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A graph associated to a fixed automorphism of a
finite group

M. Mahtabi∗ and A. Erfanian†‡

Abstract
Let G be a finite group and Aut(G) be the group of automorphisms of
G. We associate a graph to a group G and fixed automorphism α of
G denoted by ΓαG as follows. The vertex set of ΓαG is G \ Zα(G) and
two vertices x, g ∈ G \ Zα(G) are adjacent if [g, x]α 6= 1 or [x, g]α 6= 1,
where [g, x]α = g−1x−1gxα and Zα(G) = {x ∈ G | [g, x]α = 1 for
all g ∈ G}. In this paper, we state some basic properties of the graph,
like connectivity, diameter, girth and Hamiltonian. Moreover, planarity
and 1-planarity are also investigated here.
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1. Introduction
There are many papers on assigning a graph to a group and investigating the algebraic

properties of the group through the associated graph. For instance, commuting graph
[9], non-commuting graph [1], non-cyclic graph [3], non-normal graph [5], prime graph
[12], power graph [7] and so on. In this paper, we are going to assign a new graph to
a finite group G and an automorphism α in the automorphism group Aut(G). Let G
be a finite group and α is an arbitrary but fixed element in Aut(G). We define a graph
denoted by ΓαG as an undirected simple graph with vertex set consisting all elements of
G \ Zα(G) and two distinct vertices g, x ∈ G \ Zα(G) are adjacent whenever [g, x]α 6= 1
or [x, g]α 6= 1, where [g, x]α = g−1x−1gxα and Zα(G) is the set of all element x in G
such that [g, x]α = 1 for every g ∈ G. It is clear that if α is an identity automorphisms
then [x, g]α = [g, x]α and ΓαG is the know non-commuting graph. Moreover, if G is an
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abelian group, then ΓαG is a complete graph. Thus throughout the paper, we may always
assume that α is non-identity automorphism and G is a finite non-abelian group. Since
we removed Zα(G) from G, so it would imply that ΓαG has no isolated vertex.
In section 2, we investigate about the degree of vertices, diameter, girth and suitable
condition for the graph to be Hamiltonian. Section 3 is devoted to a determination of
some numerical invariants of the graph. Planarity, outer planarity and 1-planarity of the
graph are also considered in section 4.
In the rest of this section, we remind some necessary definitions in graph theory. We
remind that the girth of a graph is the length of a shortest cycle contained in the graph.
The distance between two vertices in a graph is the number of edges in a shortest path
connecting them. The diameter of a graph is the greatest distance between any pair of
vertices. In graph theory, a dominating set for a graph X with vertex set V and edge set
E is a subset D of V such that every vertex not in D is adjacent to at least one member
of D. The domination number γ(X) is the number of vertices in a smallest dominating
set for X. An independent set or stable set is a set of vertices in a graph such that no
two of which are adjacent. A planar graph is a graph that can be embedded in the plane,
i.e., it can be drawn on the plane in such a way that its edges intersect only at their
endpoints. In other words, it can be drawn in such a way that no edges crosses each
other. Moreover, a 1-planar graph is a graph that can be drawn in the Euclidean plane
in such a way that each edge has at most one crossing point, where it crosses a single
additional edge. A Hamiltonian path is a path in a graph that visits each vertex exactly
once a Hamiltonian cycle is a Hamiltonian path that is a cycle. A graph that contains a
Hamiltonian cycle is called a Hamiltonian graph.

2. Diameter and girth
Let G be a non-abelian finite group, and α an arbitrary but fixed element in Aut(G).

We denote α-conjugacy class containing x by xGα and it is clear that xGα = {g−1xgα : g ∈
G}. If |xGα | = 1, then α is nothing but conjugation by x. Moreover a subgroup CαG(x) =
{g ∈ G | [x, g]α = 1} which satisfies |xGα | = [G : CαG(x)]. We have α-center of the group
G as Zα(G) =

⋂
x∈G C

α
G(x) = {g ∈ G | [x, g]α = 1 for all x ∈ G}. It is easy to show

that CαG(x) is subgroup of G and also Zα(G) is normal subgroup of G. One can see that
Zα(G) = Z(G)

