CONNECTIVITY AND PLANARITY OF g-NONCOMMUTING GRAPH OF FINITE GROUPS

M. NASIRI, A. ERFANIAN AND A. MOHAMMADIAN

Abstract

Let G be a finite non-abelian group and $Z(G)$ be its center. For a fixed non-identity element g of G, the g-noncommuting graph of G, denoted by Δ_{G}^{g}, is a simple undirected graph whose vertices are $G \backslash Z(G)$ and two distinct vertices x and y are adjacent if $[x, y] \neq g$ and g^{-1}. In this paper, we discuss about connectivity of Δ_{G}^{g} and determine all finite non-abelian groups such that their g-noncommuting graphs are 1-planar, toroidal or projective.

1. Introduction

Many sciences are concerned with groups. It has been shown that graphs can be interesting tools for the study of groups. We can investigate algebraic properties of groups in terms of properties of the associated graphs. There are different ways to associate a graph to a group G such that the vertices are families of elements or subsets of G and two vertices are adjacent if and only if they satisfy in a certain relation (for instance see $[1,2,10]$).

One of the important graphs associated to a group is non-commuting graph which was introduced by Neumann. The non-commuting graph of a finite group G is the graph with vertex set $G \backslash Z(G)$ and two distinct vertices x and y are adjacent if $x y \neq y x$. Similarly, the commuting graph associated to a non-abelian group G is the complement of non-commuting graph and it is denoted by $\Delta(G)$ in this paper.

In [9], Tolue et al. assigned a simple undirected graph Γ_{G}^{g} to G and a fixed element $g \in G$ as follows: Take G as the vertex set and two distinct vertices x and y join whenever $[x, y] \neq g$ and g^{-1}. They investigated some graph theoretical properties of Γ_{G}^{g} such as regularity, clique and dominating numbers.

In this article, we consider an induced subgraph of Γ_{G}^{g} whose vertices are all noncentral elements of G. It is called the g-noncommuting graph of G and is denoted by Δ_{G}^{g}. One can see that Δ_{G}^{g} is exactly known non-commuting graph whenever g is an identity element of G indicated by e. Moreover, the commuting graph is a spanning graph of Δ_{G}^{g}. For any group G, let $K(G)=\{[x, y] \mid x, y \in G\}$ be the set of all commutators of G and set $G^{\prime}=<K(G)>$, where G^{\prime} is the commutator subgroup of G. The g-noncommuting graph Δ_{G}^{g} is a complete graph if $g \notin K(G)$. Therefore, we always assume that g is a non-identity element, $g \in K(G)$ and G is a finite group.

It is known that the non-commuting graph is connected and its diameter is equal to 2 (see [1] for more details). But, the g-noncommuting graph is not always connected graph; for instance, $\Delta_{S_{3}}^{(123)}$ has one edge and three isolated vertices where S_{3} is the symmetric group on 3 symboles. So, this is a reason for investigating

[^0]connectivity of g-noncommuting graph for all groups. In section 2 , we discuss about the connectivity of Δ_{G}^{g} for finite groups and prove that the diameter of g noncommuting graph, of course when Δ_{G}^{g} is connected, is at most 4. Moreover, we indicate that the girth of graph is 3 . In spite of the fact that we do believe $\operatorname{diam}\left(\Delta_{G}^{g}\right)=2$ for all groups, when Δ_{G}^{g} is connected it has not been evidently substantiated yet. Therefore, we decided to leave it as a conjecture at the end of section 2.

We remind that, 1-planar graph is a graph which can be drawn in the Euclidean plane in such a way that each edge contains at most one crossing. Also, a toroidal or a projective graph is a graph that can be embeded on a torus or projective plane, respectively.

The last section of the paper deals with the study of g-noncommuting graphs of groups with properties 1-plannar, toroidal and projective.

All over this paper, $\omega(G)=\{|x|: x \in G\}, \exp (G)=\operatorname{lcm}(\omega(G)), C_{G}(x)$ and x^{G} stand for the spectrum of G, the exponent of G, the centralizer and the conjugacy class of x, respectively. Here, our notations and terminologies are standard and one can refer to [4].

