The 7<sup>th</sup> Algebraic Combinatorics Conference of Iran October 16-17, 2014, Ferdowsi University of Mashhad, Iran

## ON THE RELATIVE NON-COMMUTING GRAPH

## MEHDI HASSANKHANI<sup>1\*</sup>, ABBAS JAFARZADEH<sup>1</sup> AND ABBAS MOHAMMADIAN<sup>1</sup>

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran.

ABSTRACT. Let G be a non-abelian group and H a subgroup of G. We associate a graph  $\Gamma_{(H,G)}$  to H and G as follows: Take  $G \setminus C_G(H)$  as the vertices of  $\Gamma_{(H,G)}$  and join two distinct vertices x and y, whenever x or y in H and  $[x,y] \neq 1$ . In this talk we prove that  $\Gamma_{(H,G)}$  neither planar nor regular. Moreover, we show that if  $\Gamma_{(H_3,G_3)} \cong \Gamma_{(H_2,G_2)}$ , then  $\Gamma_{H_3} \cong \Gamma_{H_2}$ .

## 1. INTRODUCTION

In [3], the authors introduce a simple graph,  $\Gamma_{(H,G)}$  to H and G whose vertex set is  $G \setminus C_G(H)$  and two distinct vertices x and y, whenever x or y in H are adjacent if and only if  $[x,y] \neq 1$ .

In this article, we intend to improve the results obtained in paper [3]. Moreover, we show that if  $\Gamma_{(H_1,G_1)}\cong\Gamma_{(H_2,G_2)}$ , then  $\Gamma_{H_1}\cong\Gamma_{H_2}$ . Also, we prove that there is no finite group K such that  $\Gamma_{(H,G)}\cong\Gamma_K$ . Now we recall some definitions and notations on graphs. We use the standard terminology of graphs following [2]. For any graph  $\Gamma$ , we denote the sets of the vertices and the edges of  $\Gamma$  by  $V(\Gamma)$  and  $E(\Gamma)$ , respectively. The degree deg(v) of a vertex v in  $\Gamma$  is the number of edges incident to v.  $\Gamma$  is regular if the degrees of all vertices of  $\Gamma$  are the same. A subset X of the vertices of  $\Gamma$  is called a clique if the induced subgraph on X is a complete graph. The maximum size of a clique in a graph  $\Gamma$  is

<sup>2010</sup> Mathematics Subject Classification. Primary 05C25; Secondary 20P05.
Key words and phrases, relative non-communing graph, planar, regular,
\* Speaker.

called the clique number of  $\Gamma$  and denoted by  $\omega(\Gamma)$ . A subset X of the vertices of  $\Gamma$  is called an independent set if the induced subgraph on X has no edges. The maximum size of an independent set in a graph  $\Gamma$  is called the independence number of  $\Gamma$  and denoted by  $\alpha(G)$ . The length of the shortest cycle in a graph  $\Gamma$  is called girth of  $\Gamma$  and denoted by  $gr(\Gamma)$ . A Hamilton cycle of  $\Gamma$  is a cycle that contains every vertex of  $\Gamma$ . A planar graph is a graph that can be embedded in the plane so that no two edges intersect geometrically except at a vertex which both are incident.

In this article, G is a finite non-abelian group and H is a non-abelian subgroup of G, we denote the symmetric group and the alternating group on n letters by  $S_n$  and  $A_n$ , respectively. Also  $Q_8$  and  $D_{2n}$  are used for the quaternion group with 8 elements and the dihedral group of order 2n (n > 2), respectively.

In Section 2, we study some graph properties of the relative non-commuting graph  $\Gamma_{(H,G)}$  of a non-abelian subgroup H of G. We prove that  $\Gamma_{(H,G)}$  is a connected graph and moreover,  $diam(\Gamma_{(H,G)}) = 2$  and  $gr(\Gamma_{(H,G)}) = 3$ . Also, for any group G,  $\Gamma_{H,G}$  neither planar nor regular. In section 3, we give a positive answer to the following question:

Question 1.1. Let  $G_1$  and  $G_2$  be two finite non-abelian groups and  $H_1$  and  $H_2$  are non-abelian subgroup of  $G_1$  and  $G_2$ , respectively. Is  $\Gamma_{(H_1,G_1)} \cong \Gamma_{(H_2,G_2)}$  implies that  $\Gamma_{H_1} \cong \Gamma_{H_2}$ ?