⋂
Fix(α) where Fix(α) = {x ∈ G : xα = x}. It is interesting to see

that the number of generalized conjugacy classes is the number of ordinary conjugacy
classes which are invariant under α and it is also equal to the number of irreducible
characters which are invariant under α (see [4] for more details). By the above notations
we may define subsets Rα(x) = {g ∈ G | [g, x]α = 1} , Tα(G) =

⋂
x∈GR

α(x) = {g ∈
G | [g, x]α = 1 for all x ∈ G} of group G, CαG(S) = {g ∈ G | [s, g]α = 1 for all s ∈ S} and
RαG(S) = {g ∈ G | [g, s]α = 1 for all s ∈ S}, where S is a subset of group G. First, let us
remind the definition of graph as the following.

2.1. Definition. Let G be a non-abelian finite group, and α an arbitrary but fixed
element in Aut(G). We define a graph, denoted by ΓαG, such that vertex set of ΓαG is
G \ Zα(G) and two different vertices x, g ∈ G \ Zα(G) are adjacent if [g, x]α 6= 1 or
[x, g]α 6= 1.

In the following lemma, we give the degree of any vertex in ΓαG.

2.2. Lemma. The degree of every vertex of the graph ΓαG is
(i) If x = xα then deg(x) = |G| − |CG(x)

⋂
CαG(x)|,

(ii) If x 6= xα then deg(x) = |G| − |Zα(G)| − |Rα(x)
⋂
CαG(x)| − 1.
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Proof. For the degree of any vertex x of the graph ΓαG we have two cases: (i) x = xα and
(ii) x 6= xα. In case (i),

deg(x) = |G| − |Zα(G)| − |Rα(x)
⋂
CαG(x)|+ |Zα(G)

⋂
Rα(x)|.

Furtheremore, if x = xα, thenRα(x) = CG(x) and therefore deg(x) = |G|−|CG(x)
⋂
CαG(x)|.

In case (ii) the degree of the vertex x is

|G| − |Zα(G)| − |Rα(x)
⋂
CαG(x)|+ |Zα(G)

⋂
Rα(x)| − 1.

In this caseRα(x)
⋂
Zα(G) = ∅ which implies that deg(x) = |G|−|Zα(G)|−|Rα(x)

⋂
CαG(x)|−

1. �

2.3. Lemma. Let G be a non-abelian finite group. Then the ΓαG is Hamiltonian graph.

Proof. Let G be a non-abelian finite group. We know that if x = xα then deg(x) =
|G| − |CG(x)

⋂
CαG(x)|. Hence

|V (ΓαG)| = |G| − |Zα(G)| < |G|

= 2|G| − |G| < 2|G| − 2|CG(x)
⋂
CαG(x)|

= 2(|G| − |CG(x)
⋂
CαG(x)|) = 2 deg(x).

Therefore deg(x) >
|V (ΓαG)|

2
.

If x 6= xα then deg(x) = |G| − |Zα(G)| − |Rα(x)
⋂
CαG(x)| − 1. We have

|V (ΓαG)| = |G| − |Zα(G)| < |G| = 2|G| − |G|

6 2|G| − 2(|Zα(G)|+ |Rα(x)
⋂
CαG(x)|+ 1).

Thus deg(x) >
|V (ΓαG)|

2
and by Dirac’s Theorem [6], the graph ΓαG is Hamiltonian. �

By the above lemma, we can see that ΓαG is always connected and also is not a star
graph. Now in the following lemma, we determine of the diameter of ΓαG.

