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Abstract Thresholding and compressed sensing in combination with both wavelet and
shearlet transforms have been very successful in inpainting tasks. Recent results have
demonstrated that shearlets outperform wavelets in the problem of image inpainting. In this
paper, we provide a general framework for universal shearlet systems in high dimensions.
This theoretical framework is used to analyze the recovery of missing data via �1 mini-
mization in an abstract model situation. In addition, we set up a particular model inspired
by seismic data and a box mask to model missing data. Finally, the results of numerical
experiments comparing various inpainting methods are presented.

Keywords Inpainting · �1 Minimization · Compressed sensing · Cluster coherence ·
Shearlets

Mathematics Subject Classification (2000) 42C40 · 42C15 · 65J22 · 65T60

1 Introduction

Reconstructing missing data is a popular challenge in both analog and digital fields. Also
known as inpainting, this activity is the process of filling in a missing region or for making
undetectable modifications to images, modifying the corrupted regions which are not con-
sistent with the original images. Applications of inpainting range from restoring of missing
blocks in video data to removal of occlusions such as text from images and repairing of
scratched photos [1, 2, 13, 14].
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Due to the vast interest on this topic, there exist several excellent works on inpainting
via compressed sensing which is a fundamental method to recover sparsified data by �1

minimization [7, 16]. Previous works have focused on the concept of clustered sparsity
which have led to theoretical bounds and results. In this setting, directional representation
systems such as shearlets have been shown to outperform not only wavelets, but also other
directional systems [5, 6, 18, 23]. In addition, the superiority of shearlets over wavelets for
a basic thresholding algorithm and geometric separation was shown in [12, 16].

In [9], Genzel and Kutyniok introduced the more flexible universal shearlet systems,
which are associated with an arbitrary scaling sequence. The performance for inpainting of
this novel construction shearlet system in two dimensions was also analyzed. In this paper,
we extend the framework of asymptotic analysis of inpainting by Genzel and Kutyniok to
the higher-dimensional setting by generalizing the concept of universal shearlet systems.
Using a method based on the original construction of Guo and Labate in [11], it is possible
to provide a general framework for a signal in high dimensions, covering various challenges
from the fields of image and video inpainting. A practical implementation of such a gener-
alization in the three dimensions is applied to video inpainting in [18] which benefits from
an optimally sparse approximation of three-dimensional data with C2 surface singularities.

We continue this line of research by assuming that the missing area is known and has
a different structure. Although the general strategy of our work is the same as in [9], the
technical details are dependent on the chosen model for this area. The recovery errors of
inpainting in Theorems 3 and 4 are the main results of this paper and formally justify the
success of inpainting via universal shearlet frames. In this regard, we suggest conditions
to relate the degree of anisotropic scaling to the admissible gap size. By considering the
gap size as asymptotically smaller than the length of the corresponding shearlet elements,
perfect inpainting results are achieved. These achievements are based on a recent work by
Genzel and Kutyniok [9].

Finally, we consider inpainting as a task to assess the performance of different trans-
formations in different types of images in the discrete domain. Our experiments show that
shearlet transforms in general achieve a better trade off between computational efforts and
reconstruction quality.

This review is organized as follows. Section 2 provides background of inpainting via a
combination of applied harmonic analysis and compressed sensing. Section 3 contains the
results of D-dimensional universal shearlet systems as sparsifying systems and the analysis
of the performance for inpainting of this class of systems. In Sect. 4, we present a new
model and investigate a recovery problem when using �1-analysis minimization algorithm
for reconstruction. Section 5 is devoted to the results of numerical experiments, comparing
various approaches.

2 Abstract Model and Inpainting via �1 Minimization

We start by analyzing the abstract Hilbert space, which is considered later on. Let x0 be a
signal in separable Hilbert Space H. We assume that H can be decomposed into a direct
sum of two closed subspaces, namely, a subspace HM which is associated with the missing
part of x0 and a subspace HK which is related to the known part of the signal. Hence,

H = HK ⊕HM = PKH⊕ PMH,

where PM and PK denote the orthogonal projections onto those subspaces, respectively.
Note that, we will try to find the missing part PMx0, so the problem of data recovery can



Inpainting via High-dimensional Universal Shearlet Systems

Algorithm 1: Inpainting via �1 minimization

Input:
– Incomplete signal PKx0 ∈ HK .
– Parseval frame Φ = (φi)i∈I .
Compute:
(�1-INP) x� = argminx∈H‖TΦx‖�1(I ) subject to PKx0 = PKx

where TΦ is analysis operator respect Φ (TΦ : H → �2(I ), x → (〈x,φi〉)i∈I ).
Output:
recovered signal x� ∈ H.

be formulated as follows: Given a corrupt signal PKx0, recover the missing part PMx0.
Depending on the dimension of the given model, we consider H = L2(RD), D ∈ N. If the
measurable subset M ⊆ R

D is the missing area of the image, we may set HM = L2(M).
We recall that a sequence Φ = (φi)i∈I in a separable Hilbert space H is a frame if A‖x‖2 ≤
‖〈x,φi〉‖�2(I ) ≤ B‖x‖2 for all x ∈ H. If A = B = 1, it is called a Parseval frame. We assume
that x0 can be represented by a certain Parseval frame Φ = (φi)i∈I for H, which can be
selected non-adaptively or adaptively.

Now, we present the methods for recovering a signal which will be useful in the sequel.
In fact, one of the fundamental methodologies for sparse recovery is �1 minimization [3, 8],
which recovers the original signal by the recovery Algorithm 1 [15].

Since Parseval frames are not bases in general, there are many solutions such as c where
x = T �

Φc, only the specific solution TΦx produces the desired numerical stabilities. The
assumption of the sparsity signal x0 by Φ provides a good recovery which is expected to
occur.

Another reconstruction method from compressed sensing to achieve recovery is one-
step thresholding which was introduced in [17] and is adapted from [16]. Note that, this
minimization problem can also be regarded as a relaxation of the co-sparsity problem

x� = argminx∈H‖TΦx‖�0(I ), subject to PKx0 = PKx,

where ‖TΦx‖�0(I ) = �{〈x,φi〉 | 〈x,φi〉 
= 0}. Theoretical results associated to co-sparsity
may be found in [21, 22].

In order to analyze the optimization problem using the inpainting algorithm, we need to
introduce two important notions, δ-clustered sparsity and cluster coherence. These notions
were applied to study the geometric separation problem and sparsity [4].

Definition 1 ([16]) Fix δ > 0. A signal x ∈ H is called δ-clustered sparse in a Parseval
frame Φ (with respect to Λ ⊆ I ) if

‖1ΛcTΦx‖�1 ≤ δ. (1)

In this case, Λ is said to be δ-cluster for x in Φ .

The δ-clustered sparsity elucidates that coefficients outside of Λ are small. In fact, the
cluster sparsity depends on the chosen set of indices Λ, enlarging Λ leads to smaller δ in (1).

Cluster coherence was introduced in [4] to investigate the missing part of signal x0 on
HM and is defined as follows:
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Definition 2 ([16]) Let Λ ⊆ I . The cluster coherence μc(Λ,PMΦ) of Parseval frame Φ

with respect to HM and Λ is defined by

μc(Λ,PMΦ) = max
j∈J

∑

i∈Λ

∣∣〈PMφi,PMφj 〉
∣∣,

where PMΦ = (PMφi)i∈I .

By presenting these analysis tools (cluster sparsity and cluster coherence) we are able to
state a main theorem that estimates the recovery error of the algorithm on the Hilbert space

H1,Φ = {
x ∈ H

∣∣‖x‖1,Φ = ‖TΦx‖�1

}
,

where Φ is a Parseval frame for Hilbert space H. Details of the following theorem can be
found in [9, 16].

Theorem 1 Fix δ > 0. Let Λ ⊆ I be δ-cluster for x0 in Parseval frame Φ and μc(Λ,PMΦ)

< 1
2 . If x0 ∈ H1,Φ , then

∥∥x� − x0
∥∥

1,Φ
≤ 2δ

1 − μc(Λ,PMΦ)
.

A heuristic explanation of the theorem is as follows: If Φ sparsifies x0 then there is a
small set of analysis coefficients which contain most of the information of x0 and those
elements of Φ which capture that information do not fall too much into the hole of missing
data. Indeed, we would like to select a cluster Λ such that x0 becomes δ-cluster for small δ

and cluster coherence μc shall not exceed the bound of 1
2 . While, both clustered sparsity and

cluster coherence depend on the chosen set of indices Λ. Therefore, Theorem 1 provides a
suitable cluster.

