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Abstract. Let G be a finite non-abelian group and Z(G) be its center. For

a fixed non-identity element g of G, the g-noncommuting graph of G, denoted
by ∆g

G, is a simple undirected graph whose vertices are G \ Z(G) and two

distinct vertices x and y are adjacent if [x, y] 6= g and g−1. In this paper, we

discuss about connectivity of ∆g
G and determine all finite non-abelian groups

such that their g-noncommuting graphs are 1-planar, toroidal or projective.

1. Introduction

Many sciences are concerned with groups. It has been shown that graphs can be
interesting tools for the study of groups. We can investigate algebraic properties
of groups in terms of properties of the associated graphs. There are different ways
to associate a graph to a group G such that the vertices are families of elements or
subsets of G and two vertices are adjacent if and only if they satisfy in a certain
relation (for instance see [1, 2, 10]).

One of the important graphs associated to a group is non-commuting graph
which was introduced by Neumann. The non-commuting graph of a finite group G
is the graph with vertex set G\Z(G) and two distinct vertices x and y are adjacent
if xy 6= yx. Similarly, the commuting graph associated to a non-abelian group G is
the complement of non-commuting graph and it is denoted by ∆(G) in this paper.

In [9], Tolue et al. assigned a simple undirected graph ΓgG to G and a fixed
element g ∈ G as follows: Take G as the vertex set and two distinct vertices x
and y join whenever [x, y] 6= g and g−1. They investigated some graph theoretical
properties of ΓgG such as regularity, clique and dominating numbers.

In this article, we consider an induced subgraph of ΓgG whose vertices are all non-
central elements of G. It is called the g-noncommuting graph of G and is denoted
by ∆g

G. One can see that ∆g
G is exactly known non-commuting graph whenever

g is an identity element of G indicated by e. Moreover, the commuting graph is
a spanning graph of ∆g

G. For any group G, let K(G) = {[x, y]|x, y ∈ G} be the
set of all commutators of G and set G′ =< K(G) >, where G′ is the commutator
subgroup of G. The g-noncommuting graph ∆g

G is a complete graph if g /∈ K(G).
Therefore, we always assume that g is a non-identity element, g ∈ K(G) and G is
a finite group.

It is known that the non-commuting graph is connected and its diameter is
equal to 2 (see [1] for more details). But, the g-noncommuting graph is not always

connected graph; for instance, ∆
(123)
S3

has one edge and three isolated vertices where
S3 is the symmetric group on 3 symboles. So, this is a reason for investigating
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connectivity of g-noncommuting graph for all groups. In section 2, we discuss
about the connectivity of ∆g

G for finite groups and prove that the diameter of g-
noncommuting graph, of course when ∆g

G is connected, is at most 4. Moreover,
we indicate that the girth of graph is 3. In spite of the fact that we do believe
diam(∆g

G) = 2 for all groups, when ∆g
G is connected it has not been evidently

substantiated yet. Therefore, we decided to leave it as a conjecture at the end of
section 2.

We remind that, 1-planar graph is a graph which can be drawn in the Euclidean
plane in such a way that each edge contains at most one crossing. Also, a toroidal
or a projective graph is a graph that can be embeded on a torus or projective plane,
respectively.

The last section of the paper deals with the study of g-noncommuting graphs of
groups with properties 1-plannar, toroidal and projective.

All over this paper, ω(G) = {|x| : x ∈ G}, exp(G) = lcm(ω(G)), CG(x) and xG

stand for the spectrum of G, the exponent of G, the centralizer and the conjugacy
class of x, respectively. Here, our notations and terminologies are standard and one
can refer to [4].

2. The connectivity of g-noncommuting graph

In this section, we investigate the connectivity of g-noncommuting graph of all
finite groups. Let us start with the following two simple lemmas. The proofs are
omitted here and we refer to [6].

Lemma 2.1 ([6]). Let x ∈ G \ Z(G).

