

π(L ⊗ N ) � π
(

(L�N ) + 〈y j ⊗ yi | 1 ≤ j ≤ m, 1 ≤ j < i ≤ n〉 )

and knowing M = ker π by Lemma 3.5, this means

L ⊗ N � (L�N ) + (〈y j ⊗ yi | 1 ≤ j ≤ m, 1 ≤ j < i ≤ n〉 + M).

The first part of the result follows. About the rest, assume that X = {xα | α ∈ I }
is a basis of [N , L] (eventually with infinite |I |) and B = {y1, y2, . . . , ym} for some
y1, y2, . . . , ym ∈ L . Then D = X ∪ B generates N and L � N is generated by
{d1 ⊗ d1, (d1 ⊗ d2) + (d2 ⊗ d1) | d1, d2 ∈ D}. On the other hand, we have d ⊗ d = 0
if d ∈ X and (a⊗ b)+ (b⊗ a) = 0 if at least one among a and b lies in X . Therefore,
{d1 ⊗ d1, (d1 ⊗ d2) + (d2 ⊗ d1) | d1, d2 ∈ X} is also a basis of L � N . From this, we
may conclude that {yi ⊗ yt + yt ⊗ yi , yi ⊗ yi | 1 ≤ i < t ≤ m} is a basis of L � N
and that dim(L ⊗ N ) ≤ m(m + 1)/2. ��

Wecan bemore precisewith the description of the kernel of (3.1), whenwe consider
the restriction (3.2). The following result is in this direction.

Lemma 3.7 Let N be an ideal of a Lie algebra L such that N/[N , L] is of dimension
m with basis {y1+[N , L], y2+[N , L], . . . , ym+[N , L]} and L/[N , L] is of dimension
n with basis {y1 +[N , L], y2 +[N , L], . . . , yn +[N , L]}. If π| is as in (3.2) and M as
in Lemma 3.5, then ker π| = (L�N ) ∩ (〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M).
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Proof Since π|((L�N ) ∩ (〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M)) = 0, it is
clear that (L�N ) ∩ (〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M) ⊆ ker π|. Vice
versa, we know from Lemma 3.5 that ker π = M = M ∩ (L�N ); thus, ker π| ⊆
(〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M) ∩ (L�N ). The result follows. ��

Then Theorem 3.6 may be reformulated in an alternative way.

Corollary 3.8 In the same assumptions of Theorem 3.6 and with π| as in (3.2),

(L ⊗ N )/ ker π| � (L/[N , L]�N/[N , L]) ⊕ (L ∧ N ).

Proof First of all, Lemma 3.7 implies ker π| ⊆ L�N and we know that L�N ⊆
Z(L⊗N ), so ker π| is normal in L⊗N andwemay consider the quotient L⊗N/ ker π|.
Now we apply Theorem 3.6 and get

L ⊗ N

ker π|
∼= (L�N ) ⊕ (〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M)

ker π|
∼= L � N

ker π|
⊕ 〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M

ker π|
.

Note that L�N/ ker π| ∼= (L/[N , L]�N/[N , L]) and L ∧ N ∼= (〈y j ⊗ yi | 1 ≤
i ≤ m, 1 ≤ i < j ≤ n〉 + M)/ ker π|. This completes the result. ��

In order to proceed with the proof of our second main theorem, we recall some
elementary facts, which follow from the exactness of (2.1). The following lemma is a
direct consequence of [5, Propositions 16 and 17] when N �= L .

Lemma 3.9 [See [5], Propositions 16 and 17] Let K be an abelian Lie algebra of
dim K = m. Then

dim �(K ) = dim K�K = m(m + 1)/2.

An application of the above lemma can be found in the next result and it involves
again the epimorphism π| in (3.2).

Lemma 3.10 Let N be an ideal of a Lie algebra L such that dim N/[N , L] = m and
dim L/[N , L] is finite. If dim L/[N , L]�N/[N , L] = m(m + 1)/2, then ker π| = 0
and

L/[N , L]�N/[N , L] ∼= L�N ∼= �(N/[N , L]).