3 Inpainting via Universal Shearlet Systems

3.1 The Construction of D-dimensional Universal Shearlet Systems

In order to clarify the significance of universal shearlet systems, let us recall the main idea of
classical shearlet systems in dimension D = 2 [10, 19]. For generator ψ ∈ L2(R2), a system
of shearlets is defined by:

{
ψj,l,k = 2

3j
2 ψ

(
SlAj [.] − k

) : j ∈ Z, l ∈ Z, k ∈ Z
2
}
,

where

A =
(

22 0
0 2

)
, S =

(
1 1
0 1

)

denote the parabolic scaling matrix and shearing matrix, respectively. Using an appropriate
cone-adapted construction and an appropriate generator, one can prove the optimally sparse
approximation of cartoon-like functions, as shown in [10]. The tiling of the frequency do-
main of such shearlet systems is illustrated in Fig. 1. Finally, universal shearlet systems were
introduced with associated scaling matrix

Aj
αj

=
(

22 0
0 2αj

)
,
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Fig. 1 (A) Frequency tiling of a
classical shearlet system.
(B) Frequency tiling of a
cone-adapted shearlet system

where (αj )j ⊆ (−∞,2) to produce more flexibility in each scale [9]. The construction of
such systems might be interesting for sparse-frequency localization and smoothness. The
construction of universal shearlets can be generalized to higher dimensions. The following
structures are based on the construction of smooth Parseval shearlet frames in [11] and 2-D
universal shearlets in [9].

To start the construction of a D-dimensional universal shearlet, let us use the compact
notation 〈|x|〉 = (1 + |x|2) 1

2 and recall that the Schwartz functions (the rapidly decreasing
functions),

S
(
R

D
)=

{
f ∈ C∞(

R
D
) ∣∣∀K,N ∈N0 : sup

x∈RD

〈|x|〉−N
∑

|α|≤K

∣∣Dαf (x)
∣∣< ∞

}
.

As in the 2D case, let φ ∈ S(R) such that 0 ≤ φ̂ ≤ 1, φ̂(ξ) = 1 on ξ ∈ [− 1
16 , 1

16 ] and supp φ̂ ⊂
[− 1

8 , 1
8 ].

For ξ = (ξ1, . . . , ξD) ∈R
D , j ∈N0, a smooth low pass function Φ(ξ) and corona scaling

functions are defined by

Φ̂(ξ) = φ̂(ξ1)φ̂(ξ2) . . . φ̂(ξn),

W(ξ) =
√

Φ̂2
(
2−2ξ

)− Φ̂2(ξ),

Wj (ξ) = W
(
2−2j ξ

)
.

(2)

The functions satisfy this,

Φ̂2(ξ) +
∑

j≥0

W 2
j (ξ) = 1, ξ ∈R

D. (3)

Note that, by the definition of φ, the sequence of functions Wj are compactly supported in

K j = [−22j−1,22j−1
]D \ (−22j−422j−4

)D
, j ∈N0. (4)

Next, we consider function υ ∈ C∞(R) which satisfies suppυ ⊂ [−1,1] and

∣∣υ(u − 1)
∣∣2 + ∣∣υ(u)

∣∣2 + ∣∣υ(u + 1)
∣∣2 = 1, u ∈ [−1,1], (5)

moreover, we will presume that

υ(0) = 1 and υn(0) = 0, n ≥ 1. (6)
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A function with these properties was shown in [10]. In order to define the D-dimension of
universal shearlet systems, we need to introduce the scaling matrices,

Aα,(1) =

⎛

⎜⎜⎜⎝

22 0 . . . 0
0 2α . . . 0
...

...
...

...

0 0 . . . 2α

⎞

⎟⎟⎟⎠ , Aα,(2) =

⎛

⎜⎜⎜⎜⎜⎝

2α 0 0 . . . 0
0 22 0 . . . 0
0 0 2α . . . 0
...

...
...

...
...

0 0 0 . . . 2α

⎞

⎟⎟⎟⎟⎟⎠
, . . . ,

Aα,(D) =

⎛

⎜⎜⎜⎝

2α 0 . . . 0
0 2α . . . 0
...

...
...

...

0 0 . . . 22

⎞

⎟⎟⎟⎠ ,

where α ∈ (−∞,2) is the scaling parameter and for l = (l1, . . . , lD−1), the shear matrices

Sl
(1) =

⎛

⎜⎜⎜⎝

1 l1 . . . lD−1

0 1 . . . 0
...

...
...

...

0 0 . . . 1

⎞

⎟⎟⎟⎠ , Sl
(2) =

⎛

⎜⎜⎜⎝

1 0 . . . 0
l1 1 . . . lD−1
...

...
...

...

0 0 . . . 1

⎞

⎟⎟⎟⎠ , . . . ,

Sl
(D) =

⎛

⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

...

l1 l2 . . . 1

⎞

⎟⎟⎟⎠ .

In order to define the universal shearlet systems in D-dimension, we need to combine a set
of coarse scaling functions, a set of interior shearlets and boundary shearlets. In particular,
the coarse scaling functions are defined

ψ−1,k(x) = Φ(x − k), x ∈R
D, k ∈ Z

D.

The interior shearlets are the elements
{
ψ

α,(d)
j,l,k : j ∈N0, l ∈ Z, |li | < 2(2−α)j ,

k ∈ Z
D,d = 1, . . . ,D, i = 1, . . . ,D − 1

}
,

where

ψ̂
α,(d)
j,l,k (ξ) = |detAα,(d)|− j

2 W
(
2−2j ξ

)
V(d)

(
ξA

−j

α,(d)S
−l
(d)

)
e

−2πiξA
−j
α,(d)

S−l
(d)

k
,

and

V(d)(ξ1, . . . , ξD) =
∏

m=1,...,D
m
=d

υ

(
ξm

ξd

)
.

Note that, the index d is associated with the D-dimensional pyramid

Pd =
{
ξ ∈ R

D :
∣∣∣∣
ξ1

ξd

∣∣∣∣≤ 1, . . . ,

∣∣∣∣
ξD

ξd

∣∣∣∣< 1

}
,
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Fig. 2 Decomposition of the
frequency plane by corona
functions Wj and Φ in D = 2,3.
Note that the corona shapes Kj

could slightly overlap

Fig. 3 Symmetric frequency decomposition by cones in D = 2,3

and ψ
α,(d)
j,l,k has compact support in region

{
ξ ∈ R

D : ξd ∈ [−22j−1,22j−1
] \ (−22j−4,22j−4

)
,

∣∣∣∣
ξi

ξd

− li2
−(2−α)j

∣∣∣∣≤ 2−(2−α)j for i = 1, . . . , d − 1,

∣∣∣∣
ξi

ξd

− li−12−(2−α)j

∣∣∣∣≤ 2−(2−α)j for i = d + 1, . . . ,D

}
.

(7)

Inspired by the cases D = 2 and D = 3 in [9, 11], we can define the boundary universal
shearlets in D-dimension. For D = 2, there are 2 pyramidal regions and one set of boundary
shearlets. In the case D = 3, there are 3 pyramidal regions and 2 sets of boundary universal
shearlets. One set corresponding to 2 different pyramidal regions intersect and other set
related to 3 different pyramidal regions intersect. In fact, for D-dimensional there are D

pyramidal regions and D − 1 sets of boundary shearlets. Therefore, we need to introduce
several set of boundary universal shearlets. The boundary shearlets associate with 2 different
pyramidal regions intersect, are defined for l1 = ∓2(2−α)j , |l2|, . . . , |lD−1| < 2(2−α)j and have
the form

ψ̂α
j,l,k,b(ξ) = 2−(D−1) D

2 × 2−((D−1)α+2)
j
2

{
W(2−2j ξ )V(q)(ξA

−j

α,(q)S
−l
(q))e

2πiξ2−(D−1)
A

−j

α,(q)S
−l
(q)k if ξ ∈ Pq

W(2−2j ξ )V(q ′)(ξA
−j

α,(q ′)S
−l
(q ′))e

2πiξ2−(D−1)
A

−j

α,(q)S
−l
(q)k if ξ ∈ Pq ′ ,

(8)

for all combinations of pyramidal regions Pq and Pq ′ . Note that, there are 2C(D,2) =
2 D!