2.4. Lemma. For any non-abelian group G, diam(ΓαG) = 2.

Proof. First assume that there exists a vertex x in Z(G) \ Fix(α) and y is an arbitrary
vertex in V (ΓαG). Then [y, x]α = y−1x−1yxα = x−1xα 6= 1, it implies that x is adjacent
to y hence d(x, y) = 1. Secondly, assume that there exists x is an arbitrary vertex in
Fix(α) \ Z(G) and y is an arbitrary vertex in V (ΓαG). Suppose that y 6= yα, then we
have two cases, (i) x and y commute and (ii) x does not commute with y. If case
(i) occurs then [x, y]α = [x, y]y−1yα 6= 1 thus x is adjacent to y. If case (ii) occurs
then [y, x]α = y−1x−1yxα = [y, x] 6= 1. It implies that x is adjacent to y. Therefore
d(x, y) = 1. Assume that y = yα, since α is not identity automorphisms in Aut(G), so
there exists z ∈ G such that z 6= zα. Hence z is a vertex in V (ΓαG). By the similar
method, we can see that z is adjacent to x and y. It implies that d(x, y) = 2. Finally
assume that x and y are two non-adjacent vertices in V (ΓαG) such that x, y 6∈ Z(G) and
x, y 6∈ Fix(α). We have [x, xy] = [x, y] 6= 1 hence xy 6∈ Z(G). Thus xy is a vertex in ΓαG.
We know that [x, xy]α = [x, y]α[x, x]y

α

α . Since x is not adjacent to y so [x, y]α = 1 and
[y, x]α = 1, hence [x, xy]α = [x, x]y

α

α . Assume that [x, x]y
α

α = 1, then [x, x]α = 1 it is a
contradiction. Therefore x is adjacent to xy. By the similar method we can show that y
is adjacent to xy. It implies that d(x, y) = 2. The proof is now completed. �

2.5. Lemma. Let G be a non-abelian finite group. The girth of the graph ΓαG is at most
4.
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Proof. We have to show that ΓαG indeed has a cycle of length at most four. Firstly suppose
that there exists a vertex x in Z(G) \ Fix(α). Let y and z be two arbitrary vertices in
V (ΓαG). If y is adjacent to z, then three elements x, y, z induce a cycle of length 3. If y is
not adjacent to z, then we can see that y and z are adjacent to yz. Hence elements x, y, yz
induce a cycle of length 3. Secondly, assume that x is an arbitrary vertex in Fix(α)\Z(G)
and y, z are two vertex in V (ΓαG) such that y 6= yα and z 6= zα. Then by Lemma 2.4. we
have x is adjacent to y and z. If y is adjacent to z, then elements x, y, z induce a cycle
of length 3. If y is not adjacent to z, then we can see that y and z are adjacent to yz.
Hence elements x, y, z, yz induce a cycle of length 4. Finally, Zα(G) = Z(G) = Fix(α).
Since G is non-abelian group, there exists x ∈ V (ΓαG) such that x2 6= 1, so x−1 is vertex
in ΓαG and therefore x is adjacent to x−1. For y in V (ΓαG) that y is adjacent to x, it is
easy to show that y is adjacent to x−1. Thus elements x, y, x−1 induce a cycle of length
3. Therefore the girth of ΓαG is at most 4. �

3. Dominating set and independent set
Suppose that [G : Zα(G)] = r. We know that G can be partitioned into disjoint cosets

of Zα(G). Now, assume that G \ Zα(G) =
⋃r−1
i=1 giZ

α(G).

3.1. Lemma. By the above notation let g ∈ G \Zα(G), then gZα(G) is an independent
set in ΓαG if and only if g ∈ Fix(α).

Proof. Assume that x and y two arbitrary elements in gZα(G) such that x = gz1 and
y = gz2 where z1, z2 ∈ Zα(G). Let x be not adjacent to y. We know that x is not
adjacent to y if and only if [x, y]α = 1 and [y, x]α = 1. Hence 1 = [x, y]α = [gz1, gz2]α =
[g, g]α[z2, α]. It implies that [g, g]α = [g, α] = 1, thus g ∈ Fix(α). �

LetA be an independent set of {g1, g2, . . . , gr−1}
⋂

Fix(α) and |A| = k, B =
⋃
a∈A aZ

α(G).
By the above lemma, we can see that α(ΓαG) ≥ |B| = k|Zα(G)| where α(ΓαG) is the in-
dependence number of ΓαG. The following lemma states that every vertex of the coset
gZα(G) is adjacent to every vertex of coset xZα(G) if and only if g is adjacent to x,
where g and x are in G \ Zα(G).

