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Abstract Selective transport of lead(II) cation across a bulk liquid membrane(BLM) containing

dicyclohexano-18-crown-6 (DC18C6) as carriers has been studied. Various factors that affect the

transport efficiency of this heavy metal cation have been optimized in order to obtain maximum

transport. It has been observed that in the presence of EDTA as stripping agent and triton

X-100 as sufficient surfactant in the receiving phase and at the optimum pH of 5, lead can transport

with recovery 101 ± 2%. The carrier can selectively and efficiently transport Pb(II) cation from

aqueous solutions containing other interfering cations. A possible application of this carrier system

and transport process to the preconcentration and recovery of Pb(II) cation from real samples has

also been examined.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Industrial effluents containing highly toxic and non-biodegrad-

able heavy metal cations are generated in hydrometallurgy,
electroplating, and electrochemical industries. For the purpose
of environmental conservation and resources recycling, the re-

moval and recovery of the heavy metals have become increas-
ingly stringent (Chmielewski et al., 1997; Kan et al., 2008;
Valenzuela et al., 2005). Lead is one of the most extensively
encountered heavy metal in the environment, selective removal
of Pb2+ cation for environmental remediation and in the treat-
ment of acute and chromic lead poisoning remains an impor-

tant objective (Izatt et al., 1985; Hancock, 1986; Damu
et al., 1986).

The separation methods used include precipitation reac-

tions, solvent extraction, chromatography and membrane sep-
aration. Among all of these techniques, the membrane
separation technology is of recent interest (Noble and Stern,
1995a). In recent years, liquid membrane systems are used very

often, as alternatives to many other separation and enrichment
processes (Noble and Stern, 1995b; Araiki and Tsukube, 1990;
Boyadzhiev and Lazarova, 1995). The membrane systems offer

greater advantage in terms of energy and matter consumption
as well as they offer more selectivity, compared to the other
separation systems. For separations at the molecular size in

carrier-mediated transport, the liquid membrane systems are
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Figure 1 Molar conductance-mole ratio plots for

(DC18C6ÆPb)2+ complex in DMF.
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quite effective and selective (Noble and Stern, 1995b). There

are several liquid membrane operation techniques and process
designs such as bulk, emulsion and supported liquid mem-
branes. Since the bulk liquid membranes have simple designs
and offer ease of control, these are frequently implemented

for laboratory studies (Bartsch et al., 1999; Izatt et al., 1986;
Altin et al., 2007).

Liquid membranes can carry out extraction and stripping

processes simultaneously and they show advantages of non-
equilibrium mass transfer and up-hill effect, where solute can
move from low-to-high concentration solution (Franken,

1997; Gu et al., 1994; Gaikwad, 2004; Pei et al., 2009).
Selective transport of cationic substrates by membrane car-

riers is of great importance in chemistry, biology, and separa-

tion sciences. Compared with conventional separation
processes, such as liquid–liquid extraction, membrane tech-
niques are characterized by the technical simplicity and high
efficiency in separating or enriching material from gaseous or

liquid mixtures. Membrane techniques have been widely used
for carrier facilitated metal ion separations (He et al., 1992;
El-Reefy et al., 1996; Kedari et al., 1999; Mishra et al., 1999;

Kazemi and Shamsipur, 1999; Safavi and Shams, 1999;
Akhond and Shamsipur, 1995; Rezvanianzadeh et al., 2000;
Yamini et al., 2002).

In the present paper, the results of an investigation on
membrane extraction of lead(II) cation using the bulk liquid
technique containing DCH18C6 are reported. Different exper-
imental conditions, e.g. the effect of DCH18C6 concentration

in the membrane, type and concentration of stripping agents in
the receiving phases, time and etc on Pb2+ cation transport
were investigated.

2. Experimental

2.1. Reagents

DCH18C6, sodium thiosulfate (Na2S2O3Æ5H2O), sodium thio-
cyanate, thiourea, EDTA, dimethylformamide (DMF) and
lead(II) nitrate (all from Merck), sodium hydroxide (Riedel),

sodium nitrate (BDH) were used without further purification.
Chloroform (BDH), 1,2-dichloroethane, dichloromethane and
nitrobenzene (all from Merck) with highest purity were used as
liquid membranes. All aqueous solutions were prepared using

deionized double distilled water.