(D−2)!2! hyperplanes. The boundary shearlets corresponding to 3 different pyramidal re-

gions intersect, are defined for l1 = l2 = ∓2(2−α)j , |l3| ≤ . . . |lD−1| < 2(2−α)j , and have the
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form

ψ̂α
j,l,k,b(ξ) = 2−(D−1) D

2 × 2−((D−1)αj +2)
j
2

⎧
⎪⎪⎨

⎪⎪⎩

W(2−2j ξ )V(q)(ξA
−j

α,(q)S
−l
(q))e

2πiξ2−(D−1)
A

−j

α,(q)S
−l
(q)k if ξ ∈ Pq

W(2−2j ξ )V(q ′)(ξA
−j

α,(q ′)S
−l
(q ′))e

2πiξ2−(D−1)
A

−j

α,(q)S
−l
(q)k if ξ ∈ Pq ′

W(2−2j ξ )V(q ′′)(ξA
−j

α,(q ′′)S
−l
(q ′′))e

2πiξ2−(D−1)
A

−j

α,(q)S
−l
(q)k if ξ ∈ Pq ′′ ,

(9)

for all combinations of pyramidal regions Pq , Pq ′ and Pq ′′ . The number of them is
22C(D,3). We can say that for the boundary universal shearlets associate with L differ-
ent pyramidal regions intersect, there are 2(L−1)C(D,L) hyperplanes, for L = 2, . . . ,D.
Similarly, we proceed for the boundary universal shearlets corresponding to L different
pyramidal regions intersect, where L = 4, . . . ,D.

Before introducing the D-dimensional universal shearlet systems, it is useful to remark
that due to the gluing of the boundary shearlets, scaling sequence was defined in [9] as
follows:

A sequence (αj )j∈N0 ⊆R is called a scaling sequence if

αj ∈ Aj =
{

m

j

∣∣∣∣m ∈ Z,m ≤ 2j − 1

}
=
{
. . . ,

−2

j
,
−1

j
,0,

1

j
,

2

j
, . . . ,2 − 1

j

}
,

for j ≥ 1 and α0 = 0.

Definition 3 Let (αj )j∈N0 be a scaling sequence. Then universal-scaling shearlet system or
universal shearlet system is defined by

SH
(
φ,v, (αj )j

)= SHLow(φ) ∪ SHInt
(
φ,v, (αj )j

)∪ SHBound
(
φ,v, (αj )j

)
,

where

SHLow(φ) = {
ψ−1,k|k ∈ Z

D
}
,

SHInt
(
φ,v, (αj )j

)

= {
ψ

αj ,(d)

j,l,k |j ≥ 0, |l1|, . . . |lD−1| < 2(2−αj )j , k ∈ Z
D,d = 1, . . . ,D

}
,

SHBound

(
φ,v, (αj )j

)

= {
ψ

αj

j,l,k,b|j ≥ 0, |l1| = 2(2−αj )j , |l2| . . . |lD−1| < 2(2−αj )j , k ∈ Z
d
}
,

∪ {
ψ

αj

j,l,k,b|j ≥ 0, |l1| = |l2| = 2(2−αj )j , |l3| . . . |lD−1| < 2(2−αj )j , k ∈ Z
D
}
,

...

∪ {
ψ

αj

j,l,k,b|j ≥ 0, |l1| = |l2| = · · · = |lD−1| = 2(2−αj )j , k ∈ Z
D
}
.

The next Theorem shows that universal shearlet systems are a smooth Parseval frame for
L2(RD). Notice that the following proof is an adaption of the one in [9, 11].

Theorem 2 With notations as above, the universal shearlet system is a Parseval frame for
L2(RD). Moreover, the elements of this system are Schwartz functions and compactly sup-
ported in the Fourier domain.



Inpainting via High-dimensional Universal Shearlet Systems

Proof The smoothness of SHLow and SHInt are concluded by the their smooth defining func-
tions φ and υ . It remains to discuss the smoothness of the boundary shearlet elements. We
need to analyze the boundary line of the cones which are given by |ξ1| = |ξ2| = · · · = |ξD|.
Let us consider the function ψ̂

αj

j,l,k,b , given by (8). Similarly to the 2D argument, we observe

that the two terms of definition function ψ̂
αj

j,l,k,b are differed by

υ

(
2(2−αj )j

(
ξ2

ξ1
− 1

))
υ

(
2(2−αj )j ξ3

ξ1
− l2

)
. . . υ

(
2(2−αj )j ξD

ξ1
− lD−1

)

and

υ

(
2(2−αj )j

(
ξ1

ξ2
− 1

))
υ

(
2(2−αj )j ξ3

ξ2
− l2

)
. . . υ

(
2(2−αj )j ξD

ξ2
− lD−1

)
.

Since υ(n)(0) = 0 for all n ≥ 1, it follows that all derivatives of these functions are equal
when ξ1 = ξ2 = · · · = ξD .

Now, it only remains to prove Parseval frame property. For this, let f ∈ L2(RD), we will
first consider the boundary shearlets (8). In the following, we will just investigate the case
of q = 1, q ′ = 2. The arguments for any q , q ′ are similar. By Plancherel’s theorem, we
obtain

∑

j≥0

∑

k∈ZD

∣∣〈f,ψ
αj

j,l,k,1

〉∣∣2

=
∑

j≥0

∑

k∈ZD

∣∣〈f̂ , ψ̂
αj

j,l,k,1

〉∣∣2

=
∑

j≥0

∑

k∈ZD

∣∣∣∣
∫

RD

2−(D−1) D
2 × 2−((D−1)αj +2)

j
2 f̂ (ξ)e2πiξ2−(D−1)

A
−j

αj ,(1)S
−l
(1)k

×
[
χP1

(
W
(
2−2j ξ

)
υ

(
2(2−αj )j

(
ξ2

ξ1
− 1

))
υ

(
2(2−αj )j ξ3

ξ1
− l2

)
. . .

× υ

(
2(2−αj )j ξD

ξ1
− lD−1

))
+ χP2

(
W
(
2−2j ξ

)
υ

(
2(2−αj )j

(
ξ1

ξ2
− 1

))

× υ

(
2(2−αj )j ξ3

ξ2
− l2

)
. . . υ

(
2(2−αj )j ξD

ξ2
− lD−1

))]∣∣∣∣
2

.

To apply Parseval’s identity, we will use the change of variable η = ξ2−(D−1)A
−j

(1),αj
S−l

(1) and
hence

ξ = 2(D−1)
(
22j η1,22j η1 + 2αj j η2,2αj j l2η1 + 2αj j η3, . . . ,2αj j lD−1η1 + 2αj j ηD

)
.

By using of this variable we have:

V(1)

(
ξA

−j

(1),αj
S−l

(1)

) = υ

(
η2

η1

)
υ

(
η3

η1

)
υ

(
η4

η1

)
. . . υ

(
ηD

η1

)
,

V(2)

(
ξA

−j

(2),αj
S−l

(1)

) = υ

(
2(2−αj )j

(
ξ1

ξ2
− 1

))
. . . υ

(
2(2−αj )j ξD

ξ2
− lD−1

)
,
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= υ

( −η1

η1 + 2(αj −2)j η2

)
υ

(
2(2−αj )j η3 − l2η2

2(2−αj )j η1 + η2

)
. . . υ

(
2(2−αj )j ηD − lD−1η2

2(2−αj )j η1 + η2

)
,

W
(
2−2j ξ

) = W(2(D−1)η1, . . . ,2(2−αj )j+(D−1)(ηD + lD−1η1)).

By the condition on the support of υ and W , the mapping

(η1, η2, . . . , ηD) → W
(
2(D−1)η1, . . . ,2(2−αj )j+(D−1)(ηD + lD−1η1)

)
,

is supported inside the region |η1| < 1
2D . Since suppυ ⊂ [−1,1], we can conclude that the

functions

Γ1,j (η) = W
(
2(D−1)η1, . . . ,2(αj −2)j+(D−1)(ηD + lD−1η1)

)
υ

(
η2

η1

)
υ

(
η3

η1

)
. . . υ

(
ηD

ρ1

)
,

are supported inside Q = [− 1
2 , 1

2 ]D . Now consider the functions

Γ2,j (η) = W
(
2(D−1)η1, . . . ,2(αj −2)j+(D−1)(ηD + lD−1η1)

)

× υ

( −η1

η1 + 2(αj −2)j η2

)
υ

(
2(2−αj )j η3 − l2η2

2(2−αj )j η1 + η2

)
. . . υ

(
2(2−αj )j ηD − lD−1η2

2(2−αj )j η1 + η2

)
.

