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1 Introduction
The commutator of two elements x and y of a group G is de�ned usually as [x, y] := x−1y−1xy. The in�uence of
commutators in the theory of groups is inevitable and the analogy of computations encouraged some authors
to de�ne and study modi�cations of the ordinary commutators to include automorphisms or more generally
endormorphisms of the underlying groups. The �rst of those is due to Ree [1] who generalizes the conjugation
of x by y with respect to an endomorphism θ of G as y−1xθ(y) and uses it to make relationships between
the corresponding conjugacy classes with special ordinary conjugacy classes and irreducible characters of
the group. Later, Acher [2] invokes a very similar generalization of conjugation as to that of Ree and studies
the corresponding generalized conjugacy classes, centralizers and the center of groups in a more abstract
way. Writing the commutators as [x, y] = x−1Iy(x), Iy being the inner automorphism associate to y, one may
generalize them in a natural way to [x, θ] = x−1θ(x), in which θ is an endomorphism of the underlying
group. The element [x, θ], called the autocommutator of the element x and automorphism θ when θ is an
automorphism, seems to appear �rst in Gorenstein’s book [3, p. 33] while it �rst appears in practice in the
pioneering papers [4, 5] of Hegarty.

According to Ree’s de�nition of conjugation, the commutator of two elements x and y of a group G with
respect to an endomorphism θ will be [x, y]θ := x−1y−1xθ(y). One observes that [x, y]θ = 1 if and only if
θ(y) = yx. Hence [x, y]θ = 1 does not guarantee in general that [y, x]θ = 1. The aim of this paper is to
introduce a new generalization of commutators, as a minor modi�cation to that of Ree, in order to obtain
a new commutator behaving more like the ordinary commutators. Indeed, we de�ne the conjugation of x
by y via θ as θ(y)−1θ(x)y, which is simply the image of y−1xθ−1(y), the conjugate of x by y via θ−1 in the
sense of Ree’s, under θ. Hence the corresponding commutators, we call them the θ-commutators, will be
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[x,θ y] := x−1θ(y)−1θ(x)y and we observe that [x,θ y] = 1 if and only if [y,θ x] = 1. This property of θ-
commutators, as we will see later, remains unchanged modulo a shift of elements by left multiplication
corresponding to automorphismswhich are congruentmodulo the group of inner automorphisms. Therefore,
all inner automorphisms give rise to same θ-commutators modulo a shift of elements by left multiplication.

The paper is organized as follows: Section 2 initiates the study of θ-commutators by generalizing the
ordinary commutator identities aswell as centralizers and the center of a group, and determines the structure
of θ-centralizers and θ-center of the groups under investigation. In section 3, we shall de�ne the θ-non-
commuting graph associated to θ-commutators of a group and describe some of its basic properties and its
correlations with other notions, namely �xed-point-free and class preserving automorphisms. Sections 4 and
5 are devoted to the study of independent subsets of θ-non-commuting graphs where we give an explicit
structural theorem for them and apply them to see under which conditions the θ-non-commuting graphs are
union of particular independent sets.

Throughout this paper, we use the following notations: given a graph Γ, the set of its vertices and edges
are denoted by V(Γ) and E(Γ), respectively. For every vertex v ∈ V(Γ), the neighbor of v in Γ is denoted by
NΓ(v) and the degree of v is given by degΓ(v). For convenience, we usually drop the index Γ and write N(v)
and deg(v) for the neighbor and degree of the vertex v, respectively. A subset of V(Γ) with no edges among its
vertices is an independent set. Themaximum size of an independent set in Γ is denoted by α(Γ) and called the
independence number of Γ. Also, the minimum number of independent sets required to cover all vertices of Γ
is the chromatic number of Γ and it is denoted by χ(Γ). All other notations regarding groups, their subgraphs
and automorphisms are standard and follow that of [6].

2 Some basic results
Recall that θ-commutator of two elements x and y of a group G with respect to an automorphism θ of G is
de�ned as [x,θ y] := x−1θ(y)−1θ(x)y. Also, the autocommutator of x and θ is known to be [θ, x]−1 = [x, θ] :=
x−1θ(x). We begin with the following lemma, which gives a θ-commutator analogue of some well-known
commutator identities.