2.2. Procedure

The transport experiments employed standardized concentric
cells in which the aqueous source phase (10 cm3) and receiving

phase (30 cm3) were separated by an organic phase (50 cm3).
All transport experiments were carried out at ambient temper-
ature. The organic layer was stirred by a Teflon-coated mag-

netic bar. Speed of stirrer was adjusted so that the phases
did not mix with each other. Under these conditions, not only
the mixing process is perfect, but also the interfaces between
the organic membrane and the two aqueous phases remained

flat and were well defined.
The source phase (SP) contained lead(II) nitrate

(5 · 10�4 M). The membrane phase (MP) contained the macro-

cycle ionophore (1 · 10�3 M) and the receiving phase (RP), con-
sisted of a stripping reagent (1 · 10�3 M). In the course of the
transport experiment, samples of both aqueous phases were

analyzed for metal content by atomic absorption spectroscopy
(Shimadzu-670).

3. Results and discussion

3.1. (DCH18C6-Pb)2+ complexation

In order to study the complexation process between DCH18C6
and Pb2+ cation, we used a conductometric titration and the

changes of molar conductivity (Km) versus the ligand to the cat-
ion molar ratio ([L]t/[M]t) for this complexation were measured
inDMFat 25 �C.As is shown inFig. 1, a sharp increase inmolar

conductance is observed, that indicates the complex is moremo-
bile than the cation. The slope of the curve changes at 1:1[M:L],
that indicate the stoichiometry of the complex formed between

DCH18C6 and this heavy metal cation is 1:1. The formation
constant of (DCH18C6-Pb)2+ at 25 �C was calculated from
changes of the molar conductance as a function of ligand/cation
molar ratios using a GENPLOT computer program (Graphic,

1989) and the logKf value was found to be: 3.09 ± 0.04. The de-
tails of calculation of the stability constants of complexes by
conductometric method have been described in reference

(Rounaghi et al., 1997). The logKf value indicates that
DCH18C6 is a suitable carrier to operate as phase transport cat-
alyst to separate Pb2+ cation from bulk liquid membrane sys-

tem. This may be due to the size of the Pb2+ (r = 1.18 Å) ion
and, therefore, it can attain a convenient fit condition for the
dicyclohexyl-18-crown-6 (r= 2.2 Å) cavity. In addition, in the

other experiment, we investigated preliminarily on competitive
transport of this cation among some other metal cations
(Rounaghi et al., 2011). It was found that DCH18C6 has the
desired ability to transport Pb2+cation against its concentration

gradient through bulk liquid membrane (Fig. 2).

3.2. Transport mechanism

The Pb2+ cation is transported from the source phase into the
receiving phase via a chloroform membrane. The movement of



Figure 3 Schematic of lead transport mechanism.
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Figure 4 Effect of organic membrane on lead transport [source

phase (10 ml) with pH 5, contained lead(II) nitrate (5 · 10�4 M)

and picric acid (1 · 10�3 M), membrane phase (50 ml) contained

macrocycle ionophore (1 · 10�3 M) and receiving phase (30 ml)

with pH 3, consisted of EDTA (1 · 10�3 M)].
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Figure 2 The results of competitive metal ion transport (water/

chloroform /water) studies for dicyclohexyl-18-crown-6.
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charged species through the hydrophobic liquid membrane is
accomplished by the presence of a cooperative host composed
of DCH18C6. After complexation of the carrier with Pb2+ cat-
ion on the source boundary phase of the membrane, the com-

plex diffuses down its concentration gradient. On the
receiving side of the membrane, the metal ion would be released
into the receiving phase via formation of a ternary complex

(carrier–metal ion–EDTA). At this stage, the free carrier dif-
fuses back across the liquid membrane. The net result is the
transport of Pb2+ cation from the aqueous source phase into

the aqueous receiving phase across the bulk of the organic
membrane phase. A schematic diagram of this mechanism is
shown in Fig. 3.