(i) If g2 6= e, then deg(x) = |G| − |Z(G)| − ε|CG(x)| − 1, where ε = 1 if x is
conjugate to xg or xg−1, but not both and ε = 2 if x is conjugate to xg and
xg−1.

(ii) If g2 = e and g 6= e, then deg(x) = |G| − |Z(G)| − |CG(x)| − 1, whenever
xg is conjugate to x.

(iii) If xg and xg−1 are not conjugate to x, then deg(x) = |G| − |Z(G)| − 1.

Lemma 2.2 ([6]). If K(G) = {e, g} or {e, g, g−1}, then ∆g
G is equal to commuting

graph.

The following lemma plays an important role in the proofs of some theorems in
this section.

Lemma 2.3. If x and y are two non-adjacent vertices such that d(x, y) ≥ 3, then

1 ≤ t

|xG|
+

s

|yG|
+

1

[G : Z(G)]
,

where t, s ∈ {1, 2}.

Proof. We know that deg(x) = |G| − |Z(G)| − t|CG(x)| − 1 and deg(y) = |G| −
|Z(G)| − s|CG(y)| − 1, where t, s ∈ {1, 2} by Lemma 2.1. Since d(x, y) ≥ 3, then
deg(x) + deg(y) + 2 ≤ |V (∆g

G)| and the proof is completed. �

In the following theorems, we determine connectivity and diameter of the g-
noncommuting graph.

Theorem 2.4. Let g be a non-central element of G and |g| 6= 3. Then diam(∆g
G) =

2.
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Proof. If |g| = 2, then by Lemma 2.1, g is adjacent to all vertices and so diam(∆g
G) =

2. Thus assume that, |g| > 3. Let x and y be two vertices of ∆g
G which are not

adjacent. Then [x, y] = g or g−1 and we have the following cases:
Case 1. x and y are not adjacent to g i.e. [x, g] = g−1 and [y, g] = g−1. Then

[x, g2] = [y, g2] = g−2. Since |g| > 3, so x ∼ g2 ∼ y, as required.
Case 2. x is not adjacent to g and y ∼ g. If yg /∈ Z(G) then x ∼ yg ∼ y, because

[y, g] = g−1. Otherwise, [x, g2] = g−2 and [y, g2] = e. Hence, x ∼ g2 ∼ y.
Case 3. y is not adjacent to g and x ∼ g. By replacement x with y in the case 2

and a similar argument, there exists one of the paths, x ∼ xg ∼ y and x ∼ g2 ∼ y.
Thus the proof follows. �

Theorem 2.5. Let g be a non-central element of order 3 of G. If [CG(g) : Z(G)] =
3 and there exists a vertex x such that d(x, g) ≥ 3, then ∆g

G is disconnected. More-

over, G
Z(G)

∼= S3 and ∆g
G = K2|Z(G)| ∪ 3K|Z(G)|. Otherwise ∆g

G is connected and

diam(∆g
G) ≤ 4.

Proof. Assume that, [CG(g) : Z(G)] = 3 and x is a vertex of ∆g
G such that d(x, g) ≥

3. By Lemma 2.1, g and g−1 are conjugate in G and so deg(g) = |G| − |Z(G)| −
|CG(g)| − 1. Let deg(x) = |G| − |Z(G)| − t|CG(x)| − 1 for some t ∈ {1, 2}. Then
[G : Z(G)] = [G : CG(g)][CG(g) : Z(G)] = 3|gG| and Lemma 2.3 implies that

(1)
t

|xG|
≥ 3|gG| − 4

3|gG|
≥ 1

3
.