Lemma 2.1. Let G be a group, x, y, z be elements of G and θ be an automorphism of G .Then
(1) [x,θ y]−1 = [y,θ x];
(2) θ(x)θ(y) = x[x,θ y][y, θ];
(3) [x,θ yz] = [x,θ z][θ, x]z[x,θ y]z;
(4) [xy,θ z] = [x,θ z]y[z, θ]y[y,θ z]; and
(5) [x,θ y−1] = [x, θ][yx,θ x](yx)

−1
.

The θ-centralizer of elements as well as the θ-center of a group can be de�ned analogously as follows:

De�nition 2.2. Let G be a group and θ be an automorphism of G. The θ-centralizer of an element x ∈ G,
denoted by CθG(x), is de�ned as

CθG(x) = {y ∈ G | [x,θ y] = 1}.

Utilizing θ-centralizers, the θ-center of G is de�ned simply as

Zθ(G) =
⋂
x∈G

CθG(x) = {y ∈ G | [x,θ y] = 1, x ∈ G}.

In contrast to natural centralizers and the center of a group, θ-centralizers and the θ-center of a group G need
not be subgroups of G. For example, if G = 〈x〉 ∼= C3 and θ is the nontrivial automorphism of G, then Zθ(G) = ∅
and CθG(x) = {x}. In what follows, we discuss the situations that θ-centralizers and the θ-center of a group
turn into subgroups.



1532 | S. Shalchi et al.

Theorem 2.3. Let G be a group and θ be an automorphism of G. Then
(1) CθG(1) = Fix(θ);
(2) x−1CθG(x) is a subgroup of G for all x ∈ G;
(3) CθG(x) is a subgroup of G if and only if x2 ∈ Fix(θ); and
(4) |CθG(x)| divides |G|.

Proof. (1) It is obvious.
(2) Let y, z ∈ CθG(x). Then θ(x−1y) = (x−1y)x

−1
and θ(x−1z) = (x−1z)x

−1
so that θ(x−1yx−1z) = (x−1yx−1z)x

−1
.

Hence yx−1z ∈ CθG(x), that is, (x−1y)(x−1z) ∈ x−1CθG(x). On the other hand, xy−1x ∈ CθG(x), from which it
follows that (x−1y)−1 = x−1xy−1x ∈ x−1CθG(x). Therefore, x−1CθG(x) is a subgroup of G.

(3) From (2) it follows that CθG(x) is a subgroup of G if and only if x−1 ∈ CθG(x) and this holds if and only if
x2 ∈ Fix(θ).

(4) It follows from (2).

Lemma 2.4. Let G be a group and θ be an automorphism of G .Then
(1) Zθ(G) ̸= ∅ if and only if θ ∈ Inn(G); and
(2) Zθ(G) = Z(G)g−1 whenever θ = Ig ∈ Inn(G).
As a result, Zθ(G) is a subgroup of G if and only if θ is the identity automorphism.

Proof. (1) If x ∈ Zθ(G), then [x,θ x−1y] = 1 for all y ∈ G, from which it follows that θ(y) = xyx−1 for all y ∈ G.
Hence θ = Ix−1 ∈ Inn(G). Conversely, if θ = Ix−1 for some x ∈ G, then θ(y) = xyx−1 so that [x,θ y] = 1 for all
y ∈ G. Thus x ∈ Zθ(G).

(2) Assume x ∈ Zθ(G). We are going to show that x ∈ Z(G)g−1 or equivalently gx ∈ Z(G). We �rst observe
that θ(x) = x and hence xg = gx. Now, for y ∈ G we have

[x,θ y] = 1⇔ x−1θ(y)−1θ(x)y = 1⇔ x−1(g−1yg)−1xy = 1⇔ gxy = ygx.

Hence gx ∈ Z(G) and consequently Zθ(G) ⊆ Z(G)g−1. Conversely, if x ∈ Z(G)g−1, then gx ∈ Z(G) and the
above argument shows that [x,θ y] = 1 for all y ∈ G. Therefore, Z(G)g−1 ⊆ Zθ(G) and the result follows.

The above lemma states that Zθ(G) = ∅ if and only if θ is a non-inner automorphism of G. This fact will be
used frequently in the sequel.

3 The θ-non-commuting graphs
Having de�ned the θ-commutators, we can now de�ne and study the θ-non-commuting graph analog of the
non-commuting graphs. In this section, some primary properties if such graphs and their relationship to
other notions will be established.