2. The connectivity of g-NONCOMMUTING GRAPH

In this section, we investigate the connectivity of g-noncommuting graph of all finite groups. Let us start with the following two simple lemmas. The proofs are omitted here and we refer to [6].
Lemma 2.1 ([6]). Let $x \in G \backslash Z(G)$.
(i) If $g^{2} \neq e$, then $\operatorname{deg}(x)=|G|-|Z(G)|-\epsilon\left|C_{G}(x)\right|-1$, where $\epsilon=1$ if x is conjugate to $x g$ or $x g^{-1}$, but not both and $\epsilon=2$ if x is conjugate to $x g$ and $x g^{-1}$.
(ii) If $g^{2}=e$ and $g \neq e$, then $\operatorname{deg}(x)=|G|-|Z(G)|-\left|C_{G}(x)\right|-1$, whenever $x g$ is conjugate to x.
(iii) If $x g$ and $x g^{-1}$ are not conjugate to x, then $\operatorname{deg}(x)=|G|-|Z(G)|-1$.

Lemma $2.2([6])$. If $K(G)=\{e, g\}$ or $\left\{e, g, g^{-1}\right\}$, then Δ_{G}^{g} is equal to commuting graph.

The following lemma plays an important role in the proofs of some theorems in this section.

Lemma 2.3. If x and y are two non-adjacent vertices such that $d(x, y) \geq 3$, then

$$
1 \leq \frac{t}{\left|x^{G}\right|}+\frac{s}{\left|y^{G}\right|}+\frac{1}{[G: Z(G)]}
$$

where $t, s \in\{1,2\}$.
Proof. We know that $\operatorname{deg}(x)=|G|-|Z(G)|-t\left|C_{G}(x)\right|-1$ and $\operatorname{deg}(y)=|G|-$ $|Z(G)|-s\left|C_{G}(y)\right|-1$, where $t, s \in\{1,2\}$ by Lemma 2.1. Since $d(x, y) \geq 3$, then $\operatorname{deg}(x)+\operatorname{deg}(y)+2 \leq\left|V\left(\Delta_{G}^{g}\right)\right|$ and the proof is completed.

In the following theorems, we determine connectivity and diameter of the g noncommuting graph.
Theorem 2.4. Let g be a non-central element of G and $|g| \neq 3$. Then $\operatorname{diam}\left(\Delta_{G}^{g}\right)=$ 2.

Proof. If $|g|=2$, then by Lemma 2.1, g is adjacent to all vertices and so $\operatorname{diam}\left(\Delta_{G}^{g}\right)=$ 2. Thus assume that, $|g|>3$. Let x and y be two vertices of Δ_{G}^{g} which are not adjacent. Then $[x, y]=g$ or g^{-1} and we have the following cases:

Case 1. x and y are not adjacent to g i.e. $[x, g]=g^{-1}$ and $[y, g]=g^{-1}$. Then $\left[x, g^{2}\right]=\left[y, g^{2}\right]=g^{-2}$. Since $|g|>3$, so $x \sim g^{2} \sim y$, as required.

Case 2. x is not adjacent to g and $y \sim g$. If $y g \notin Z(G)$ then $x \sim y g \sim y$, because $[y, g]=g^{-1}$. Otherwise, $\left[x, g^{2}\right]=g^{-2}$ and $\left[y, g^{2}\right]=e$. Hence, $x \sim g^{2} \sim y$.

Case 3. y is not adjacent to g and $x \sim g$. By replacement x with y in the case 2 and a similar argument, there exists one of the paths, $x \sim x g \sim y$ and $x \sim g^{2} \sim y$. Thus the proof follows.