We will show that the support of Γi,j is contained inside Q. The support condition of υ

implies that

∣∣∣∣
η2

η1 + 2(αj −2)j η2

∣∣∣∣≤ 1 =⇒
∣∣∣∣
η2

η1

∣∣∣∣≤
∣∣∣∣1 + 2(αj −2)j η2

η1

∣∣∣∣≤ 1 + 2(αj −2)j

∣∣∣∣
η2

η1

∣∣∣∣

=⇒
∣∣∣∣
η2

η1

∣∣∣∣≤
1

1 − 2(αj −2)j
≤ 2,

where the last estimate is due to αj ≤ 2− 1
j

. This show that, if |η1| ≤ 1
2D , then |η2| ≤ 2|η1| ≤

1
2(D−1) . Again, by the support condition on υ , we have

∣∣∣∣
2(αj −2)j η3 − l2η2

2(αj −2)j η1 + η2

∣∣∣∣≤ 1 =⇒
∣∣∣∣
η3

η1
− 2(αj −2)j l2

η2

η1

∣∣∣∣≤
∣∣∣∣1 + 2(αj −2)jη2

η1

∣∣∣∣≤ 1 + 2(αj −2)j

∣∣∣∣
η2

η1

∣∣∣∣.

Thus
∣∣∣∣
η3

η1

∣∣∣∣≤ 1 + 2(αj −2)j

∣∣∣∣
η2

η1

∣∣∣∣+ 2(αj −2)j |l2|
∣∣∣∣
η2

η1

∣∣∣∣≤ 4,

since j ≥ 1, | η2
η1

| ≤ 2. If |η1| ≤ 1
2D , then |η3| ≤ 1

2(D−2) . By the same strategies, we can ob-
tain

|η4| ≤ 1

2(D−3)
, . . . , |ηD| ≤ 1

21
.

Hence, also Γ2,j (η) is supported inside Q, for each j ≥ 1. With this, we have that, for
j ≥ 1
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∑

k∈ZD

∣∣〈f̂ , ψ̂
αj

j,l,k,1

〉∣∣2

=
∑

k∈ZD

∣∣∣∣
∫

Q

2((D−1)αj +2)
j
2 × 2(D−1) D

2 f̂
(
2(D−1)ηSl

(1)A
j

αj ,(1)

)

× (
χP1(η)Γ1,j (η) + χP2(η)Γ2,j (η)

)
e2πiηkdη

∣∣∣∣
2

=
∫

P12−(D−1)A
−j
(1),αj

S−l
(1)

2((D−1)αj +2)j+D(D−1)
∣∣f̂
(
2(D−1)ηSl

(1)A
j

(1)

)∣∣2

× ∣∣W
(
2(D−1)η1, . . . ,2(D−1)+(αj −2)j (ηD + lD−1η1)

)∣∣2

×
∣∣∣∣υ
(

η2

η1

)∣∣∣∣
2∣∣∣∣υ

(
η3

η1

)∣∣∣∣
2

. . .

∣∣∣∣υ
(

ηD

η1

)∣∣∣∣
2

dη

+
∫

P22−(D−1)A
−j
(1),αj

S−l
(1)

2((D−1)αj +2)j+D(D−1)
∣∣f̂
(
2(D−1)ηSl

(1)A
j

(1)

)∣∣2

× ∣∣W
(
2(D−1)η1, . . . ,2(D−1)+(αj −2)j (ηD + lD−1η1)

)∣∣2

×
∣∣∣∣υ
( −η2

η1 + 2(αj −2)j η2

)∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ηD − lD−1η2

2(2−αj )j η1 + η2

)∣∣∣∣
2

=
∫

P1

∣∣f̂ (ξ)
∣∣2∣∣W

(
2−2j ξ

)∣∣2
∣∣∣∣υ
(

2(2−αj )j

(
ξ2

ξ1
− 1

))∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD

ξ1
− lD−1

)∣∣∣∣
2

dξ

+
∫

P2

∣∣f̂ (ξ)
∣∣2∣∣W

(
2−2j ξ

)∣∣2
∣∣∣∣υ
(

2(2−αj )j

(
ξ1

ξ2
− 1

))∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD

ξ2
− lD−1

)∣∣∣∣
2

dξ.

For j = 0, observing that suppW ⊂ Q, hence
∑

k∈ZD

∣∣〈f,ψ
αj

0,k,l,1

〉∣∣2

=
∫

P1

∣∣f̂ (ξ)
∣∣2∣∣W(ξ)

∣∣2
∣∣∣∣υ
(

ξ2

ξ1
∓ 1

)∣∣∣∣
2∣∣∣∣υ

(
ξ3

ξ1

)∣∣∣∣
2

. . .

∣∣∣∣υ
(

ξD

ξ1

)∣∣∣∣
2

dξ

+
∫

P2

∣∣f̂ (ξ)
∣∣2∣∣W(ξ)

∣∣2
∣∣∣∣υ
(

ξ1

ξ2
∓ 1

)∣∣∣∣
2∣∣∣∣υ

(
ξ3

ξ2

)∣∣∣∣
2

. . .

∣∣∣∣υ
(

ξD

ξ2

)∣∣∣∣
2

dξ.

So for any f ∈ L2(RD), we conclude that for l1 = 2(2−αj )j , |l2| . . . |lD−1| < 2(2−αj )j , we
have
∑

k∈ZD

∣∣〈f,ψ
αj

j,l,k,1

〉∣∣2

=
∫

P1

∣∣f̂ (ξ)
∣∣2∣∣W

(
2−2j ξ

)∣∣2
∣∣∣∣υ
(

2(2−αj )j

(
ξ2

ξ1
− 1

))∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD

ξ1
− lD−1

)∣∣∣∣
2

dξ

+
∫

P2

∣∣f̂ (ξ)
∣∣2∣∣W

(
2−2j ξ

)∣∣2
∣∣∣∣υ
(

2(2−αj )j

(
ξ1

ξ2
− 1

))∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD

ξ2
− lD−1

)∣∣∣∣
2

dξ.
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A similar computation, for l1 = l2 = 2(2−αj )j , |l3| . . . |lD−1| < 2(2−αj )j yields

∑

k∈ZD

∣∣〈f,ψ
αj

j,l,k,1

〉∣∣2

=
∫

P1

∣∣f̂ (ξ)
∣∣2∣∣W

(
2−2j ξ

)∣∣2
∣∣∣∣υ
(

2(2−αj )j

(
ξ2

ξ1
− 1

))∣∣∣∣
2

×
∣∣∣∣υ
(

2(2−αj )j

(
ξ3

ξ1
− 1

))∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD

ξ1
− lD−1

)∣∣∣∣
2

dξ

+
∫

P2

∣∣f̂ (ξ)
∣∣2∣∣W

(
2−2j ξ

)∣∣2
∣∣∣∣υ
(

2(2−αj )j

(
ξ1

ξ2
− 1

))∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD

ξ2
− lD−1

)∣∣∣∣
2

dξ

+
∫

P3

∣∣f̂ (ξ)
∣∣2∣∣W

(
2−2j ξ

)∣∣2
∣∣∣∣υ
(

2(2−αj )j

(
ξ1

ξ3
− 1

))∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD

ξ3
− lD−1

)∣∣∣∣
2

dξ.

By using the same argument we obtain other boundary regions. Using the change of variable
η = ξA

−j

(d)S
−l
(d) where d = 1, . . .D, for |l1| . . . |lD−1| < 2(2−αj )j follows that

∑

d={1,...,D}

∑

j∈N0

∑

|l|<2(2−αj )j

∣∣〈f,ψ
αj ,(d)

j,l,k

〉∣∣2

=
∫

R2

∣∣f̂ (ξ)
∣∣2 ∑

j∈N0

∣∣W
(
2−2j ξ

)∣∣2

×
( ∑

|l1|,...,|lD−1|<2(2−αj )j

∣∣∣∣υ
(

2(2−αj )j ξ2

ξ1
− l1

)∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD

ξ1
− lD−1

)∣∣∣∣
2

χP1(ξ)

+
...

+
∑

|l1|,...,|lD−1|<2(2−αj )j

∣∣∣∣υ
(

2(2−αj )j ξ1

ξD

− l1

)∣∣∣∣
2

. . .

∣∣∣∣υ
(

2(2−αj )j ξD−1

ξD

− lD−1

)∣∣∣∣
2

χPD
(ξ)

)
dξ.

Since suppΦ ⊂ Q, we have

∑

k∈ZD

∣∣〈f,ψ−1,k〉
∣∣2 =

∑

k∈ZD

∣∣∣∣
∫

Q

f̂ (ξ)Φ̂(ξ)e−2πiξkdξ

∣∣∣∣
2

=
∫

RD

∣∣f̂ (ξ)
∣∣2∣∣Φ̂(ξ)

∣∣2dξ.