3.3. Effect of type of organic membrane

Selection of a right solvent (or membrane phase) is the prime

issue in all kinds of liquid membrane separation processes.
The solvent should be chosen in such a way that it is immiscible
with the aqueous phase, has low viscosity and volatility and at

the same time it should have a high distribution coefficient
(Mulder, 1991; Noble and Douglas Way, 1987). In this work,
the effect of some organic membrane solvents including: dichlo-

romethane, 1,2-dichloroethane, chloroform and nitrobenzene
on the transport efficiency of Pb2+ was studied. The results
are shown in Fig. 4. As is evident in this figure, the order of
transport rate of Pb2+ cation through organic solvents is: chlo-
roform > dichloromethane > 1,2-dichloroethane > nitroben-
zene. The partitioning of ions into the organic phase should be
affected by the dielectric constant (Izatt et al., 1986; Bartscha

et al., 1999). Dielectric constants of these solvents decrease in:
1,2-dichloroethane > nitrobenzene > dichlorometh-
ane > chloroform. Since chloroform has the lowest dielectric

constant, therefore, the partitioning of the result complex into
it is easier than the other organic solvents. Also this may be lead
to stabilization of the ion-pair in the organic phase causing to

increase the rate of transport of (DCH18C6-Pb)2+ complex
through chloroform as liquid membrane. Chloroform also
has higher donor and acceptor numbers. The solvating ability

of a solvent as expressed by the Gutmann donor number, plays
a fundamental role in complexation reactions between metal
cations and macrocyclic ligands and a solvent with a high do-
nor number can compete strongly with the ligand for the cation

leading to a weaker (DCH18C6-Pb)2+complex than the other
solvents. This character may be lend to that chloroform can
easily release metal cation to the receiving phase however, other

parameters can be effected in chloroform performance.

3.4. Effect of type and concentration of stripping agent in the
receiving phase

Preliminary experiments revealed that the nature and concen-
tration of the stripping agent in the aqueous receiving phase

could have a significant effect on the efficiency of transport
of the Pb2+ cation. As it is seen from Table 1, among different
stripping agents used in this study, the EDTA with increased

complexing ability toward Pb2+ cation acts as the most suit-
able receiver for the release of this cation from the membrane
phase into the receiving phase. Chelating agents, such as ethyl-

enediaminetetraacetic acid (EDTA), can form stable and solu-
ble complexes with heavy cations and thus substantially
increase heavy metals removal from contaminations. In addi-

tion, although using EDTA in removing pollutions was dem-
onstrated to be widely applicable and economically feasible
with acceptable environmental risk, that a number of studies
has been carried out on the addition of EDTA and recovery

of heavy metals from washing effluents (Wasay et al., 1999;



Figure 5 Effect of EDTA concentration in the receiving phase

on lead transport [source phase (10 ml) with pH 5, contained

lead(II) nitrate (5 · 10�4 M) and picric acid (1 · 10�3 M), mem-

brane phase (50 ml) contained macrocycle ionophore (1 · 10�3 M)

and receiving phase (30 ml) with pH 3, consisted of a stripping

reagent with different concentrations].
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Figure 6 Effect of carrier concentration in the membrane phase

on lead transport [source phase (10 ml) with pH 5, contained

lead(II) nitrate (5 · 10�4 M) and picric acid (1 · 10�3 M), mem-

brane phase (50 ml) contained macrocycle ionophore with differ-

ent concentrations and receiving phase (30 ml) with pH 3,

consisted of EDTA (1 · 10�3 M)].
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Figure 7 Effect of picrate ion concentration in the source phase

on lead transport [source phase with pH 5, contained lead(II)

nitrate (5 · 10�4 M) and picric acid with different concentrations,

membrane phase (50 ml) contained macrocycle ionophore

(1 · 10�3 M) and receiving phase (30 ml) with pH 3, consisted of

EDTA (1 · 10�3 M)].

Table 1 Effect of type of stripping agent on the Pb2+

transport [source phase (10 ml) with pH 3,contained lead(II)

nitrate (2.5 · 10�4 M) and picric acid (1 · 10�3 M) and NaNO3

(10 w/v%), membrane phase (50 ml) contained macrocycle

ionophore (1 · 10�3 M) and receiving phase (11 ml) with pH 5,

consisted of different stripping agents (1 · 10�3 M) and triton

X-100 (1.4 · 10�3 M)].

Stripping

agent

Percentage transported

into receiving phase

Percentage remaining

in source phase

SCN� 9.28 5.6

P2O7
2- 10.47 27.2

EDTA 101 0

Thiourea 10.07 12.17
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Huang et al., 2000; Juang and Wang, 2000; Palma et al., 2003;
Lo and Zhang, 2005). Therefore, we used EDTA for further
experiments and the influence of the concentration of EDTA

in the receiving phase on the transport efficiency of Pb2+

was also investigated and the graphical results are shown in
Fig. 5. As is obvious, while only 5.23% Pb2+ cation transport

occurs in the absence of the stripping agent, the transport of
Pb2+ cation increases sharply with increasing the concentra-
tion of EDTA. The most transport of this cation occurs at

1.0 · 10�3 M of this stripping agent. Thus, 1.0 · 10�3 M
EDTA concentration was adopted for further studies.