De�nition 3.1. Let G be a group and θ be an automorphism of G. The θ-non-commuting graph of G, denoted
by ΓθG, is a simple undirected graph whose vertices are elements of G \ Zθ(G) and two distinct vertices x and y
are adjacent if [x,θ y] ̸= 1.

Clearly, the θ-non-commuting graph of a group coincides with the ordinary non-commuting graphwhenever
θ is the identity automorphism. Indeed, the map Θ : V(ΓθG) −→ V(Γ IgθG ) de�ned by Θ(x) = g−1x, for all x ∈
V(ΓθG), presents an isomorphism between ΓθG and Γ IgθG . Hence, every two automorphisms in the same cosets
of Inn(G) in Aut(G) give rise to the same graphs.

The following two results will be used in order to prove Theorem 3.4.

Lemma 3.2. Let X be a subset of G with |X| ≤ |G|/2. If there exists a vertex x in ΓθG such that [x,θ y] = 1 for all
y ∈ G \ X, then |X| = |G|/2.
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Proof. Assume that [x,θ y] = 1 for all y ∈ G \ X. We claim that 〈x−1(G \ X)〉 is a proper subgroup of G. Suppose
on the contrary that 〈x−1(G \ X)〉 = G. One can easily see that θ(x−1y) = (x−1y)x

−1
for all y ∈ G \ X. Hence

θ = Ix−1 , which implies that Zθ(G) = Z(G)x by Lemma 2.4. But then x ∈ Zθ(G), which is a contradiction. Thus,
|G \ X| ≤ |〈x−1(G \ X)〉| ≤ |G|/2 and consequently |X| = |G|/2, as required.

Corollary 3.3. For every x ∈ G we have deg(x) ≥ |G|/2.

Theorem 3.4. We have diam(ΓθG) ≤ 2.

Proof. If diam(ΓθG) > 2, then there exist two vertices x and y such that d(x, y) > 2. Thus N(x) ∩ N(y) = ∅ so
that |N(x)| = |N(y)| = |G|/2 by Corollary 3.3. Consequently, G = N(x) ∪̇N(y), which implies that y ∈ N(x), that
is, x and y are adjacent, a contradiction.

Theorem 3.5. We have girth(ΓθG) ≤ 4 and equality holds if and only if G is an abelian group, [G, Fix(θ)] = 2 and
[G, θ]2 = 1 .

Proof. Suppose girth(ΓθG) > 3. We show that girth(ΓθG) = 4. Since girth(ΓθG) > 3 N(x1) ∩ N(x2) = ∅ for every
edge {x1, x2} ∈ E(ΓθG). Moreover, |N(x1)|, |N(x2)| ≥ |G|/2 by Corollary 3.3, fromwhich it follows that |N(x1)| =
|N(x2)| = |G|/2, hence G = N(x1) ∪̇ N(x2). Since for y ∈ N(xi) (i = 1, 2) we have G = N(xi) ∪̇ N(y) as well,
it follows that N(y) = N(x3−i). Therefore, ΓθG is a complete bipartite graph with the bipartition (N(x1), N(x2)),
which yields girth(ΓθG) = 4. To prove the second part, assume girth(ΓθG) = 4. Then G = N(x)∪̇N(y) is an equally
partition for each {x, y} ∈ E(ΓθG). Suppose 1 ∈ N(x). Then

g ∈ N(x)⇔ [g,θ 1] = 1⇔ θ(g) = g ⇔ g ∈ Fix(θ),

that is, N(x) = Fix(θ) is a subgroup of G. Furthermore, N(x) is abelian as [a,θ b] = 1 or equivalently ab =
ba for all distinct elements a, b ∈ N(x). Now let g ∈ G \ N(x). Clearly, N(y) = N(x)g. Since g, ag ∈ N(y)
for all a ∈ N(x), it follows that [g,θ ag] = 1 or equivalently aθ(g) = θ(g)a. Therefore, G = 〈N(x), θ(g)〉 is
abelian. As g2 ∈ N(x) we have θ(g2) = g2 so that [g, θ]2 = 1. Hence [G, θ]2 = 1, as required. The converse is
straightforward.

In what follows, we obtain some criterion for an automorphism to be �xed-point-free (or regular) or class-
preserving. Remind that an automorphism θ of G is �xed-point-free if the only �xed point of θ is the trivial
element, that is, Fix(θ) = 〈1〉 is the trivial subgroup of G.