Summarizing, we conclude that

∑

ψ∈SH(φ,αj ,d)

∣∣〈f,ψ〉∣∣2

=
∑

ψ∈SHLow(φ,αj ,d)

∣∣〈f,ψ〉∣∣2 +
∑

ψ∈SHInt(φ,αj ,d)

∣∣〈f,ψ〉∣∣2 +
∑

ψ∈SHBound(φ,αj ,d)

∣∣〈f,ψ〉∣∣2
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Fig. 4 Sketch of the corrupted modeling image in D = 2,3

=
∫

RD

∣∣f̂ (ξ)
∣∣2 ∑

j≥0

∣∣W
(
2−2j ξ

)∣∣2 +
∫

RD

∣∣f̂ (ξ)
∣∣2∣∣Φ̂(ξ)

∣∣2dξ

=
∫

RD

∣∣f̂ (ξ)
∣∣2
(∑

j≥0

W
(
2−2j ξ

)+ ∣∣Φ̂(ξ)
∣∣2
)

= ‖f ‖2. �

3.2 Shearlet Inpainting

In this section an image model which is compactly supported along the (x1, . . . , xD−1)-axes
will be analyzed and the mask for missing part of the original image will be introduced.

Let w :RD−1 → [0,1] be a smooth function that is supported in [−ρ1, ρ1] × . . . [−ρD−1,

ρD−1], for some fixed ρi ≥ 0, i = 1, . . . ,D − 1. The distribution wL acting on Schwartz
functions ϕ ∈ S(RD) is given by

〈wL, ϕ〉 =
∫ ρ1

−ρ1

. . .

∫ ρD−1

−ρD−1

w(x1, . . . , xD−1)ϕ(x1, . . . , xD−1,0)dxD−1 . . . dx1.

Note that this distribution is supported on [−ρ1, ρ1] × . . . [−ρD−1, ρD−1] × {0}. The Fourier
transform on wL can be computed as follows:

〈ŵL, ϕ〉 = 〈wL, ϕ̂〉

=
∫ ρ1

−ρ1

. . .

∫ ρD−1

−ρD−1

w(x1, . . . , xD−1)

(∫

RD

ϕ(ξ)e−2πi(x1ξ1+···+xD−1ξD−1)dξ

)
dx

=
∫

RD

ŵ(ξ1, . . . , ξD−1)ϕ(ξ1, ξ2, . . . , ξD)dξ.

Let now Fj ∈ S(RD) be a frequency filter, which is defined to be

F̂j (ξ) = Wj(ξ) = W
(
2−2j ξ

)
, ξ ∈R

D, j ≥ 0,

where Wj is the corona function from the shearlet construction (2). So we obtain the filtered
version of wL which we denote by wLj i.e.,

wLj (x) = wL ∗ Fj (x) =
∫

RD

wL(· − t)Fj (t)dt.
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Fig. 5 Some shearlet elements associated with cluster Λj in D = 2,3

By computing the Fourier transform wLj ,

ŵLj (ξ) = ŵL(ξ) · F̂j (ξ) = ŵ(ξ1, . . . , ξD−1)Wj (ξ1, . . . , ξD), ξ ∈ R
D,

we can conclude that, the wLj is band-limited Schwartz function. To distinguish the de-
stroyed regions of image model, inspired by the missing sensor scenario in seismic data, we
need to define the mask of the missing piece of the image

Mh = {
(x1, . . . , xD) ∈ R

D : |x1| ≤ hx1 , |x2| ≤ hx2 , . . . , |xD−1| ≤ hxD−1
}
.

The gap space and the orthogonal projection on this space, are now defined by HM =
L2(Mh), and PMf = χMh

f , f ∈ L2(RD). For investigating the Fourier support proper-

ties of the model function, we use the notation ψγ = ψ
αj ,(d)

j,l,k for γ = (j, l, k,αj , d) ∈ Γ in
which the index set Γ satisfies

⋃

γ∈Γ

ψγ = SHInt

(
φ,υ, (αj )j

)∪ SHBound

(
φ,υ, (αj )j

)
.

Set Γj = {(j ′, l, k,αj , d) ∈ Γ |j ′ = j}, j ≥ 0, note that, the support of ŵLj is contained in
(4) and region Kj overlaps with Kj−1 and K j + 1, but is disjointed from all the other ones.
Therefore, for j ≥ 1, we have that

〈wLj ,ψ−1,k〉 = 0, k ∈ Z
D

〈
wLj ,ψ

αj ,(d)

j ′,l,k
〉= 0,

(
j ′, l, k,αj , d

) ∈ Γj ′ , |j ′ − j | > 1.

Hence, we may conclude that all non-zero coefficients are contained in sets Γ ±1
j = Γj−1 ∪

Γj ∪ Γj+1 for j ≥ 0.
Now, we fix some ε > 0, we choose the set of significant shearlet coefficients to be

Λj = {
(j, l, k,αj ,D) : |l1| . . . |lD−1| ≤ 1,|l1k1 + · · · + lD−1kD−1 − kD| ≤ 2εj ,k ∈ Z

D,j ≥ 0
}

⊂ Γj . (10)

Since suppwL is covered by every Λj , we conclude that (10) is an appropriate choice.
More precisely, ε controls the behavior between clustered sparsity and cluster coherence in
Theorem 1. We put

δ
j ′−j

j = ∥∥1Γj ′ \Λj ′ (TΨ wLj )
∥∥

�1 =
∑

γ∈Γj ′ \Λj ′

∣∣〈wLj ,ψγ 〉∣∣, j, j ′ ≥ 1, |j ′ − j | ≤ 1, (11)
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and then sum up

δj = δ+1
j + δ0

j + δ−1
j = ∥∥1(Λ∓

j
)c (TΨ wLj )

∥∥
�1 =

∑

γ∈(Λ±1
j

)c

〈|wLj ,ψγ 〉∣∣, j ≥ 1, (12)

where Λ±1
j = Λj−1 ∪ Λj ∪ Λj+1. By definition, wLj is δj -clustered sparse in Ψ =

SH(φ,υ, (αj )j ) with respect to the cluster Λ±1
j .

It might be helpful to mention that the goal is to show that δj is small. Then the abstract
Theorem 1 implies a good inpainting result.

The following lemma is needed for estimating the decay coefficients of the shearlet with
the singularities. We use of simple notation for the transformed translations,

td = (t1, . . . , tD) := A
−j

αj ,(d)S
−l
(d)k, d = 1, . . . ,D.

Lemma 1 Let (j, l, k,αj , d) ∈ Γj with j ≥ 1. If αj ≥ 0, then the following estimates hold
for arbitrary integer N1, . . . ,ND,N ≥ 0:

(1). If d = D, and |li | > 1 for i = 1, . . . ,D − 1, we have

〈∣∣wLj ,ψ
αj ,(D)

j,l,k

〉∣∣≤ cN1,...,ND,N |t1|N1 . . . |tD|ND

× 2−Nαj j
(|li | − 1

)−N × 2(2−(D−1)αj )
j
2 × 2−NDαj j .

(2). If d = 1, . . . ,D − 1, we have

∣∣〈wLj ,ψ
αj ,(d)

j,l,k

〉∣∣≤ cN1,...,ND,N |t1|−N1 . . . |tD|−N

× 2−2Nj
(|lD−1| + 1

)× 2(2−(D−1)αj )
j
2 × 2−NDαj j .

(3). For boundary shearlets we have

〈∣∣wLj ,ψ
αj

j,l,k,b

〉∣∣≤ cN1,...,ND,N |t1|−N1 . . . |tD|−ND

× 2−2Nj
(|lD−1| + 1

)× 2(2−(D−1)αj )
j
2 × 2−NDαj j .

(4). If d = D and |li | ≤ 1 for i = 1, . . . ,D − 1 we have

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣ ≤ cN 2(D−1)(6−αj )
j
2

∫

RD−1

〈|x1|
〉−N × . . .

〈|xD−1|
〉−N

× w̃N,j

(
2−αj j (x1 + k1), . . . ,2−αj j (xD−1 + kD−1)

)

× 〈|l1x1 + l1k1 + · · · − kD|〉−N
dx,

where w̃N,j = |w| ∗ 〈|22j [.]|〉−N .

Proof (1). By the definition of universal shearlets and Plancherel’s Theorem we have

〈
wLj ,ψ

αj ,(D)

j,l,k

〉 = 〈
ŵLj , ψ̂

αj ,(D)

j,l,k

〉

=
∫

RD

ŵ(ξ1, . . . , ξD−1)W
(
2−2j ξ

)
ψ̂

αj ,(D)

j,l,k dξ
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=
∫

R

e2πitDξD

(∫

RD−1
ŵ(ξ1, . . . , ξD−1)W

(
2−2j ξ

)
ψ̂

αj ,(D)

j,l,0 (ξ)

× e2πi(t1ξ1+···+tD−1ξD−1)dξ1 . . . dξD−1

)
dξD.