3.5. Effect of concentration of ion carrier in the organic phase

It is well known that in carrier mediated transport, carrier is
used to enhance the membrane transport of the solute. The ef-

fect of the concentration of ion carrier in the membrane phase
on transport efficiency of lead(II) cation was also investigated.
The percentage of this cation transported increases with an in-

crease in ion carrier concentration in the chloroform phase
(Fig. 6). Maximum transport occurs at a concentration of
about 10�3 M ion carrier. Further increase in carrier concen-

tration caused a slight decrease in transport efficiency which
may be due to more interactions between the metal cation
and crown ether in organic membrane, and therefore, causing
less delivering the cation to the receiving phase.
3.6. Effect of concentration of counter ion in the source phase

In our system, due to simplicity and increasing the Pb2+ cation
transport to the organic membrane phase, we used picric acid
as counter ion in the source phase. As is obvious in Fig. 7,

while only 4.91% lead ion transport occurs in the presence
of the nitrate ion, and about 66% of the cation remains in
the source phase and cannot transported to the organic mem-

brane phase, therefore, nitrate ion is not a suitable counter ion
to accompany the (DCH18C6-Pb)2+ complex into the mem-
brane phase. It is well known that the soft, polarizable and

weakly hydrated picrate ion is a convenient counter ion that
provides greater distribution ratios and membrane transport
rates for metal ion–neutral ligand complexes than do inorganic
ions such as NO3

� and ClO4
� (Talanova et al., 1999). For this
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Figure 9 Effect of pH of the receiving phase on lead transport

[source phase (10 ml) with different pHs, contained lead(II) nitrate

(2.5 · 10�4 M) and picric acid (1 · 10�3 M), membrane phase

(50 ml) contained macrocycle ionophore (1 · 10�3 M) and receiv-

ing phase (30 ml) with pH 3, consisted of EDTA (1 · 10�3 M)].
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Figure 10 Effect of pH of source phase on lead transport [source

phase (10 ml) with pH 3, contained lead(II) nitrate (2.5 · 10�4 M)
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reason, picrate ion was selected as a suitable counter ion. The

results are shown in Fig. 6. The flux and efficiency of lead ion
transport increase sharply with increasing the concentration of
picric acid. The most transport of Pb2+ cation occurs at a
10�3 M of the counter ion. However, a further increase in

the concentration of picric acid caused a decrease in the per-
centage transport of lead ion, most possibly due to the fact
that picric acid itself competes with lead(II) nitrate for trans-

port through the BLM system. Thus, 10�3 M picric acid con-
centration was adopted for further studies.

3.7. Effect of concentration of lead(II) cation in the source
phase

In order to estimate on the ability and performance of our sys-
tem to separation and purification of Pb2+ cation, various
concentrations of this cation were investigated (Fig. 8). As is
evident in Fig. 8, no significant change in recovery was ob-

served with different concentrations of Pb2+ cation in the
samples.

3.8. Effect of the pH of the source phase and receiving phase on
Pb2+ cation transport

The influence of pH of the source phase on the transport of
lead(II) cation can be seen from the graphical results given
in Fig. 9. It was found that maximum Pb2+ cation occurs at
pH 3.7. In low pH value, due to low dissociation of picric acid,

the concentration of picrate anion reduces which resultsin
decreasing efficiency the lead cation transport. In high pH val-
ues the formation of lead hydroxide precipitate will reduce

transport efficiency of Pb2+ cation into the organic phase.
Fig. 10 shows the effect of pH of the receiving phase on the

efficiency of lead ion transport. The results reveal that the

maximum lead ion transport occurs at pH 5. In this pH,
EDTA is in its suitable form and can form a stable complex
with Pb2+ cation in the receiving phase, therefore, pH 5 was

selected for further studies. These results show that pH gradi-
ent has no effect on lead(II) transport.
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Figure 8 Lead(II) transport in different concentrations of lead

nitrate [source phase (10 ml) with pH 5, contained lead(II) nitrate

with different concentrations and picric acid (1 · 10�3 M), mem-

brane phase (50 ml) contained macrocycle ionophore (1 · 10�3 M)

and receiving phase (30 ml) with pH 3, consisted of EDTA

(1 · 10�3 M)].