Theorem 3.6. The graph ΓθG is complete if and only if θ is a �xed-point-free automorphism of G.

Proof. Assume ΓθG is a complete graph. Then θ is non-inner and [x,θ y] ̸= 1 for all vertices x and y in ΓθG. If
θ is not �xed-point-free, then there exists an element x ∈ G such that θ(x) = x. But then [x,θ 1] = 1, which
is impossible. Thus θ is �xed-point-free. Conversely, suppose that θ is a �xed-point-free automorphism. By
[6, 10.5.1(iii)], θ(g) /∈ gG for all g ∈ G \ {1}. Hence θ(x−1y) ̸= (x−1y)x

−1
for all distinct vertices x and y, which

implies that [x,θ y] ̸= 1, that is, x and y are adjacent. The proof is complete.

An automorphism θ of G is called class preserving if θ(gG) = gG for every conjugacy class gG of G.

Theorem 3.7. Let k(G) denote the number of conjugacy classes of G. Then

|E(ΓθG)| ≥
1
2 |G|(|G| − k(G))

and the equality holds if and only if θ is a class preserving automorphism of G.

Proof. If θ is an inner automorphism, then |E(ΓθG)| = 1
2 |G|(|G| − k(G)) and we are done. Hence, assume that θ

is a non-inner automorphism. By Lemma 2.4, we observe that V(ΓθG) = G. Then∣∣∣E ((ΓθG)c)∣∣∣ = 1
2
∑
x∈G
|CθG(x)| −

1
2 |G|
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= 1
2
∑
x∈G
|{y ∈ G | θ(x−1y) = (x−1y)x

−1
}| − 1

2 |G|

= 1
2
∑
x∈G
|{y ∈ G | θ(y) = yx

−1
}| − 1

2 |G|

= 1
2
∑
y∈G
|{x ∈ G | θ(y) = yx

−1
}| − 1

2 |G|

≤ 12
∑
y∈G
|CG(y)| −

1
2 |G|

= 1
2 |G|k(G) −

1
2 |G|,

from which, in conjunction with the fact that
∣∣∣E ((ΓθG)c)∣∣∣ = 1

2 |G|(|G| − 1) − |E(Γ
θ
G)|, the result follows.

4 Independent sets
In the section, we give a description of independent subsets of the graph ΓθG, which enables us to compute the
independence number of ΓθG. We begin with the easier case of abelian groups. Indeed, utilizing the following
lemma, we can determine the structure of ΓθG precisely when G is an abelian group.

Lemma 4.1. Let G be a group and θ be an automorphism of G. Then
(1) If x, y are in the same coset of Fix(θ), then x ∼ y if and only if xy ̸= yx.
(2) If x, y are in di�erent cosets of Fix(θ), then x ∼ y if xy = yx.

Proof. (1) By assumption y−1x ∈ Fix(θ). Thus

xy ̸= yx ⇔ y−1x ̸= xy−1 ⇔ θ(y−1x) ̸= xy−1 ⇔ [x,θ y] ̸= 1⇔ x ∼ y.

(2) We have y−1x /∈ Fix(θ) and consequently

xy = yx ⇒ y−1x = xy−1 ⇒ θ(y−1x) ̸= xy−1 ⇒ [x,θ y] ̸= 1⇒ x ∼ y,

as required.

Corollary 4.2. A coset of Fix(θ) is an independent set if and only if it is an abelian set.

Corollary 4.3. For every abelian group G, we have ΓθG ∼= K|F|,...,|F| is a complete m-partite graph in which
F = Fix(θ) and m = [G : Fix(θ)].

As we have seen in Lemma 4.1, there is a close relationship between independence and commutativity of
vertices in the graph ΓθG. The following key lemma illustrates this relationship in a much suitable form.

Lemma 4.4. Let I be an independent subset of ΓθG. Then
(1) I−1I is an abelian set; and
(2) if I is non-abelian, then I is a product-free set.

Proof. (1) Let x, y, z, w ∈ I. Then

θ(z−1w) = θ(x−1z)−1θ(x−1w) = (x−1z)−x
−1
(x−1w)x

−1
= (z−1w)x

−1
.