We differentiate the function ξ → ŵ(ξ1, . . . , ξD−1)W(2−2j ξ )ψ
αj ,(D)

j,l,0 (ξ), Ni -times for i =
1, . . . ,D. With partial integration we obtain

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

≤ cN1,...,ND
|t1|−N1 . . . |tD|−ND

×
∫

R

∫

RD−1
|D(N1,...,ND)

(
ŵ(ξ1, . . . , ξD−1)W

(
2−2j ξ

)
ψ

αj ,(D)

j,l,0

)|dξ1 . . . dξD−1

︸ ︷︷ ︸
hN1 ...ND−1 (ξD)

dξD,

where the boundary terms vanish because of the compact support of ξ → ŵ(ξ1, . . . , ξD−1)×
W(2−2j ξ )ψ

αj ,(D)

j,l,0 (ξ). With (4) obtain 22j−4 ≤ |ξD| ≤ 22j−1 and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(|l1| − 1
)
2(αj −2)j ≤

∣∣∣∣
ξ1

ξD

∣∣∣∣≤
(|l1| + 1

)
2(αj −2)j

(|l2| − 1
)
2(αj −2)j ≤

∣∣∣∣
ξ2

ξD

∣∣∣∣≤
(|l2| + 1

)
2(αj −2)j

...
(|lD−1| − 1

)
2(αj −2)j ≤

∣∣∣∣
ξD−1

ξD

∣∣∣∣≤
(|lD−1| + 1

)
2(αj −2)j .

We can conclude that

ξi ∈ Ili = [−2αj j−1
(|li | + 1

)
,−2αj j−4

(|li | − 1
)]∪ [

2αj j−4
(|li | − 1

)
,2αj j−1

(|li | + 1
)]

,

for i = 1, . . . ,D − 1. The next step is to estimate the term hN1,...,ND−1(ξD). Now, the Leibniz
rule and Hölder’s Inequality yield

hN1,...,ND−1(ξ)

≤
N1∑

n1=0

N2∑

n2=0

. . .

ND−1∑

nD−1=0

(
N1

n1

)(
N2

n2

)
. . .

(
ND−1

nD−1

)

×
∫

RD−1
|ŵ(n1,...,nD−1)(ξD−1, . . . , ξ1)D

N1−n1,...,ND−1−nD−1
(
W
(
2−2j ξ

)
ψ

αj ,(D)

j,l,0 (ξ)
)
dξ

≤
N1∑

n1=0

. . .

ND−1∑

nD−1=0

(
N1

n1

)
. . .

(
ND−1

nD−1

)
‖ŵ(n1,...,nD−1)‖L1(I1×···×ID−1)

× ∥∥DN1−n1,...,ND−1W
(
2−2j .

)
ψ

αj ,(D)

j,l,0 (.)
∥∥

L∞(RD)
.

By the support and rapid decay of ŵ, it can be estimated as
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∥∥ŵ(n1,...,nD−1)
∥∥

L1(I1×···×ID−1)

=
∫

ID−1

. . .

∫

I1

ŵ(n1,...,nD−1)(ξ1, . . . , ξD−1)dξ1 . . . dξD−1

≤ cN

∫ 2αj j−1
(|lD−1|−1)

2αj j−4
(|lD−1|−1)

. . .

∫ 2αj j−1
(|l1|−1)

2αj j−4
(|l1|−1)

〈|ξ1|〉− N
2 . . . 〈|ξD−1|〉− N

2 dξ1 . . . dξD−1

|li |>1≤ cN1,...,ND−1 2−Nαj j
(|li | − 1

)−N
.

Last estimate concludes because

∫ 2αj j−1
(|lk |−1)

2αj j−4
(|lk |−1)

〈|ξk|〉− N
2 ≤ cN, k = 1, . . . ,D − 1, k 
= i.

So, we can obtain

∥∥DN1−n1,...,ND
(
W
(
2−2j .

)
ψ

αj ,(D)

j,l,0 (.)
)∥∥

L∞(RD)

≤ cN1,...,ND
2−((D−1)αj +2)

j
2 × 2−(N1−n1)αj j . . . × 2−(ND−1−nD−1)αj j × 2−NDαj j .

This implies

hN1,...,ND
(ξD) ≤

N1∑

n1=0

. . .

ND−1∑

nD−1=0

cN1,...,ND,N 2−Nαj j
(|li | − 1

)−N

× 2−((D−1)αj +2)
j
2 × 2−(N1−n1)αj j . . .2−NDαj j

≤ cN1,...,ND,N × 2−Nαj j
(|li | − 1

)−N × 2−((D−1)αj +2)
j
2 × 2−NDαj j

×
∞∑

n1=0

(
N1

n1

)(
2−αj j

)(N1−n1)

︸ ︷︷ ︸
=(1+2

−αj j
)N1 ≤2N1
αj ≥0

. . .

∞∑

n1=0

(
ND−1

nD−1

)(
2−αj j

)(ND−1−nD−1)

︸ ︷︷ ︸
=(1+2

−αj j
)
ND−1 ≤2ND−1

αj ≥0

≤ cN1,...,ND,N 2−Nαj j
(|li | − 1

)−N × 2−((D−1)αj +2)
j
2 × 2−NDαj j .

Combining this estimate with |supphN1,...,ND
| ≤ 22j c concludes

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣ ≤ cN1,...,ND,N |t1|−N1 . . . |tD|−ND

× 2−Nαj j
(|li | − 1

)−N × 2(2−(D−1)αj )
j
2 × 2−NDαj j .

(2). Similarly the proof of part (1), for d = 1, . . . ,D − 1, we have

∣∣〈wLj ,ψ
αj ,(d)

j,l,k

〉∣∣ ≤ cN1,...,ND,N |t1|−N1 . . . |tD|−ND

× 2−2Nj (|lD−1| + 1) × 2(2−(D−1)αj )
j
2 × 2−NDαj j .

(3). The boundary shearlets can be estimated by part (1) and (2).
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(4). By the definition wLj , it follow that

∣∣wLj (x)
∣∣ = ∣∣(wL ∗ Fj )(x)

∣∣=
∣∣∣∣
∫

RD−1
w(y)Fj

(
x − (y, o)

)
dy

∣∣∣∣

≤
∫

RD−1

∣∣w(y)
∣∣22Dj

∣∣W̌
(
22j

(
x − (y,0)

))∣∣dy

= cN 22Dj
〈∣∣22j xD

∣∣〉−N [|w| ∗ 〈22j [·]〉−N ]
(x1, . . . , xD−1)︸ ︷︷ ︸

w̃N,j (x1,...,xD−1)

= cN 22Dj
〈∣∣22j xD

∣∣〉−N
w̃N,j (x1, . . . , xD−1), x = (x1, . . . , xD−1, xD) ∈ R

D.

Furthermore,

∣∣ψαj ,(D)

j,l,k (x)
∣∣≤ cN 2((D−1)αj +2)

j
2
〈∣∣Sl

DA
j

αj ,(D)x − k
∣∣〉−N

≤ cN 2((D−1)αj +2)
j
2
〈∣∣2αj j x1 − k1

∣∣〉−N
. . .

〈∣∣2αj j xD−1 − kD−1

∣∣〉−N

× 〈∣∣l12αj j x1 + l22αj j x2 + · · · + 22j xDkD

∣∣〉−N
.

Now, we can estimate the analysis coefficients.

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

≤ 2(6−αj )(D−1)
j
2

∫

RD

w̃N,j

(
2−αj j (x1 + k1), . . . ,2−αj j (xD−1 + kD−1)

)

× 〈|xD|〉−N . . . 〈|x1|〉−N 〈|l1x1 + l1k1 + · · · + lD−1xD−1 + xD − kD|〉−Ndx.

Let k = l1x1 + l1k1 + · · · + lD−1xD−1 + lD−1kD−1 − kD . It is clear that one of the two factor
〈|xD|〉−N 〈|xD + k|〉−N has to be smaller than 〈| k

2 |〉−N . Hence

∫

R

〈|xD|〉−N 〈|xD + k|〉−NdxD

=
∫

R

max
{〈|xD|〉−N, 〈|xD + k|〉−N

}
︸ ︷︷ ︸

≤〈|xD |〉−N +〈|xD+k|〉−N

min
{〈|xD|〉−N, 〈|xD + k|〉−N

︸ ︷︷ ︸
≤〈| k

2 |〉−N

}
dxD

≤ cN 〈|k|〉−N = cN 〈|l1x1 + l1k1 + · · · − kD|〉−N,

(13)

finally, we obtain

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

≤ 2(6−αj )(D−1)
j
2

∫

RD−1
w̃N,j

(
2−αj j (x1 + k1), . . . ,2−αj j (xD−1 + kD−1)

)

× 〈|xD−1|〉−N . . . 〈|x1|〉−N 〈|l1x1 + l1k1 + · · · + lD−1xD−1 − kD|〉−Ndx. �
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Proposition 1 With the notations as above if lim infj→∞ αj > 0, then

δj ∈ o
(
2−Nj

)
, j → ∞,

for every N ∈N.