and picric acid (1 · 10�3 M), membrane phase (50 ml) contained

macrocycle ionophore (1 · 10�3 M) and receiving phase (30 ml)

with different pHs, consisted of EDTA (1 · 10�3 M)].
3.9. Effect of volume of the receiving phase

In order to increase the preconcentration factor, we studied the
effect of volume of the receiving phase. The results are shown
in Fig. 11. The optimum volume was obtained in 11 ml, there-
fore this volume was chosen for further investigation.

3.10. Effect of type and concentration of surfactant in the

receiving phase

In this work, we examined the effect of an anionic surfactant
(SDS) and nonionic surfactant (Triton X-100) in the receiving

phase (Fig. 12). It is currently well established that surfactants
form monolayer films at the water–organic interface. Surfac-
tants are essentially low-molecular weight chemical com-

pounds, with molecules that consist of combinations of a
water-soluble (hydrophilic) and a water-insoluble (hydropho-
bic) part. The hydrophobic part is generally a long chain hydro-
carbon, whereas the hydrophilic part of the molecule is
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Figure 11 Effect of volume of receiving phase on lead transport

[source phase (10 ml) with pH 3, contained lead(II) nitrate

(2.5 · 10�4 M) and picric acid (1 · 10�3 M), membrane phase

(50 ml) contained macrocycle ionophore (1 · 10�3 M) and receiv-

ing phase (different volumes) with pH 5, consisted of EDTA

(1 · 10�3 M)].
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Figure 12 Effect of type of surfactant [source phase (10 ml) with

pH 3, contained lead(II) nitrate (2.5 · 10�4 M) and picric acid

(1 · 10�3 M), membrane phase (50 ml) contained macrocycle

ionophore (1 · 10�3 M) and receiving phase (11 ml) with pH 5,

consisted of EDTA (1 · 10�3 M) and surfactant].
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Figure 13 Effect of concentration of surfactant on receiving

phase on lead transport [source phase (10 ml) with pH 3,

contained lead(II) nitrate (2.5 · 10�4 M) and picric acid

(1 · 10�3 M), membrane phase (50 ml) contained macrocycle

ionophore (1 · 10�3 M) and receiving phase (11 ml) with pH 5,

consisted of EDTA (1 · 10�3 M) and triton X-100 with different

concentrations].
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Figure 14 Effect of salinity of source phase on lead transport

[source phase (10 ml) with pH 3, contained lead(II) nitrate

(2.5 · 10�4 M) and picric acid (1 · 10�3 M) and NaNO3 with

different concentrations (w/v%), membrane phase (50 ml) con-

tained macrocycle ionophore (1 · 10�3 M) and receiving phase

(11 ml) with pH 5, consisted of EDTA (1 · 10�3 M) and triton X-

100 (1.4 · 10�3 M)].
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ionizable, polar, polarizable, and suitable for forming hydrogen
bridges. Addition of these surfactants to the receiving phase
leads to a better transport efficiency. When we add SDS to

the receiving phase, SDS sobbed Pb2+ via ion exchange, elec-
trostatic attraction. Upon SDS dissociation in water, sodium
cation (Na+) may replace some exchangeable Pb2+ cation on

water-organic surface and dodecyl sulfate anion (DS�) has neg-
ative hydrophilic head that attracts Pb2+ cations and increases
transport efficiency to about 50%. But nonionic Triton X-100
is more effective and can increase transport efficiency to about

90%, because nonionic surfactants show larger depression than
anionic surfactants (Manglik et al., 2001), therefore TRITON
X-100 due to good surface activity, by the lowering of the sur-

face tension of water and the interfacial tensions between water
and organic phase was selected for further studies. The effect of
its concentration on transport efficiency was also investigated

and the concentration 1.4 · 10�3 M was selected for further
investigations (Fig. 13).

3.11. Time dependence of Pb2+ cation transport

We studied the time dependence of Pb2+ ion transport
through the liquid membrane under optimal experimental
conditions. It is obvious that both the extraction of Pb2+

ion from the source phase into the membrane phase and its re-

lease from the membrane into the receiving phase are almost
after 4 h under the optimum experimental conditions.