Proof We inform the reader that the notation for the elements γ (n + [N , L]) of

�
(

N
[N ,L]

)

follows the original notation of Whitehead in [18] (see also [4,5]). By

Lemma 3.9, dim �(N/[N , L]) = m(m + 1)/2. Thus the composition

123



Decomposition of the Nonabelian Tensor Product of Lie…

π| ◦ ψ : γ (n + [N , L]) ∈ �

(
N

[N , L]
)

�−→ (n + [N , L])�(n + [N , L]) ∈ L

[N , L]�
N

[N , L]
maps a basis of�(N/[N , L]) injectively into a part of a basis of L/[L , N ]�N/[L , N ].
Then π| ◦ ψ is an isomorphism. Therefore, ψ is injective. We conclude dim L�N =
dim L/[L , N ]�N/[L , N ] = dim �(N/[N , L]) = m(m + 1)/2. Hence ker π| = 0
and the result follows. ��

In general, the columns of (2.1) are short exact sequences, but not the rows. How-
ever, even the rows of (2.1) become short exact sequences.

Corollary 3.11 Let N be an ideal of a Lie algebra L such that dim N/[N , L] = m
and dim L/[N , L] is finite. If dim L/[N , L]�N/[N , L] = m(m + 1)/2, then the
following

0 −−−−→ �
(

N
[N ,L]

)

−−−−→ J2(L , N ) −−−−→ M(L , N ) −−−−→ 0
∥
∥
∥

⏐
⏐
�

⏐
⏐
�

0 −−−−→ �
(

N
[N ,L]

)

−−−−→ L ⊗ N −−−−→ L ∧ N −−−−→ 0

is a commutative diagram with short exact sequences as rows.

Proof Application of Lemma 3.10 to (2.1). ��
Of course, if L is a Lie algebra of finite dimension, then its factors L/[N , L]

and N/[N , L] are of finite dimension (and consequently L/[N , L]�N/[N , L]). Then
Corollary 3.11 is true, even if thewhole L is of finite dimension. The secondmain result
of this section may be formulated again with the weak restriction of finite dimension
on the factor L/[N , L] (and not on the whole L).

Theorem 3.12 Let N be an ideal of a Lie algebra L such that dim N/[N , L] = m
and dim L/[N , L] is finite. If dim L/[N , L]�N/[N , L] = m(m + 1)/2, then

L ⊗ N ∼= (L � N ) ⊕ (L ∧ N ).

Proof From Lemma 3.10, ker π| = 0 and so we may apply Corollary 3.8, getting
L ⊗ N ∼= (L/[N , L]�N/[N , L]) ⊕ (L ∧ N ). Now one has to note that L�N ∼=
L/[N , L]�N/[N , L] again by Lemma 3.10 and the result follows. ��

The role of the Lie algebra J2(L , N ) has been investigated in [5] when N = L
and it is related to the homotopy theory in the sense of [5, Theorems 27, 28]. There
is not a version of [5, Theorems 27, 28], when N �= L , even if some ideas can be
found in [7, Theorems 1, 2, 4, 5] for the case of groups. This emphasizes the following
consequence of Theorem 3.12.
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Corollary 3.13 Let N be an ideal of a Lie algebra L such that dim N/[N , L] = m
and dim L/[N , L] is finite. If dim L/[N , L]�N/[N , L] = m(m + 1)/2, then

J2(L , N ) ∼= (L � N ) ⊕ M(L , N ).

Proof By Theorem 3.12,

J2(L , N ) = (

(L �N ) ⊕ (〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M)
) ∩ J2(L , N )

= (L � N ) ⊕ (

(〈y j ⊗ yi | 1 ≤ i ≤ m, 1 ≤ i < j ≤ n〉 + M
) ∩ J2(L , N )

)

.

The rest follows by diagram (2.1), specifically by J2(L , N )/(L � N ) ∼= M(L , N ). ��
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