That is what we call rapid decay, adapted from the behavior of Schwartz functions.

Proof We need to estimate δ
j ′−j

j which is defined in (11). If k = l1k1 + l2k2 +· · ·+ lD−1kD−1,
then

δ
j ′−j

j =
∑

k∈ZD,|l1 |...|lD−1 |≤1

|k−kD |>2εj ′

∣∣〈wLj ,ψ
αj ′ ,(D)

j ′,l,k
〉∣∣+

∑

k∈ZD

|l1|>1,|l2|...|lD−1|≤1

∣∣〈wLj ,ψ
αj ′ ,(D)

j ′,l,k
〉∣∣

+
∑

k∈ZD

|l2|>1,|l1|,|l3|,...|lD−1|≤1

∣∣〈wLj ,ψ
αj ′ ,(D)

j ′,l,k
〉∣∣+ · · · +

∑

k∈ZD

|lD−1|>1,|l1|,...|lD−2|≤1

∣∣〈wLj ,ψ
αj ′ ,(D)

j ′,l,k
〉∣∣

+
D−1∑

d=1

∑

k∈ZD

|l1|...|lD−1|<2
(2−α

j ′ )j ′

∣∣〈wLj ,ψ
αj ′ ,(d)

j ′,l,k
〉∣∣+

∑

k∈ZD,|l1 |=2
(2−α

j ′ )j ′

|l2|...|lD−1|≤2(2−αj )j ′

∣∣〈wLj ,ψ
αj ′
j ′,l,k,b

〉∣∣.

We will compute for j ′ = j , the computation for j ′ = j ∓ 1 are exactly the same. We apply
Lemma 1 for N ≥ 2, hence

∑

k∈ZD,|l1 |...|lD−1 |≤1

|k−kD |>2εj

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

≤ cN 2(6−αj )(D−1)
j
2

∑

k∈ZD

|l1|...|lD−1|<1

∫

RD−1
w̃N,j

(
2−αj j (x1 + k1), . . . ,2−αj j (xD−1 + kD−1)

)

× 〈|x1|〉−N . . . 〈|xD−1|〉−N 〈|k − kD|〉−Ndx

= cN 2(6−αj )(D−1)
j
2

∑

k∈ZD,|kD |>2
εj

|l1|...|lD−1|<1

∫

RD−1
w̃N,j

(
2−αj j (x1 + k1), . . . ,2−αj j (xD−1 + kD−1)

)

× 〈|x1|〉−N . . . 〈|xD−1|〉−N 〈|l1x1 + l2x2 + · · · + lD−1xD−1 − kD|〉−Ndx

= cN 2(6−αj )(D−1)
j
2

×
∑

|l1 |...|lD−1 |<1

k∈ZD,|kD |>2εj

∫

RD−1
(

∑

k1,...,kD−1∈Z
w̃N,j

(
2−αj j (x1 + k1), . . . ,2−αj j (xD−1 + kD−1)

)

× 〈|x1|〉−N . . . 〈|xD−1|〉−N 〈|l1x1 + l2x2 + · · · + lD−1xD−1 − kD|〉−Ndx.

We have the following argumentation:
∑

k1,...,kD−1∈Z
w̃N,j

(
2−αj j (x1 + k1), . . . ,2−αj j (xD−1 + kD−1)

)
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≤
∑

k1,...,kD−1∈Z

∫

RD−1

∣∣w(y1, . . . , yD−1)
∣∣〈∣∣2(2−αj )j

(
k1 + x1 − 2αj j y1

)∣∣〉− N
2

× 〈∣∣2(2−αj )j
(
k2 + x2 − 2αj j y2

)∣∣〉− N
2 . . .

〈∣∣2(2−αj )j
(
kD−1 + xD−1 − 2αj j yD−1

)∣∣〉− N
2 dy

2(2−αj )j ≥1≤
∫

RD−1

∣∣w(y1, . . . , yD−1)
∣∣∑

k1∈Z

〈∣∣k1 + x1 − 2αj j y1

∣∣〉− N
2

︸ ︷︷ ︸
≤cN1

×
∑

k2∈Z

〈∣∣k2 + x2 − 2αj j y2

∣∣〉− N
2

︸ ︷︷ ︸
≤cN2

. . .
∑

kD−1∈Z

〈∣∣kD−1 + xD−1 − 2αj j yD−1

∣∣〉− N
2

︸ ︷︷ ︸
≤cND−1

dy

≤ cN .

We repeatedly apply a similar computation as in (13), hence

∑

k∈ZD, |l1 |...|lD−1 |≤1

|k−kD |>2εj

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

≤ cN 2(D−1)(6−αj )
j
2

∑

|l1 |...|lD−1 |≤1

kD∈Z |kD |>2εj

∫

RD−1
〈|x1|〉−N . . . 〈|xD−1|〉−N

× 〈|l1x1 + · · · + lD−1xD−1 − kD|〉−Ndx1 . . . dxD−1

≤ cN 2(D−1)(6−αj )
j
2

∑

|l2 |...|lD−1 |≤1

kD∈Z |kD |>2εj

∫

RD−2
〈|x2|〉−N . . . 〈|xD−1|〉−N

× 〈|l2x2 + · · · + lD−1xD−1 − kD|〉−Ndx2 . . . dxD−1.

Finally, we obtain

∑

k∈ZD, |l1 |...|lD−1 |≤1

|k−kD |>2εj

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

≤ cN 2(D−1)(6−αj )
j
2

∑

|lD−1 |<1

|kD |>2εj , kD∈Z

∫

R

〈|xD−1|〉−N 〈|lD−1xD−1 − kD|〉−NdxD−1

≤ cN 2(D−1)(6−αj )
j
2

∑

kD∈Z, |kD |>2εj

〈|kD|〉−N

≤ cN 2(D−1)(6−αj )
j
2

∫

|xD |>2εj

〈|xD|〉−NdxD

≤ cN 2(D−1)(6−αj )
j
2 × 2−(N−1)εj .
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For N ≥ 2, we apply Lemma 1, and conclude the following result
∑

1<|l1 |≤2
(2−αj )j

, k∈ZD

|l2|...|lD−1|≤1

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

≤ cN,M

∑

k∈ZD, 1<|l1 |≤2
(2−αj )

|l2|...|lD−1|≤1

|t1|−N . . . |tD|−N 2−Mαj j
(|l1| − 1

)−M
2(2−(D−1)αj )j 2−Nαj j .

For some index (j, l, k,αj ,D) ∈ Γj , we have
∑

k∈ZD

t1 
=0,...,tD 
=0

|t1|−N0 . . . |tD|N0

=
∑

k∈ZD k1 
=0,...,kD−1 
=0
kD 
=l1k1+···+lD−1kD−1

∣∣2−αj j k1

∣∣−N
. . .

∣∣2−αj j kD−1

∣∣−N ∣∣2−2j (kD − l1k1 . . . − lD−1kD−1)
∣∣−N

= 2((D−1)Nαj +2N)j
∑

k∈ZD

k1,...,kD 
=0

|k1|−N . . . |kD−1|−N |kD|−N

≤ 2((D−1)Nαj +2N)j

∫

|x1|≥1...|xD |≥1
|x1|−N . . . |xD|−Ndx

≤ cN 2((D−1)Nαj +2N)j .

Similarly, for tD = 0 (or/and ti = 0, i = 1, . . . ,D − 1) we obtain
∑

k∈ZD

|t1|−N . . . |tD|−N ≤ cN 2((D−1)Nαj +2N)j .

Finally, we have
∑

1<|l1 |≤2
(2−αj )j

, k∈ZD

|l2|...|lD−1|≤1

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

≤ cN,M2(6−(D+1)αj )
j
2 × 2−Mαj j × 22Nj × 2DNαj j

(|l1| − 1︸ ︷︷ ︸
≤1

)−M

≤ cN,M2(6−(D+1)αj )
j
2 2N(Dαj +2)j × 2−Mαj j .

Using lim infj→∞ αj > 0 and choosing M sufficiently large, we obtain desired decay. An
analogous argument holds for other interior regions and the boundary elements. �

Now, we investigate the cluster coherence μc(Λ
∓1
j , χMhj

Ψ ) and show that, it converges

to zero as j → ∞ when (h)j ∈ o(2−((D−1)αj +ε)j ).