3.12. Influence of feed phase salinity

Before the application of this separation system for real sam-

ples, we investigated the salinity effect of the source phase.
Usually, by addition of a salt, the extraction efficiency was en-
hanced due to salting out effect, whereby water molecules form
hydration spheres around the ionic salt molecules. These



Table 2 Effect of interfering ions [source phase (10 ml) with

pH 3, contained lead(II) nitrate (2.5 · 10�4 M) and picric acid

(1 · 10�3 M) and NaNO3 (10 w/v%), membrane phase (50 ml)

contained macrocycle ionophore (1 · 10�3 M) and receiving

phase (11 ml) with pH 5, consisted of EDTA (1 · 10�3 M) and

triton X-100 (1.4 · 10�3 M)].

No. of mixtures %Transport

Mixture 1

Pb2+ 98.49

K+ 4

Mg2+ 0

Ca2+ 2.6

Fe3+ 0

Mixture 2

Pb2+ 96

Cd2+ 0

Zn2+ 2

Ag+ 0

CO2+ 0

Cu2+ 0

Table 3 Validation of proposed methodology [source phase

(10 ml) with pH 3, contained lead(II) nitrate (2.5 · 10�4 M) and

picric acid (1 · 10�3 M) and NaNO3 (10 w/v%), membrane

phase (50 ml) contained macrocycle ionophore (1 · 10�3 M)

and receiving phase (11 ml) with pH 5, consisted of EDTA

(1 · 10�3 M) and triton X-100 (1.4 · 10�3 M) for Pb2+ deter-

mination in spiked samples].

Sample Concentration

spiked (mg L�1)

Concentration

measured (mg L�1)

River water 58.02 58.63 ± 1

Tap water 52.29 51.27 ± 3.5

Ground water 58.52 58.53 ± 1.6
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hydration spheres reduce the amount of water available to dis-
solve analyte molecules in water (Boyd-Boland and Pawliszyn,

1995); thus, it is expected that the target compounds will drive
into the organic membrane. For this purpose, in the current
work, NaNO3was added into the source phase in the range

of 3.5–12% (w/v%). The results show that the extraction effi-
ciency is enhanced due to salting out effect. Addition of
NaNO3 increases the transport efficiency to maximum amount
and according to the graphical results in Fig. 14, the optimal

concentration of NaNO3 in the donor phase was 10% which
was selected for the future studies.

3.13. Selectivity of bulk liquid membrane technique

The selectivity of membrane system for the transport of lead

cation over other cations, was studied under optimum condi-
tions by carrying out measurements using mixtures of Pb2+

and different types of cations in equimolar mixtures. The re-
sults of this study are given in Table 2.

4. Determinination of detection limit

The blank determination was performed using optimal condi-
tions. The blank value was �0.25 ± 0.38 mg l�1 of Pb2+for 4
replicates experiment, the limit of detection (calculated as 3

times of the standard deviation) being 1.15 mg l�1 of Pb2+.
The relative standard deviation of the proposed method was
2%.With 52.2 mg l�1 of Pb2+, Pb2+ recovery being 101 ± 2%.

5. Real water analysis

Three real environmental water samples including ground, river
and tap water spiked with lead nitrate were separated and puri-
fied using this system under the optimal conditions. Tap water

and ground water were collected from Ferdowsi University of
Mashhad (Iran), river water was collected from Persian Gulf.
The results show that the contents of lead(II) cation in the three
samples are all under the detection limit. Therefore, separate
samples were spiked with a target compound. The results are
given in Table 3. It is obvious that Pb2+ is successfully trans-

ported and purified using this new separation system.

6. Conclusion

Pb2+ cation can be effectively separated and preconcentrated
from water through a bulk liquid membrane containing

DCH18C6 in chloroform, allowing the precise and accurate
analysis of this metal in real samples. The new method based
on liquid membranes offers advantages such as simplicity, low-

er sample manipulation. It was found that DCH18C6 is a good
carrier for selective and efficient transport of lead(II) cation.
This study demonstrates the usefulness of the liquid membrane

technique for making it possible to combine extraction and
stripping operations in a single process and reducing the sol-
vent inventory requirements. The complete transport efficiency
(101 ± 2%) and high degree of selectivity for Pb2+ cation

transport, demonstrated by the studied liquid membrane sys-
tem, reveal its potential for application to the selective removal
and purification of lead(II) cation from real samples.
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