3.2. Lemma. Let gZα(G) and hZα(G) be two arbitrary disjoint cosets of G \ Zα(G),
where g, h 6∈ Zα(G). Then every element of gZα(G) is adjacent to every element of
hZα(G) if and only if g is adjacent to h.

Proof. Suppose that x is an arbitrary element in gZα(G) and y is an arbitrary element
in hZα(G) such that x = gz1 and y = hz2 where z1, z2 ∈ Zα(G). Let x is adjacent to y.
We know that x is adjacent to y if and only if [x, y]α 6= 1 or [y, x]α 6= 1. Let [x, y]α 6= 1
then

1 6= [x, y]α = [gz1, hz2]α = [g, h]α[z2, α] = [g, h]α.

Therefore g is adjacent to h. �

3.3. Lemma. Let x be in Fix(α). If {x} is a dominating set of ΓαG, then Zα(G) = 1
and x2 = 1.

Proof. Suppose on the contrary that Zα(G) 6= 1. Then every element of the set xZα(G)−
{x} is a vertex which is adjacent to x. This is a contradiction. Now, suppose that x2 6= 1,
then x−1 ∈ V (ΓαG). We have [x, x−1]α = 1, this is a contradiction. The proof is now
complete. �

3.4. Lemma. Let G be a finite group. Then subset S of V (ΓαG) is a dominating set of
ΓαG if and only if Rα(S)

⋂
CαG(S) ⊆ Zα(G) ∪ S.
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Proof. First assume that S is a dominating set of ΓαG and g ∈ G. If g /∈ Zα(G)∪S, then
g /∈ S. Since S is a dominating set, hence there exists x ∈ S such that g is adjacent to
x. Thus [x, g]α 6= 1 or [g, x]α 6= 1. If [x, g]α 6= 1 then g /∈ CαG(S). Also if [g, x]α 6= 1,
then g /∈ Rα(S). Therefore Rα(S)

⋂
CαG(S) ⊆ Zα(G) ∪ S. Conversely, suppose that

Rα(S)
⋂
CαG(S) ⊆ Zα(G)∪S. If there exists g ∈ G such that g /∈ Zα(G)∪S, then either

g /∈ CαG(S) or g ∈ CαG(S) but g /∈ Rα(S). In each case, there exists x ∈ S such that
[x, g]α 6= 1 or [g, x]α 6= 1. It implies that g is adjacent to x. �

3.5. Lemma. Let G be a non-abelian group such that G =< X >. Then X \ Zα(G) is
a dominating set of ΓαG.

Proof. Suppose that G is a non-abelian group such that G =< X >, then Y = X \
Zα(G) 6= ∅. We show that Rα(Y )

⋂
CαG(Y ) ⊆ Zα(G)

⋃
Y . Let g ∈ Rα(Y )

⋂
CαG(Y ),

then g ∈ CαG(Y ) = CαG(X \ Zα(G)). Hence g ∈ CαG(< X > −Zα(G)) = CαG(G− Zα(G)).
Clearly g ∈ CαG(Zα(G)) and therefore g ∈ Zα(G) ⊆ Zα(G)

⋃
Y . Now, Lemma 3.4 implies

that X \ Zα(G) is a dominating set. �

3.6. Lemma. Let G be a non-abelian simple group and γ(ΓαG) be the dominating number
of the graph ΓαG. Then γ(ΓαG) 6 2.

Proof. Assume that G is a non-abelian simple group, hence we can see that G =< g, x >.
Since G is a non-abelian simple group then Zα(G) = 1, we set X = {g, x}. It is clear
that Zα(G)

⋂
X = ∅, thus by Lemma 3.5, it is clear X is a dominating set of ΓαG. �

4. Planarity
This section is devoted to a determination of planarity, outer planarity and 1−planar

graph of the graph ΓαG. We will show that, with exception of a few possible cases, ΓαG is
not planar.