Theorem 2.5. Let g be a non-central element of order 3 of G. If $\left[C_{G}(g): Z(G)\right]=$ 3 and there exists a vertex x such that $d(x, g) \geq 3$, then Δ_{G}^{g} is disconnected. Moreover, $\frac{G}{Z(G)} \cong S_{3}$ and $\Delta_{G}^{g}=K_{2|Z(G)|} \cup 3 K_{|Z(G)|}$. Otherwise Δ_{G}^{g} is connected and $\operatorname{diam}\left(\Delta_{G}^{g}\right) \leq 4$.
Proof. Assume that, $\left[C_{G}(g): Z(G)\right]=3$ and x is a vertex of Δ_{G}^{g} such that $d(x, g) \geq$ 3. By Lemma 2.1, g and g^{-1} are conjugate in G and so $\operatorname{deg}(g)=|G|-|Z(G)|-$ $\left|C_{G}(g)\right|-1$. Let $\operatorname{deg}(x)=|G|-|Z(G)|-t\left|C_{G}(x)\right|-1$ for some $t \in\{1,2\}$. Then $[G: Z(G)]=\left[G: C_{G}(g)\right]\left[C_{G}(g): Z(G)\right]=3\left|g^{G}\right|$ and Lemma 2.3 implies that

$$
\begin{equation*}
\frac{t}{\left|x^{G}\right|} \geq \frac{3\left|g^{G}\right|-4}{3\left|g^{G}\right|} \geq \frac{1}{3} . \tag{1}
\end{equation*}
$$

Thus $\left|x^{G}\right| \leq 3 t$ for some $t \in\{1,2\}$.
Let $t=1$. If $\left|x^{G}\right|=2$, then $\left[G: C_{G}(x)\right]=2$ which is a contradiction, since $|g|=3$ and $d(x, g) \geq 3$. Thus $\left|x^{G}\right|=3$ and by (1) we should have $\left|g^{G}\right|=2$. Therefore, $[G: Z(G)]=6$ and $\left|C_{G}(x)\right|=2|Z(G)|$. So $\operatorname{deg}(x)=|G|-|Z(G)|-\left|C_{G}(x)\right|-1=$ $3|Z(G)|-1$. Now, we show that x is adjacent to only non-central elements in $C_{G}(x)$. Suppose that $y \in G \backslash C_{G}(x)$. Since $G=C_{G}(x) \cup g C_{G}(x) \cup g^{-1} C_{G}(x)$ and $d(x, g) \geq 3$, so $[x, y] \in g^{G}=\left\{g, g^{-1}\right\}$ which implies that x and y are not adjacent. Thus $\operatorname{deg}(x)=\left|C_{G}(x)\right|-|Z(G)|-1=|Z(G)|-1$, that is a contradiction.
Therefore $t=2$ and it is clear that $\left|x^{G}\right| \geq 3$. If $\left|x^{G}\right| \geq 4$ then by (1), $\left|g^{G}\right|=2$ and so $[G: Z(G)]=3\left|g^{G}\right|=6$ which is impossible, because $\left|x^{G}\right| \mid[G: Z(G)]$. Hence $\left|x^{G}\right|=3$ and $G=C_{G}(x) \cup g C_{G}(x) \cup g^{-1} C_{G}(x)$. Let $a \in G$, then $a=g^{i} s$ for some $s \in C_{G}(x)$ and $i \in\{0,1,-1\}$, so $g^{a}=g^{g^{i} s}=g[g, s]$. Since $d(x, g)>2$, so either $s \in Z(G)$ or $[g, s]=g$. Thus $g^{a}=\left\{g, g^{-1}\right\}$ and $[G: Z(G)]=6$. It follows that $\frac{G}{Z(G)} \cong S_{3}$ and $\operatorname{deg}(x)=|G|-2\left|C_{G}(x)\right|-|Z(G)|-1=|Z(G)|-1$. It means that x is adjacent to only non-central elements in $C_{G}(x)$. Also, one can easily see that for every two elements $a, b \in G$ we have $[a, b] \in\langle g\rangle$. Therefore $K(G)=G^{\prime}=\langle g\rangle=$ $\left\{e, g, g^{-1}\right\}$ and Δ_{G}^{g} coincides to the known commuting graph, by Lemma 2.2. In particular, $C_{G}(g) \backslash Z(G), C_{G}(x) \backslash Z(G), C_{G}(x g) \backslash Z(G)$ and $C_{G}\left(x g^{-1}\right) \backslash Z(G)$ are connected components of g-noncommuting graph and $\Delta_{G}^{g}=K_{2|Z(G)|} \cup 3 K_{|Z(G)|}$. If distance of every vertex of Δ_{G}^{g} to g is at most 2 , then clearly Δ_{G}^{g} is connected and $\operatorname{diam}\left({ }_{G}^{g}\right) \leq 4$.
Now, suppose that $\left[C_{G}(g): Z(G)\right] \geq 4$ and x, g are not adjacent. Let $a \in C_{G}(g) \backslash$ $\left(Z(G) \cup g Z(G) \cup g^{-1} Z(G)\right)$. If $a \sim x$ then $d(x, g)=2$, since $a \sim g$. If $[x, a]=g$ or g^{-1}, then we have two paths $x \sim g a \sim g$ or $x \sim g^{-1} a \sim g$, respectively and the proof is completed.