Thus |xG| ≤ 3t for some t ∈ {1, 2}.
Let t = 1. If |xG| = 2, then [G : CG(x)] = 2 which is a contradiction, since |g| = 3
and d(x, g) ≥ 3. Thus |xG| = 3 and by (1) we should have |gG| = 2. Therefore,
[G : Z(G)] = 6 and |CG(x)| = 2|Z(G)|. So deg(x) = |G| − |Z(G)| − |CG(x)| − 1 =
3|Z(G)| − 1. Now, we show that x is adjacent to only non-central elements in
CG(x). Suppose that y ∈ G \ CG(x). Since G = CG(x) ∪ gCG(x) ∪ g−1CG(x) and
d(x, g) ≥ 3, so [x, y] ∈ gG = {g, g−1} which implies that x and y are not adjacent.
Thus deg(x) = |CG(x)| − |Z(G)| − 1 = |Z(G)| − 1, that is a contradiction.
Therefore t = 2 and it is clear that |xG| ≥ 3. If |xG| ≥ 4 then by (1), |gG| = 2
and so [G : Z(G)] = 3|gG| = 6 which is impossible, because |xG|

∣∣[G : Z(G)]. Hence

|xG| = 3 and G = CG(x) ∪ gCG(x) ∪ g−1CG(x). Let a ∈ G, then a = gis for some

s ∈ CG(x) and i ∈ {0, 1,−1}, so ga = gg
is = g[g, s]. Since d(x, g) > 2, so either

s ∈ Z(G) or [g, s] = g. Thus ga = {g, g−1} and [G : Z(G)] = 6. It follows that
G

Z(G)
∼= S3 and deg(x) = |G| − 2|CG(x)| − |Z(G)| − 1 = |Z(G)| − 1. It means that

x is adjacent to only non-central elements in CG(x). Also, one can easily see that
for every two elements a, b ∈ G we have [a, b] ∈ 〈g〉 . Therefore K(G) = G′ = 〈g〉 =
{e, g, g−1} and ∆g

G coincides to the known commuting graph, by Lemma 2.2. In
particular, CG(g) \ Z(G), CG(x) \ Z(G), CG(xg) \ Z(G) and CG(xg−1) \ Z(G) are
connected components of g-noncommuting graph and ∆g

G = K2|Z(G)| ∪ 3K|Z(G)|.
If distance of every vertex of ∆g

G to g is at most 2, then clearly ∆g
G is connected

and diam(gG) ≤ 4.
Now, suppose that [CG(g) : Z(G)] ≥ 4 and x, g are not adjacent. Let a ∈ CG(g) \
(Z(G) ∪ gZ(G) ∪ g−1Z(G)). If a ∼ x then d(x, g) = 2, since a ∼ g. If [x, a] = g
or g−1, then we have two paths x ∼ ga ∼ g or x ∼ g−1a ∼ g, respectively and the
proof is completed. �
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Theorem 2.6. Let g be a central element of G. If there are two vertices such that
their distance is greater than 5, then ∆g

G is disconnected and the following cases
occur:

(i) If |g| ≥ 3, then G
Z(G)

∼= Z3 × Z3 and ∆g
G = 4K2|Z(G)|,

(ii) If |g| = 2, then G
Z(G)

∼= Z2 × Z2 and ∆g
G = 3K|Z(G)|.

Otherwise ∆g
G is the connected graph and diam(∆g

G) = 2.

Proof. Let x and y be two vertices of ∆g
G such that d(x, y) ≥ 5. Then [x, y] = g or

g−1. Without loss of generality, we can assume that [x, y] = g.
First, assume |g| ≥ 3. It is clear that [x, y2] = g2 and so y2 /∈ Z(G). Since

d(x, y) ≥ 5, so [x, y2] = g−1 and it implies that |g| = 3 and y3 ∈ Z(G). Similarly,
we can see that x3 ∈ Z(G). Let a ∈ G \ Z(G), then d(a, x) ≥ 3 or d(a, y) ≥ 3. In
any case by the same argument as before, a3 ∈ Z(G). It means that exp( G

Z(G) ) = 3.

Assume that [G : Z(G)] = 3γ , |xG| = 3α and |aG| = 3β , where γ > α ≥ β. Then
by Lemma 2.3,

(2) 1 ≤ s

3α
+

t

3β
+

1

3γ
, s, t ∈ {1, 2}.