Similarly, we have θ(z−1w) = (z−1w)y
−1
, from which the result follows.

(2) Suppose on the contrary that I is not product-free so that ab ∈ I for some a, b ∈ I. For x ∈ I we have

(x−1ab)x
−1
= θ(x−1ab) = θ(x−1a)θ(x)θ(x−1b) = (x−1a)x

−1
θ(x)(x−1b)x

−1
,
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from which we get θ(x) = x. Hence [x, y] = [x,θ y] = 1 for all x, y ∈ I. Therefore I is abelian, which is a
contradiction.

Now we can state our structural description of arbitrary independent sets in the graph ΓθG.

Theorem 4.5. Let G be a group and I be a subset of G. Then I is an independent (resp. amaximal independent)
subset of ΓθG if and only if I ⊆ gA (resp. I = gA) for every g ∈ I, inwhich A is an abelian (resp. amaximal abelain)
subgroup of Fix(Igθ).

Proof. First observe that if I is an independent subset of ΓθG, then A = 〈I−1I〉 is an abelian subgroup of Fix(Igθ)
and I ⊆ gA for every g ∈ I by Lemma 4.4(1). Also, I = gA and A is a maximal abelian subgroup of Fix(Igθ)
whenever I is a maximal independent subset of ΓθG. Clearly, every subset of gA is an independent set in ΓθG.
To complete the proof, we must show that any two independent sets xA ⊆ yB in which A and B are maximal
abelian subgroups of Fix(Ixθ) and Fix(Iyθ), respectively, coincide. First observe that A ⊆ x−1yB so that x−1y =
b0 ∈ B. Hence A ⊆ B. Now, for every b ∈ B, we have θ(b) = by

−1
= bb

−1
0 x

−1
= bx

−1
, which implies that

B ⊆ Fix(Ixθ). The maximality of A yields A = B and consequently xA = yB, as required.

Corollary 4.6. We have
α(ΓθG) = max{|A| | A ≤ Fix(Igθ) is abelian, g ∈ G}.

Corollary 4.7. The graph ΓθG is empty if and only if G is abelian and θ is the identity automorphism, in which
case ΓθG is the null graph.

Corollary 4.8. Let G be a �nite group and θ be an automorphism of G. If either G is non-abelian or θ is non-
identity, then α(ΓθG) ≤ |G|/2 and the equality holds if and only if Fix(Igθ) is an abelian subgroup of G of index 2
for some element g ∈ G.

Proof. If α(ΓθG) > |G|/2, then Corollary 4.6 gives an element g ∈ G such that G = Fix(Igθ) is abelian. But then
θ = Ig−1 = I, which is a contradiction. Hence α(ΓθG) ≤ |G|/2. Now if the equality holds, by using Corollary 4.6
once more, we observe that Fix(Igθ) is an abelian subgroup of G of index 2 for some g ∈ G. The converse is
straightforward.

5 Chromatic number
The results of section 4 on the independence number can be applied to study the chromatic number of θ-
non-commuting graphs. Since every maximal independent set in ΓθG is a left coset to an abelian group, the
evaluation of the chromatic number of ΓθG relies on the theory of covering groups by left cosets of their proper
subgroups. In this regard, the following result of Tomkinson plays an important role.

Theorem 5.1 (Tomkinson [7]). Let G be covered by some cosets giHi for i = 1, . . . , n. If the cover is irredundant,
then [G :

⋂n
i=1 Hi] ≤ n!.

Tomkinson’s theorem has the following immediate result connecting the chromatic number of ΓθG to the
number of �xed points of θ.

Corollary 5.2. For any group G, we have

[G : Fix(θ)] ≤ χ(ΓθG)!

and the equality holds only if Fix(θ) ⊆ Z(G).
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Proof. Let G = I1 ∪ · · ·∪ Iχ be the union of independent sets I1, . . . , Iχ in which Ii ⊆ giAi and Ai is an abelian
subgroup of Fix(Igiθ), for i = 1, . . . , χ = χ(ΓθG). If 1 ∈ Ik, then gk ∈ Ak, which implies that Ak ⊆ Fix(θ). Thus

[G : Fix(θ)] ≤ [G : Ak] ≤ [G :
n⋂
i=1

Ai] ≤ χ!.