Theorem 2.6. Let g be a central element of G. If there are two vertices such that their distance is greater than 5, then Δ_{G}^{g} is disconnected and the following cases occur:
(i) If $|g| \geq 3$, then $\frac{G}{Z(G)} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and $\Delta_{G}^{g}=4 K_{2|Z(G)|}$,
(ii) If $|g|=2$, then $\frac{G}{Z(G)} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $\Delta_{G}^{g}=3 K_{|Z(G)|}$.

Otherwise Δ_{G}^{g} is the connected graph and $\operatorname{diam}\left(\Delta_{G}^{g}\right)=2$.
Proof. Let x and y be two vertices of Δ_{G}^{g} such that $d(x, y) \geq 5$. Then $[x, y]=g$ or g^{-1}. Without loss of generality, we can assume that $[x, y]=g$.

First, assume $|g| \geq 3$. It is clear that $\left[x, y^{2}\right]=g^{2}$ and so $y^{2} \notin Z(G)$. Since $d(x, y) \geq 5$, so $\left[x, y^{2}\right]=g^{-1}$ and it implies that $|g|=3$ and $y^{3} \in Z(G)$. Similarly, we can see that $x^{3} \in Z(G)$. Let $a \in G \backslash Z(G)$, then $d(a, x) \geq 3$ or $d(a, y) \geq 3$. In any case by the same argument as before, $a^{3} \in Z(G)$. It means that $\exp \left(\frac{G}{Z(G)}\right)=3$. Assume that $[G: Z(G)]=3^{\gamma},\left|x^{G}\right|=3^{\alpha}$ and $\left|a^{G}\right|=3^{\beta}$, where $\gamma>\alpha \geq \beta$. Then by Lemma 2.3,

$$
\begin{equation*}
1 \leq \frac{s}{3^{\alpha}}+\frac{t}{3^{\beta}}+\frac{1}{3^{\gamma}}, \quad s, t \in\{1,2\} \tag{2}
\end{equation*}
$$

Thus $3^{\gamma-\alpha}\left(3^{\alpha}-t 3^{\alpha-\beta}-s\right) \leq 1$, where $s, t \in\{1,2\}$. If $\beta \geq 2$, then by the above inequality $3^{\gamma} \leq 1$, which is impossible. Therefore $\beta=1$ and by a simple computation we arise that $\alpha=1$. Thus $\left|a^{G}\right|=3$ for every $a \in G \backslash Z(G)$. It can be proved that $\left[C_{G}(y): Z(G)\right]=3$ because if $b \in C_{G}(y) \backslash Z(G) \cup y Z(G) \cup y^{2} Z(G)$, then $\left[x, y^{i} b\right]=1$ where $i \in\{1,2\}$. Since $d(x, y) \geq 5$, so $y^{i} b \in Z(G)$, which is a contradiction. Therefore $\frac{G}{Z(G)} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and $G=\langle x\rangle\langle y\rangle Z(G)$, since $[x, y]=g \in Z(G)$. Also $G^{\prime}=K(G)=\left\{1, g, g^{-1}\right\}$ and Lemma 2.2 implies that $\Delta_{G}^{g}=4 K_{2|Z(G)|}$.