Thus 3γ−α(3α − t3α−β − s) ≤ 1, where s, t ∈ {1, 2}. If β ≥ 2, then by the above
inequality 3γ ≤ 1, which is impossible. Therefore β = 1 and by a simple computa-
tion we arise that α = 1. Thus |aG| = 3 for every a ∈ G \ Z(G). It can be proved
that [CG(y) : Z(G)] = 3 because if b ∈ CG(y) \ Z(G) ∪ yZ(G) ∪ y2Z(G), then
[x, yib] = 1 where i ∈ {1, 2}. Since d(x, y) ≥ 5, so yib ∈ Z(G), which is a contra-
diction. Therefore G

Z(G)
∼= Z3 × Z3 and G = 〈x〉〈y〉Z(G), since [x, y] = g ∈ Z(G).

Also G′ = K(G) = {1, g, g−1} and Lemma 2.2 implies that ∆g
G = 4K2|Z(G)|.

Now, suppose that |g| = 2. Then y2 ∈ Z(G), because [x, y2] = 1 and d(x, y) ≥ 5.
By similarly argument as before, we have G

Z(G) = Z2 × Z2 and ∆g
G = 3K|Z(G)|.

Finally, suppose distance between any two vertices is at most 4 in ∆g
G. We want

to show diam(∆g
G) = 2. Let x and y be two vertices of ∆g

G and there exists a path
of length n ≥ 3 between x and y as,

x ∼ u1 ∼ u2 ∼ ... ∼ un−1 ∼ y.
First, suppose |g| 6= 3. If x2 /∈ Z(G), then x2 is adjacent to x and y that is a
contradiction. Therefore x2 ∈ Z(G) and since [xu1, y] ∈ {e, g2, g−2}, it should be
xu1 ∈ Z(G) otherwise x ∼ xu1 ∼ y. Let u1 = xz for some z ∈ Z(G). Then
[u1, u2] = [x, u2] = g or g−1, that is a contradiction again.
Now, we investigate the case |g| = 3. It is clear that [x3, y] = 1 and since d(x, y) ≥ 3,
so x3 ∈ Z(G). It should be x2u1 ∈ Z(G) otherwise x2u1 is common neighborhood
of x and y. Thus u1 ∈ x−2Z(G) = xZ(G) and again [u1, u2] = g or g−1, which
is a contradiction. Hence diam(∆g

G) = 2 for all possible cases and the proof is
completed. �

Corollary 2.7. If order of G is odd and ∆g
G is connected, then diam(∆g

G) = 2.

Proof. We can see that diam(∆g
G) = 2, when g is a central element by Theorem

2.6 or g is a non-central element and |g| 6= 3 by Theorem 2.4. So, assume that g is
a non-central element and |g| = 3. If g is not conjugate to g2, then g is adjacent

to all vertices by Lemma 2.1. Otherwise ga = g2 for some a ∈ G, then ga
2

= g. So
a2 ∈ CG(g). Since the order of a is odd therefore a ∈ CG(g), that is a contradiction
and the proof is completed. �
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Now, let us state the following conjecture.
Conjecture. For any group G and any element g ∈ K(G), diam(∆g

G) = 2 when
∆g
G is connected.

Theorem 2.8. The girth of g-noncommuting graph is 3, unless G ∼= S3, D8 or Q8.
Moreover, g-noncommuting graph of groups S3, D8 and Q8 are forest.

Proof. Let x ∈ G \ Z(G). If |Z(G)| ≥ 3, then x ∼ xz1 ∼ xz2 ∼ x is a cycle in ∆g
G,

where z1 and z2 are two distinct nontrivial elements of Z(G).
So, assume that |Z(G)| = 2. If |xZ(G)| ≥ 3, then the set of vertices {x, x−1, xz}
forms a triangle in ∆g

G for some z ∈ Z(G). Otherwise, G
Z(G) must be an elementary

abelian 2-group. If CG(x) \ {e, z, x, xz} 6= ∅, then girth(∆g
G) = 3. Therefore

|CG(x)| = 4 and so |G| = 8. Hence G ∼= D8 or Q8.
Now, suppose that |Z(G)| = 1. If |x| ≥ 4, then {x, x2, x3} forms a cycle of length
3 in ∆g