Now assume the equality holds. Then Fix(θ) = Ak ⊆ Ai, for all i = 1, . . . , χ. Since Ai are abelian, Fix(θ)
commutes with all elements of A1, . . . , Aχ. On the other hand, as Ak ⊆ Ai, we have a = θ(a) = ag

−1
i , for all

a ∈ Ak and i = 1, . . . , χ, which implies that Fix(θ) commuteswith g1, . . . , gχ aswell. Therefore Fix(θ) ⊆ Z(G),
as required.

In the sequel, we shall characterize those graphs having small chromatic numbers.

Theorem 5.3. Let G be a �nite group. Then χ(ΓθG) = 2 if and only if G is abelian and [G : Fix(θ)] = 2.

Proof. Clearly, α(ΓθG) ≥ |G|/2. On the other hand, by Corollary 4.6, α(ΓθG) ≤ |G|/2, from which it follows that
α(ΓθG) = |G|/2. Hence G = I1 ∪ I2, where (I1, I2) is a bipartition of ΓθG satisfying |I1| = |I2| = |G|/2. Assume
1 ∈ I1. Then, by Theorem 4.5, I1 = g1A1 for some g1 ∈ G in which A1 = Fix(Ig1θ) is an abelian subgroup of
G. Since g1 ∈ A1, it follows that A1 = Fix(θ). Clearly, A2 = A1 and g2 ∈ G \ A1. Now θ(a) = ag

−1
1 = ag

−1
2 , for

all a ∈ A1, from which it follows that g2 commutes with A1. Thus G is abelian. The converse is obvious by
Corollary 4.3.

Theorem 5.4. Let G be a �nite group. Then χ(ΓθG) = 3 if and only if either G is abelian and [G : Fix(θ)] = 3 or
G is non-abelian and one of the following holds:
(1) G/Z(G) ∼= C2 × C2 and θ is an inner automorphism;
(2) [G : Fix(θ)] = [Fix(θ) : Z(G)] = 2; or
(3) G has a characteristic subgroup A such that [G : A] = [A : Fix(θ)] = 2, Fix(θ) = Z(G) and there exist

elements x ∈ A \ Z(G) and y ∈ G \ A such that θ(x) = xy.

Proof. If G is abelian, then we are done by Corollary 4.3. Hence, we assume that G is non-abelian. Let G =
I1∪I2∪I3 be a tripartition ofG inwhich |I1| ≥ |I2| ≥ |I3| and Ii ⊆ giAi (i = 1, 2, 3) for some elements gi ∈ G and
abelian subgroups Ai of Fix(Igiθ). Without loss of generality, we may assume that I1 = g1A1. From Theorem
5.1, we know that [G : A1 ∩ A2 ∩ A3] ≤ 3! = 6. We distinguish two cases:

Case 1. G = 〈A1, A2, A3〉. Then A1 ∩ A2 ∩ A3 ⊆ Z(G) and we must have G/Z(G) ∼= C2 × C2 or S3. Hence
A1 ∩ A2 ∩ A3 = Z(G). One can verify that 2 = [G : A1] ≥ [G : A2] ≥ 3 and A1 ̸= A2. Since G ̸= A1 ∪ A2 and every
element of G/Z(G) has order 1, 2 or 3, one can always �nd an element g ∈ G \ A1 ∪ A2 such that gAi = giAi,
for i = 1, 2. Thus, for a ∈ Ai we have θ(a) = ag

−1
i = ag

−1
which implies that θ acts by conjugation via g−1

on 〈A1, A2〉 = G. Hence θ = Ig−1 is an inner automorphism. If G/Z(G) ∼= S3, then ΓθG ∼= ΓG has a subgraph
isomorphic to ΓS3 ∼= K5 \ K2 with chromatic number 4, a contradiction. Therefore G/Z(G) ∼= C2 × C2, which
gives us part (1).

Case 2. G ̸= 〈A1, A2, A3〉. Clearly, A2, A3 ⊆ A1. Then A2, A3 ⊂ A1 otherwise A1 = A2 and hence θ(a) =
ag1 = ag2 for all a ∈ A1. Since g1A1 ̸= g2A2, it follows that g1g−12 ∈ G \ A1 commutes with A1 so that
G = A1〈g1g−12 〉 is abelian, a contradiction. Hence A2, A3 ⊂ A1, from which together with Tomkinson’s result
we must have [G : A1] = 2, [A1 : A2] = 2 and A2 = A3. Clearly, g2A2 ∪ g3A3 = g′1A1 where G = g1A1 ∪ g′1A1. If
g1 ∈ A1, then A1 = Fix(θ). As A2 ⊆ A1 we have a = θ(a) = ag

−1
2 for all a ∈ A2, which implies that A2 = Z(G).