Now, suppose that $|g|=2$. Then $y^{2} \in Z(G)$, because $\left[x, y^{2}\right]=1$ and $d(x, y) \geq 5$. By similarly argument as before, we have $\frac{G}{Z(G)}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $\Delta_{G}^{g}=3 K_{|Z(G)|}$.

Finally, suppose distance between any two vertices is at most 4 in Δ_{G}^{g}. We want to show $\operatorname{diam}\left(\Delta_{G}^{g}\right)=2$. Let x and y be two vertices of Δ_{G}^{g} and there exists a path of length $n \geq 3$ between x and y as,

$$
x \sim u_{1} \sim u_{2} \sim \ldots \sim u_{n-1} \sim y
$$

First, suppose $|g| \neq 3$. If $x^{2} \notin Z(G)$, then x^{2} is adjacent to x and y that is a contradiction. Therefore $x^{2} \in Z(G)$ and since $\left[x u_{1}, y\right] \in\left\{e, g^{2}, g^{-2}\right\}$, it should be $x u_{1} \in Z(G)$ otherwise $x \sim x u_{1} \sim y$. Let $u_{1}=x z$ for some $z \in Z(G)$. Then $\left[u_{1}, u_{2}\right]=\left[x, u_{2}\right]=g$ or g^{-1}, that is a contradiction again.
Now, we investigate the case $|g|=3$. It is clear that $\left[x^{3}, y\right]=1$ and since $d(x, y) \geq 3$, so $x^{3} \in Z(G)$. It should be $x^{2} u_{1} \in Z(G)$ otherwise $x^{2} u_{1}$ is common neighborhood of x and y. Thus $u_{1} \in x^{-2} Z(G)=x Z(G)$ and again $\left[u_{1}, u_{2}\right]=g$ or g^{-1}, which is a contradiction. Hence $\operatorname{diam}\left(\Delta_{G}^{g}\right)=2$ for all possible cases and the proof is completed.

Corollary 2.7. If order of G is odd and Δ_{G}^{g} is connected, then $\operatorname{diam}\left(\Delta_{G}^{g}\right)=2$.
Proof. We can see that $\operatorname{diam}\left(\Delta_{G}^{g}\right)=2$, when g is a central element by Theorem 2.6 or g is a non-central element and $|g| \neq 3$ by Theorem 2.4. So, assume that g is a non-central element and $|g|=3$. If g is not conjugate to g^{2}, then g is adjacent to all vertices by Lemma 2.1. Otherwise $g^{a}=g^{2}$ for some $a \in G$, then $g^{a^{2}}=g$. So $a^{2} \in C_{G}(g)$. Since the order of a is odd therefore $a \in C_{G}(g)$, that is a contradiction and the proof is completed.

Now, let us state the following conjecture.
Conjecture. For any group G and any element $g \in K(G), \operatorname{diam}\left(\Delta_{G}^{g}\right)=2$ when Δ_{G}^{g} is connected.

Theorem 2.8. The girth of g-noncommuting graph is 3 , unless $G \cong S_{3}, D_{8}$ or Q_{8}. Moreover, g-noncommuting graph of groups S_{3}, D_{8} and Q_{8} are forest.