G. Therefore |G| = 2α3β . It is obvious that, all Sylow 2-subgroups of
G are abelian. Thus girth(∆g

G) = 3, unless α = 1. Let Q be a non-abelian
Sylow 3-subgroup of G. Then we have a cycle as, a ∼ a−1 ∼ ab ∼ a for some
a ∈ Q \ Z(Q) and b ∈ Z(Q). Therefore every Sylow 3-subgroup of G is abelian
and so girth(∆g

G) = 3, unless β = 1. It implies that |G| = 6 and G ∼= S3, as
claimed. �

3. 1-planar, toroidal and projective cases

In this section, all finite non-abelian groups whose their g-noncommuting graphs
are 1-planar, toroidal or projective, are classified. First, we determine 1-planar g-
noncommuting graphs. For this purpose, we recall the following two lemmas from
[5].

Lemma 3.1 ([5]). Let Γ be a 1-planar graph on n vertices and m edges. Then
m ≤ 4n− 8.

Lemma 3.2 ([5]). Every 1-planar graph contains a vertex of degree at most 7; the
bound 7 is the best possible.

Lemma 3.3. Let |Z(G)| ≥ 4 and ∆g
G be 1-planar graph. Then G

Z(G) is an elemen-

tary abelian 2-group.

Proof. If xZ ∈ G
Z(G) such that |xZ| > 2, then xZ ∪ x−1Z induces a complete

subgraph with at least 8 vertices, which is a contradiction. �

Theorem 3.4. Let G be a finite non-abelian group. Then ∆g
G is 1-planar if and

only if G is ismorphic to one of the following groups

(i) S3, D8, Q8, D10, D12, Z3 o Z4, Z4 o Z4, Z8 o Z2,
Z2 ×D8, Z2 ×Q8, Z3 × S3, Z3 ×D8, Z3 ×Q8,
(Z4 × Z2) o Z2

∼= 〈a, b : a4 = b2 = (ab)4 = [a2, b] = 1〉,
(Z4 × Z2) o Z2

∼= 〈a, b, c : a2 = b2 = c4 = [a, c] = [b, c] = 1, [a, b] = c2〉,
Z9 o Z3

∼= 〈a, b : a3 = b9 = 1, [b, a] = b3〉,
(Z3 × Z3) o Z3

∼= 〈a, b, c : a3 = b3 = c3 = [b, c] = [a, c] = 1, [b, a] = c〉,
for all g ∈ G′,

(ii) D16, QD16 and Q16, for g ∈ G′ \ Z(G).
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Proof. Let x be a vertex of ∆g
G of minimum degree δ. Then δ = |G| − |Z(G)| −

ε|CG(x)| − 1 for some ε ∈ {1, 2} and by Lemma 3.2, δ ≤ 7 and,

(3) |Z(G)|([G : Z(G)]− ε[CG(x) : Z(G)]− 1) ≤ 8, ε ∈ {1, 2}.
Set l = [G : Z(G)] − ε[CG(x) : Z(G)] − 1. Since the complete graph K7 on seven
vertices is not 1-planar therefore |Z(G)| ≤ 7. We proceed the proof in some steps.

Step 1. |Z(G)| ≥ 4. By (3), [G : Z(G)] = ε[CG(x) : Z(G)] + (l + 1) for some
l, ε ∈ {1, 2}. Lemma 3.3 implies that G

Z(G) is a 2-group, so [G : Z(G)] = 2α and

[CG(x) : Z(G)] = 2β . Thus 2α = ε2β + (l + 1). It can be seen that the only
solution of the last equality is (α, β, ε, l) = (2, 1, 1, 1). Then [G : Z(G)] = 4 and
|G| = |CG(x)|+ 2|Z(G)|. Since G is nilpotent, so |Z(G)| 6= 5, 7.
If |Z(G)| = 6, then |G| = 24 and G ∼= Z3×H, where H is an extra special 2-group.
Hence G ∼= Z3 ×D8 or Z3 ×Q8. Then |G′| = 2 and ∆g