Hence we obtain part (2). Next assume that g1 /∈ A1. Then g′1 ∈ A1 and consequently g2, g3 ∈ g′1A1 = A1.
This implies that A2 ⊆ Fix(θ). As A2 ⊆ A1, we have a = θ(a) = ag

−1
1 for all a ∈ A2 showing that A2 = Z(G).

Assuming g2 ∈ A1 \ A2, we obtain θ(g2) = g2z for some z ∈ A2. Furthermore, g2z = θ(g2) = gg
−1
1

2 = gg12 as
g2 ∈ A1. Thus [g2, g1] = z and this yields part (3).

The converse is straightforward.

We conclude this section with a characterization of complete multipartite-ness of the graphs ΓθG.



On θ-commutators and the corresponding non-commuting graphs | 1537

Theorem 5.5. The graph ΓθG is a complete multipartite graph if and only if Fix(Igθ) is abelian for all g ∈ G.

Proof. First assume that ΓθG is a complete multipartite graph. From Theorem 4.5, it follows that all maximal
abelian subgroups of Fix(Igθ) are disjoint so that Fix(Igθ) is abelian for all g ∈ G. Now assume that Fix(Igθ)
is abelian for all g ∈ G. Let x ∈ G. By assumption, xFix(Ixθ) is an independent subset of ΓθG. On the other
hand, for y /∈ xFix(Ixθ), we have x−1y /∈ Fix(Ixθ) so that θ(x−1y) ̸= (x−1y)x

−1
. Hence y is adjacent to x. Since, by

Theorem 4.5, the sets gFix(Igθ) are maximal independent subsets of ΓθG, it follows the sets gFix(Igθ) partition
G and hence ΓθG is a complete multipartite graph, as required.

6 Conclusion/Open problems
In this paper, we have generalized commutators of a group, in a compatible way, to θ-commutators with
respect to a given automorphism θ. Accordingly, commutator identities as well as the corresponding central-
izers and center are studied.

One may de�ne θ-nilpotent and θ-solvable groups by means of θ-commutators in a natural way. So, we
may ask:

Question. How are the automorphism θ and the structure of θ-nilpotent and θ-solvable groups related?

Next, we have de�ned the non-commuting graph ΓθG associated to θ-commutators of a group G and estab-
lished some connections between graph theoretical properties of ΓθG and group theoretical properties of the
automorphism θ. For instance, it is proved, among other results, that ΓθG is complete as a graph if and only if
θ is �xed-point-free and that ΓθG receives minimum number of edges if and only if θ is class preserving.

Question. Which other graph theoretical properties of ΓθG can be interpreted (simply) in terms of group
theoretical properties of θ (and vice versa)?

The rest of paper is devoted to the study of independent sets in the graph ΓθG. Firstly, a one-to-one correspon-
dence between independent sets and abelian subgroups of Fix(Igθ) is established, where Ig denotes the inner
automorphism of G induced by the element g ∈ G. This result provided us with another partial answer to the
above question: the graph ΓθG is empty if and only ifG is abelian and θ is the identity automorphism. Secondly,
a relationship between covers of G by subgroups and the chromatic number χ(ΓθG) of ΓθG, i.e. the minimum
number of independent sets to cover all vertices of ΓθG, is revealed and a lower bound for χ(ΓθG) in terms of
Fix(θ) is deduced. Also, the structure of G or properties of θ when ΓθG admits special colorings is obtained.

In contrast to our investigations on independent sets one may ask:

Question. How can cliques of ΓθG be described in terms of G and θ?

Finally, a fundamental question to ask is:

Question. Suppose θ1 and θ2 are automorphisms of groups G1 and G2, respectively.
(1) Under which conditions on (G1, θ1) and (G2, θ2) are two graphs Γθ1G1

and Γθ2G2
isomorphic (in particular when

G1 = G2)?
(2) How are the pairs (G1, θ1) and (G2, θ2) related, provided that Γθ1G1

and Γθ2G2
are isomorphic?
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