Proof. Let $x \in G \backslash Z(G)$. If $|Z(G)| \geq 3$, then $x \sim x z_{1} \sim x z_{2} \sim x$ is a cycle in Δ_{G}^{g}, where z_{1} and z_{2} are two distinct nontrivial elements of $Z(G)$.
So, assume that $|Z(G)|=2$. If $|x Z(G)| \geq 3$, then the set of vertices $\left\{x, x^{-1}, x z\right\}$ forms a triangle in Δ_{G}^{g} for some $z \in Z(G)$. Otherwise, $\frac{G}{Z(G)}$ must be an elementary abelian 2-group. If $C_{G}(x) \backslash\{e, z, x, x z\} \neq \emptyset$, then $\operatorname{girth}\left(\Delta_{G}^{g}\right)=3$. Therefore $\left|C_{G}(x)\right|=4$ and so $|G|=8$. Hence $G \cong D_{8}$ or Q_{8}.
Now, suppose that $|Z(G)|=1$. If $|x| \geq 4$, then $\left\{x, x^{2}, x^{3}\right\}$ forms a cycle of length 3 in Δ_{G}^{g}. Therefore $|G|=2^{\alpha} 3^{\beta}$. It is obvious that, all Sylow 2-subgroups of G are abelian. Thus $\operatorname{girth}\left(\Delta_{G}^{g}\right)=3$, unless $\alpha=1$. Let Q be a non-abelian Sylow 3 -subgroup of G. Then we have a cycle as, $a \sim a^{-1} \sim a b \sim a$ for some $a \in Q \backslash Z(Q)$ and $b \in Z(Q)$. Therefore every Sylow 3-subgroup of G is abelian and so $\operatorname{girth}\left(\Delta_{G}^{g}\right)=3$, unless $\beta=1$. It implies that $|G|=6$ and $G \cong S_{3}$, as claimed.

3. 1-PLANAR, TOROIDAL AND PROJECTIVE CASES

In this section, all finite non-abelian groups whose their g-noncommuting graphs are 1-planar, toroidal or projective, are classified. First, we determine 1-planar g noncommuting graphs. For this purpose, we recall the following two lemmas from [5].

Lemma 3.1 ([5]). Let Γ be a 1-planar graph on n vertices and m edges. Then $m \leq 4 n-8$.

Lemma 3.2 ([5]). Every 1-planar graph contains a vertex of degree at most 7; the bound 7 is the best possible.

Lemma 3.3. Let $|Z(G)| \geq 4$ and Δ_{G}^{g} be 1-planar graph. Then $\frac{G}{Z(G)}$ is an elementary abelian 2-group.

Proof. If $x Z \in \frac{G}{Z(G)}$ such that $|x Z|>2$, then $x Z \cup x^{-1} Z$ induces a complete subgraph with at least 8 vertices, which is a contradiction.

Theorem 3.4. Let G be a finite non-abelian group. Then Δ_{G}^{g} is 1-planar if and only if G is ismorphic to one of the following groups
(i) $S_{3}, D_{8}, Q_{8}, D_{10}, D_{12}, \mathbb{Z}_{3} \rtimes \mathbb{Z}_{4}, \mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}, \mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}$,

$$
\mathbb{Z}_{2} \times D_{8}, \mathbb{Z}_{2} \times Q_{8}, \mathbb{Z}_{3} \times S_{3}, \mathbb{Z}_{3} \times D_{8}, \mathbb{Z}_{3} \times Q_{8}
$$

$$
\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2} \cong\left\langle a, b: a^{4}=b^{2}=(a b)^{4}=\left[a^{2}, b\right]=1\right\rangle
$$

$$
\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \rtimes \mathbb{Z}_{2} \cong\left\langle a, b, c: a^{2}=b^{2}=c^{4}=[a, c]=[b, c]=1,[a, b]=c^{2}\right\rangle
$$

$$
\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3} \cong\left\langle a, b: a^{3}=b^{9}=1,[b, a]=b^{3}\right\rangle
$$

$$
\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{3} \cong\left\langle a, b, c: a^{3}=b^{3}=c^{3}=[b, c]=[a, c]=1,[b, a]=c\right\rangle
$$ for all $g \in G^{\prime}$,

(ii) $D_{16}, Q D_{16}$ and Q_{16}, for $g \in G^{\prime} \backslash Z(G)$.