2. Some properties of relative non-commuting graphs

Proposition 2.1.  $diam(\Gamma_{(H,G)}) = 2$  and  $gr(\Gamma_{(H,G)}) = 3$ .

Proposition 2.2. The graph  $\Gamma_{(H,G)}$  is not regular.

Proposition 2.3. The graph  $\Gamma_{(H,G)}$  is not planar.

Proposition 2.4. In the graph  $\Gamma_{(H,G)}$ ,

 (i) V<sub>(G\H)</sub> is only maximal independent set. In particular, α(Γ<sub>(H,G)</sub>) = V<sub>(G\H)</sub> = G \ (H ∪ C<sub>G</sub>(H)).

(ii)  $\omega(\Gamma_{(H,G)}) = \omega(\Gamma_H) + 1$ .

Theorem 2.5. Let  $\Gamma_{(H,G)}$  be a Hamiltonian graph. Then the following hold:

(i) [G: H] = 2 and Z(H) ≤ C<sub>G</sub>(H) = Z(G).
 (ii) G = HZ(G) and [Z(G): Z(H)] = 2.

(iii) If  $V_H = \{h_1, h_2, \dots, h_n\}$ , then  $V_{G \setminus H} = \{h_1z, h_2z, \dots, h_nz\}$  for some  $z \in Z(G) \setminus H$ . Moreover,  $\deg(h_i) = 2\deg(h_iz)$ , for every  $1 \le i \le n$ .

(iv)  $|V_{G\backslash H}| = |V_H| = \frac{1}{2}(|G| - |Z(G)|).$ 

Remark 2.6. Note that the converse of Theorem 2.5 is true only if  $|V_B|$  is odd. Indeed, let  $|V_H|=2k+1$  and  $\{h_1,h_2,\ldots,h_{2k+1}\}$  is a Hamiltonian cycle in the graph  $\Gamma_H$ . Then by Theorem 2.5,  $V_{G\backslash H}=\{h_1z,h_2z,\ldots,h_{2k+1}z\}$ , for some  $z\in Z(G)$ . Therefore

 $\{h_1, h_2z, h_3 \dots, h_{2k}z, h_{2k+1}, h_1z, h_2, h_3z \dots, h_{2k}, h_{2k+1}z\}$ 

is a Hamiltonian cycle in the graph  $\Gamma_{(H,G)}$ :

3. Groups with the same relative non-commuting graphs

In this section we consider the non-abelian groups with isomorphic relative non-commuting graphs.

Theorem 3.1. If  $\Gamma_{(H,G)} \cong \Gamma_{(H',G')}$ , then  $\Gamma_{H_1} \cong \Gamma_{H_2}$ .

In the following theorem we show that if H is a subgroup of finite group G, then there is no finite group K such that  $\Gamma_{(H,G)} \cong \Gamma_K$ .

Theorem 3.2. There is no finite group K such that  $\Gamma_{(H,G)} \cong \Gamma_K$ .

In Theorem 3.1, if we put  $G' = S_n$  and  $H' = A_n$ , then we can prove that the following theorem:

Theorem 3.3. Let  $\Gamma_{(A_n,S_n)} \cong \Gamma_{(H,G)}$ , where G is a non-abelian group and H is a proper non-abelian subgroup of G. Then  $|G| = |S_n|$  and  $H \cong A_n$ .

## REFERENCES

- A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006), 468-492.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with applications, American Elsevier, New York, 1976.
- [3] B. Toloue, A. Erfanian, Relative non-commuting graphs, J. Algebra Appl. 2 (2013),1-11