4.1. Lemma. If |Zα(G)| ≥ 3, then ΓαG is not a planar graph.

Proof. Since G is not abelian, so
G

Z(G)
is not cyclic and so [G : Z(G)] ≥ 4. Similarly

[G : Zα(G)] ≥ 4, because Zα(G) ⊆ Z(G). Thus G \ Zα(G) is the union of at least three
distinct cosets of Zα(G). Since ΓαG is connected, so there exists at least an edge between
two cosets of Zα(G). Now, by Lemma 3.2 and the assumption that |Zα(G)| ≥ 3, we have
a subgraph K3,3. Therefore ΓαG is not planar. �

4.2. Corollary. If |Zα(G)| 6= 1, then ΓαG is not an outer planar graph.

Proof. Let |Zα(G)| ≥ 2, then by Lemma 4.1, we can see that ΓαG have a subgraph K2,2.
Hence ΓαG is not an outer planar graph. �

We know that if ΓαG is a planar graph, then there exists a vertex x such that deg(x) 6 5.
Moreover if ΓαG is a 1−planar graph, then there exists a vertex y such that deg(y) 6 7
(see [8]). By this fact, we are going to state the following result.

4.3. Lemma. If |G| 6= 6, 8, 10 then ΓαG is not planar graph.

Proof. Suppose that ΓαG is a planar graph, then there exists a vertex x in a V (ΓαG) such
that deg(x) 6 5. First assume that x = xα, from Lemma 2.2 we see that deg(x) =
|G| − |CG(x)

⋂
CαG(x)|. We have |CG(x)

⋂
CαG(x)| 6 |CG(x)|. Thus |G| − |CG(x)| 6
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|G| − |CG(x)
⋂
CαG(x)| 6 5. Since x is a vertex in ΓαG, so x 6∈ Z(G) and consequently

CG(x) & G. Therefore

|G| − |G|
2
6 |G| − |CG(x)| 6 |G| − |CG(x)

⋂
CαG(x)| 6 5.

It implies that |G| 6 10.
Second assume that x 6= xα and x ∈ Z(G), then deg(x) = |G|−|Zα(G)|−|Rα(x)

⋂
CαG(x)|−

1. Since x ∈ Z(G) so Rα(x) = ∅, hence deg(x) = |G| − |Zα(G)| − 1. We have

|G| − |G|
2
6 |G| − |Zα(G)| 6 6. Thus |G| 6 12. Finally suppose that x 6= xα and

x 6∈ Z(G) then Zα(G) ≤ Z(G) � CG(x) � G. Hence

|G| − |G|
4
− |CαG(x)| 6 |G| − |Zα(G)| − |Rα(x)

⋂
CαG(x)| 6 6.

It implies that |G| 6 24. We know that the groups of orders 2, 3, 4, 5, 7, 9, 11, 13, 15,
17, 19, 23 are abelian groups. So associated graphs of the groups of orders 2, 3, 4, 5, 7, 9,
11, 13, 15, 17, 19, 23 are not planar graph. Moreover, if |E(ΓαG)| 6 3|V (ΓαG)| − 6, where
|E(ΓαG)| is a number of edges in graph ΓαG, then ΓαG is not planar (see [6, Corollary 9.5.2].
Hence by using the group theory package GAP [11], it is easy to see that graphs of the
associated to groups of orders 12, 14, 16, 18, 20, 21, 22, 24 are not planar. It implies
that if |G| 6= 6, 8, 10 then ΓαG is not planar graph. �

By the above lemma, we can state that following corollary.

4.4. Corollary. If |G| 6= 6, 8, 10, 12, 14, 16 then ΓαG is not 1−planar graph.

Proof. If ΓαG is a 1−planar graph, then there exists a vertex x such that deg(x) 6 7.
Then we can see that if x = xα then |G| 6 14. If x 6= xα and x ∈ Z(G) then |G| 6 16,
and if x 6= xα and x 6∈ Z(G) then |G| 6 32. Moreover, the groups of orders 2, 3, 4, 5,
7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31 are abelian groups. So if ΓαG is a 1−planar graph
then |G| is equal to 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32. Since every
1−planar graph with n vertices has at most 4n− 8 edges, a straightforward computation
shows that the associated graph of groups of orders 18, 20, 22, 24, 26, 27, 28, 30, 32 are
not 1−planar. The proof is now complete. �
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