Proof. Let x be a vertex of Δ_{G}^{g} of minimum degree δ. Then $\delta=|G|-|Z(G)|-$ $\epsilon\left|C_{G}(x)\right|-1$ for some $\epsilon \in\{1,2\}$ and by Lemma 3.2, $\delta \leq 7$ and,

$$
\begin{equation*}
|Z(G)|\left([G: Z(G)]-\epsilon\left[C_{G}(x): Z(G)\right]-1\right) \leq 8, \quad \epsilon \in\{1,2\} \tag{3}
\end{equation*}
$$

Set $l=[G: Z(G)]-\epsilon\left[C_{G}(x): Z(G)\right]-1$. Since the complete graph K_{7} on seven vertices is not 1-planar therefore $|Z(G)| \leq 7$. We proceed the proof in some steps.

Step 1. $|Z(G)| \geq 4$. By (3), $[G: Z(G)]=\epsilon\left[C_{G}(x): Z(G)\right]+(l+1)$ for some $l, \epsilon \in\{1,2\}$. Lemma 3.3 implies that $\frac{G}{Z(G)}$ is a 2 -group, so $[G: Z(G)]=2^{\alpha}$ and $\left[C_{G}(x): Z(G)\right]=2^{\beta}$. Thus $2^{\alpha}=\epsilon 2^{\beta}+(l+1)$. It can be seen that the only solution of the last equality is $(\alpha, \beta, \epsilon, l)=(2,1,1,1)$. Then $[G: Z(G)]=4$ and $|G|=\left|C_{G}(x)\right|+2|Z(G)|$. Since G is nilpotent, so $|Z(G)| \neq 5,7$.
If $|Z(G)|=6$, then $|G|=24$ and $G \cong \mathbb{Z}_{3} \times H$, where H is an extra special 2-group. Hence $G \cong \mathbb{Z}_{3} \times D_{8}$ or $\mathbb{Z}_{3} \times Q_{8}$. Then $\left|G^{\prime}\right|=2$ and $\Delta_{G}^{g} \cong \Delta(G) \cong 3 K_{6}$ by Lemma 2.2.

If $|Z(G)|=4$, then $|G|=16$. We know that there exist only six non-abelian group of order 16 and $|Z(G)|=4$. This groups have derived subgroup of order 2 and by lemma 2.2, $\Delta_{G}^{g} \cong \Delta(G)$. Therefore, Theorem 2.2 of [3] implies that Δ_{G}^{g} is 1-planar.

Step 2. $|Z(G)|=3$. If there exists $y \in C_{G}(x) \backslash Z(G) \cup x Z(G) \cup x^{-1} Z(G)$, then $x Z(G) \cup y Z(G) \cup\{x y\}$ induces a subgraph isomorphic to K_{7}. Thus $C_{G}(x)=$ $\langle x, Z(G)\rangle$ and $\left[C_{G}(x): Z(G)\right]=2$ or 3 . Therefore 6 or 9 divide $|G|$ and (3) implies that $|G|=18$ or 27 .

Step 3. $|Z(G)|=2$. If $y Z(G) \in \frac{G}{Z(G)}$ such that $|y Z(G)| \geq 5$, then $y Z(G) \cup$ $y^{2} Z(G) \cup y^{3} Z(G) \cup y^{4} Z(G)$ is a commuting set which is a contradiction. Therefore, $\omega\left(\frac{G}{Z(G)}\right)=\{1,2,3,4\}$. Let $\frac{G}{Z(G)}$ be a 2-group. Then by the same computation as before, it can be seen that $|G|=8$ or 16. Let Q be a Sylow 3 -subgroup of G. Then by Lemma 2.1 in $[3],|Q|$ must be 3. Thus $\frac{G}{Z(G)}$ is not 3-group and so $\left|\frac{G}{Z(G)}\right|=2^{\alpha} 3$. By (3), $[G: Z(G)]=\epsilon\left[C_{G}(x): Z(G)\right]+(l+1)$ for some $l \in\{1,2,3,4\}$. If $\epsilon=1$, then

$$
\frac{|G|}{2} \leq|G|-\left|C_{G}(x)\right|=(l+1)|Z(G)| \leq 10
$$

and so $|G|=12$, since $6\left||G|\right.$. If $\epsilon=2$, then $\frac{|G|}{3} \leq|G|-\left|C_{G}(x)\right| \leq 10$. Hence, $|G|=12$ or 24 .