G
∼= ∆(G) ∼= 3K6 by Lemma

2.2.
If |Z(G)| = 4, then |G| = 16. We know that there exist only six non-abelian group
of order 16 and |Z(G)| = 4. This groups have derived subgroup of order 2 and by
lemma 2.2, ∆g

G
∼= ∆(G). Therefore, Theorem 2.2 of [3] implies that ∆g

G is 1-planar.
Step 2. |Z(G)| = 3. If there exists y ∈ CG(x) \ Z(G) ∪ xZ(G) ∪ x−1Z(G),

then xZ(G) ∪ yZ(G) ∪ {xy} induces a subgraph isomorphic to K7. Thus CG(x) =
〈x, Z(G)〉 and [CG(x) : Z(G)] = 2 or 3. Therefore 6 or 9 divide |G| and (3) implies
that |G| = 18 or 27.

Step 3. |Z(G)| = 2. If yZ(G) ∈ G
Z(G) such that |yZ(G)| ≥ 5, then yZ(G) ∪

y2Z(G)∪y3Z(G)∪y4Z(G) is a commuting set which is a contradiction. Therefore,
ω( G

Z(G) ) = {1, 2, 3, 4}. Let G
Z(G) be a 2-group. Then by the same computation as

before, it can be seen that |G| = 8 or 16. Let Q be a Sylow 3-subgroup of G. Then
by Lemma 2.1 in [3], |Q| must be 3. Thus G

Z(G) is not 3-group and so | G
Z(G) | = 2α3.

By (3), [G : Z(G)] = ε[CG(x) : Z(G)] + (l + 1) for some l ∈ {1, 2, 3, 4}. If ε = 1,
then

|G|
2
≤ |G| − |CG(x)| = (l + 1)|Z(G)| ≤ 10.

and so |G| = 12, since 6
∣∣|G|. If ε = 2, then |G|

3 ≤ |G| − |CG(x)| ≤ 10. Hence,
|G| = 12 or 24.

Step 4. |Z(G)| = 1. Since ∆g
G has no induced subgraph isomorphic to K7, so

ω(G) = {1, 2, 3, 4, 5, 6, 7}. By (3), we should have |G| − ε|CG(x)| ≤ 9. Hence,
|G| ≤ 27.

Finally, the degrees of vertices of the graph associated to the above groups are
computed with group theory package GAP [8]. It can be seen that some graphs
are not 1-planar by Lemmas 3.1 and 3.2. But the graph associated to groups (i)
are same as the commuting graph which are the union of complete graphs with up
to six vertices. Also, ∆g

G is isomorphic to figure 1 when G is one of the groups (ii).
The graph is 1-planar in any case and the proof is completed.
The converse is straightforward. �
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a2
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a a7
a3 a5

b aba2b a3b

a4b a5b
a6b

a7b

Figure 1. ∆a2

D16

The last theorem of the paper states the determination of toroidal and projective
g-noncommuting graphs. Since the known commuting graph is a spanning subgraph
of g-noncommuting graph and all groups which their commuting graph are toroidal
or projective are classified in [3], so it is enough to investigate g-noncommuting
graphs associated to those groups. First, we recall the following lemma which is
used several times in the proof of our result.

Lemma 3.5 ([4]). Let Γ be a simple connected graph that is embeddable on a surface
S. Then

m ≤ 3(n− χ)

where n, m and χ are the numbers of vertices, edges and Euler characteristic of S,
respectively.

Theorem 3.6. There is no toroidal and projective g-noncommuting graph.

Proof. We know that χ = 0 and 1 for torus and projective plane, respectively. The
only groups that should be considered are D14, D16, QD16, Q16, A4×Z2 and Z7oZ3

by [3]. By calculating the number of edges can be checked that m > 3(n−χ) and so
the g-noncommuting graph can not be embedded on torus or projective plane. �
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