Step 4. $|Z(G)|=1$. Since Δ_{G}^{g} has no induced subgraph isomorphic to K_{7}, so $\omega(G)=\{1,2,3,4,5,6,7\}$. By (3), we should have $|G|-\epsilon\left|C_{G}(x)\right| \leq 9$. Hence, $|G| \leq 27$.

Finally, the degrees of vertices of the graph associated to the above groups are computed with group theory package GAP [8]. It can be seen that some graphs are not 1-planar by Lemmas 3.1 and 3.2. But the graph associated to groups (i) are same as the commuting graph which are the union of complete graphs with up to six vertices. Also, Δ_{G}^{g} is isomorphic to figure 1 when G is one of the groups (ii). The graph is 1-planar in any case and the proof is completed.
The converse is straightforward.

Figure 1. $\Delta_{D_{16}}^{a^{2}}$

The last theorem of the paper states the determination of toroidal and projective g-noncommuting graphs. Since the known commuting graph is a spanning subgraph of g-noncommuting graph and all groups which their commuting graph are toroidal or projective are classified in [3], so it is enough to investigate g-noncommuting graphs associated to those groups. First, we recall the following lemma which is used several times in the proof of our result.

Lemma 3.5 ([4]). Let Γ be a simple connected graph that is embeddable on a surface S. Then

$$
m \leq 3(n-\chi)
$$

where n, m and χ are the numbers of vertices, edges and Euler characteristic of S, respectively.

Theorem 3.6. There is no toroidal and projective g-noncommuting graph.
Proof. We know that $\chi=0$ and 1 for torus and projective plane, respectively. The only groups that should be considered are $D_{14}, D_{16}, Q D_{16}, Q_{16}, A_{4} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$ by [3]. By calculating the number of edges can be checked that $m>3(n-\chi)$ and so the g-noncommuting graph can not be embedded on torus or projective plane.

References

1. A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), 468-492.
2. A. Abdollahi and A. Mohammadi Hassanabadi, Non-cyclic graph of a group, Comm. Algebra, 35 (2007), 2057-2081.
3. M. Afkhami, M. Farrokhi D. G., and K. Khashyarmanesh, Toroidal and projective commuting and non-commuting graphs, Comm. Algebra 43 (7) (2015), 2964-2970.
4. J.A. Bondy and U.S.R. Murty, Graph theory, Graduate texts in Mathematics, 244, SpringerVerlag, New York 2008.
5. I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Mathematics, 307 (2007), $854-865$
6. M. Nasiri, A. Erfanian, M. Ganjali and A. Jafarzadeh, Isomorphic g-noncommuting graphs of finite groups, submitted.
7. B.H. Neumann, A problem of Paul Erdös on groups, J. Aust. Math. Soc., Ser. A 21 (4) (1976), 467-472.
8. The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.6.4, 2013 (http://www.gap-system.org/).
9. B. Tolue, A. Erfanian and A. Jafarzadeh, A kind of non-commuting graph of finite groups, J. Sci. Islam. Repub. Iran, 25(4) (2014) 379-384.
10. B. Tolue and A. Erfanian, Relative non-commuting graph of a finite group, J. Algebra Appl., 12 (2013).

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
E-mail address: mahnasiri@yahoo.com
Department of Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran

E-mail address: erfanian@math.um.ac.ir
Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
E-mail address: abbasmohammadian1248@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 05C25; Secondary 20P05.
 Key words and phrases. Connected graph, 1-planar graph, g-noncommuting graph.