Lemma 2 If hj = (h
x1
j × · · · × h

xD−1
j )j ∈ o(2−((D−1)αj +ε)j ), then

μc

(
Λ∓1

j , χMhj
Ψ
)→ 0, j → ∞.
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Proof We have

μc

(
Λ∓1

j , χMhj
Ψ
)≤ μc(Λj−1, χMhj

Ψ ) + μc(Λj ,χMhj
Ψ ) + μc(Λj+1, χMhj

Ψ ).

By the definition of the cluster coherence and considering the main-scale-term, we obtain

μc(Λj ,χMhj
ψ) =max

γ2∈Γ

∑

γ1∈Λj

|〈χMhj
ψγ1 ,ψγ2〉| ≤ max

γ2∈Γ

d=D

∑

γ1∈Λj

|〈χMhj
ψγ1 ,ψγ2〉|

︸ ︷︷ ︸
=:TD

+ max
γ2∈Γ

d 
=D

∑

γ1∈Λj

|〈χMhj
ψγ1 ,ψγ2〉|

︸ ︷︷ ︸
=:Td

+max
γ2∈Γ

b

∑

γ1∈Λj

|〈χMhj
ψγ1 ,ψγ2〉|

︸ ︷︷ ︸
:=Tb

.

We use the rapid decay properties of the universal shearlets to obtain desired result. Set
γ1 = (j, l, k,αj ,D) ∈ Λj , γ2 ∈ (j, l′, k′, αj ,D) ∈ Γj we have (N ≥ 2)

∣∣〈χMhj
ψ

αj ,(D)

j,l,k ,ψ
αj ,(D)

j,l′,k′
〉∣∣

≤ cN 2((D−1)αj +2)j

∫ h
x1
j

−h
x1
j

. . .

∫ h
xD−1
j

−h
xD−1
j

∫

R

〈∣∣Sl
(D)A

j

αj ,(D)x − k
∣∣〉−N 〈∣∣Sl′

(D)A
j

αj ,(D)x − k′∣∣〉−N
dx

≤ cN

∫ h
x1
j

−h
x1
j

. . .

∫ h
xD−1
j

−h
xD−1
j

∫

R

〈∣∣2αj j x1 − k1

∣∣〉−N
. . .

〈∣∣2αj j xD−1 − kD−1

∣∣〉−N

× 〈∣∣2αj j l1x1 + · · · − kD

∣∣〉−N 〈∣∣2αj j x1 − k′
1

∣∣〉−N
. . .

〈∣∣2αj j xD−1 − k′
D−1

∣∣〉−N

× 〈∣∣2αj j l′1x1 + · · · + 22j xD − k′
D

∣∣〉−N
2((D−1)αj +2)j dxD . . . dx1

≤ cN

∫ 2αj j
h
x1
j

−2αj j
h
x1
j

. . .

∫ −2αj j
h
xD−1
j

−2αj j
h
xD−1
j

∫

R

〈|x1 − k1|〉−N . . . 〈|xD−1 − kD−1|〉−N

× 〈|l1x1 + · · · + xD − kD|〉−N
〈|x1 − k′

1|︸ ︷︷ ︸
≤1

〉−N
. . .

〈|xD−1 − k′
D−1|︸ ︷︷ ︸

≤1

〉−N

× 〈|l′1x1 + l′2x2 + · · · + l′D−1xD−1 − k′
D|〉−N

dxD . . . dx1.

We may presume that the maximum of TD is attained for some γ2 ∈ Γj . Thus

TD = max
γ2∈Γ

d=D

∑

γ1∈Λj

|〈χMhj
ψγ1 ,ψγ2〉|

≤ max
(j,l′,αj ,D)∈Γj

∑

|l1|...|lD−1|≤1

∑

k∈ZD

∣∣〈χMhj
ψ

αj (D)

j,l,k ,ψ
αj ,(D)

j,l′,k
〉∣∣

≤ cN max
(j,l′,k′,αj ,υ)∈Γj

∑

|l1|...|lD−1|≤1

∫ 2αj j
h
x1
j

−2αj j
h
x1
j

. . .

∫ −2αj j
h
xD−1
j

−2αj j
h
xD−1
j

∫

R

〈∣∣l′1x1 + · · · − k′
D

∣∣〉−N
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×
∑

k∈ZD

〈|x1 − k1|〉−N . . . 〈|xD−1 − kD−1|〉−N 〈|l1x1 + · · · − kD|〉−N

︸ ︷︷ ︸
≤c̃N

dxD . . . dx1

≤ cN max
(j,l′,k′,αj ,υ)∈Γj

∫ 2αj j
h
x1
j

−2αj j
h
x1
j

. . .

∫ −2αj j
h
xD−1
j

−2αj j
h
xD−1
j

∫

R

〈|l′1x1 + · · · − k′
D|〉−N

︸ ︷︷ ︸
≤c̃N

dxD . . . dx1

≤ cN 2(D−1)αj j h
x1
j × · · · × h

xD−1
j → 0, j → ∞.

For the factor Td where d 
= D, let use γ1 = (j, l, k,αj ,D) ∈ Λj and γ2 =
(j, l′, k′, αj , d) ∈ Γj . For N ≥ 2, we have

∣∣〈χMhj
ψ

αj ,(D)

j,l,k ,ψ
αj ,(d)

j,l′,k′
〉∣∣

≤
∫ h

x1
j

−h
x1
j

. . .

∫ h
xD−1
j

−h
xD−1
j

∫

R

∣∣ψαj ,(D)

j,l,k

∣∣∣∣ψαj ,(d)

j,l′,k′
∣∣dxD . . . dx1

≤ cN 2((D−1)αj +2)j

∫ h
x1
j

−h
x1
j

. . .

∫

R

〈∣∣2αj j x1 − k1

∣∣〉−N
. . .

〈∣∣2αj j xD−1 − kD−1

∣∣〉−N

× 〈∣∣2αj j l1x1 + · · · − kD

∣∣〉−N 〈∣∣2αj j x1 − k′
1

∣∣〉−N
. . .

〈∣∣2αj j xD − k′
D

∣∣〉−N

︸ ︷︷ ︸
≤1

dx

≤ cN 2(D−1)αj j

∫ h
x1
j

−h
x1
j

. . .

∫ h
xD−1
j

−h
xD−1
j

〈∣∣2αj j x1 − k1

∣∣〉−N
. . .

〈∣∣2αj j xD−1 − kD−1

∣∣〉−N

×
(∫

R

〈∣∣2αj j l1x1 + · · · + xD − kD

∣∣〉−N

︸ ︷︷ ︸
≤cN

dxD

)
dxD−1 . . . dx1.

Finally, we obtain

Td ≤ max
(j,l′,k′,αj ,d)∈Γj

∑

|l1|,...,|lD−1|≤1

∑

k∈ZD

|l1k1+···lD−1kD−1−kD |<2εj

∣∣〈χMhj
ψ

αj ,(D)

j,l,k ,ψ
αj ,(d)

j,l′,k′
〉∣∣

≤ cN 2(D−1)αj j 2εj

×
∫ h

x1
j

−h
x1
j

∑

k1∈Z

〈∣∣2αj j x1 − k1

∣∣〉−N

︸ ︷︷ ︸
≤c̃N

dx1 . . .

∫ h
xD−1
j

−h
xD−1
j

∑

kD−1∈Z

〈∣∣2αj j xD−1 − kD−1

∣∣〉−N

︸ ︷︷ ︸
≤c̃N

dxD−1

≤ cN 2((D−1)αj +ε)jh
x1
j × · · · × h

xD−1
j → 0, j → ∞.

For the boundary shearlet elements, it is easy to display that there exists a constant c > 0
such that Tb ≤ c(Td + TD). So the aim obtain from the first two cases. �
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Now, we apply the abstract error estimate of Theorem 1 to obtain the fallowing theorem,
which is one of the main results of this paper and proves the success of image inpainting via
a high-dimensional universal shearlet. Theorem 3 relates the degree of anisotropic scaling
to the admissible gap sizes: When αj becomes smaller, the asymptotical condition (hj )j ∈
o(2−((D−1)αj +ε)j ) is satisfied for larger hj .

We choose (αj )j as large possible, namely αj := 2 − 1
j

for j ≥ 1, then we have

2αj j ∈ Θ(22j ). This particularly concludes that the element of SH(φ,υ, (αj )j ) scale in an
isotropic manner and can be viewed as a special kind of wavelet frame. Therefore, in terms of
inpainting, shearlet frames are superior to isotropic wavelet systems, increasing the degree
of anisotropy improving the recovery error of inpainting. Indeed, the necessary condition
provides a deep insight into the relation between the degree of anisotropy of the underlying
system and the admissible gap size and it shows the structural difference between wavelets
and shearlets.

Theorem 3 Let (αj )j be a scaling sequence and Ψ = SH(φ,υ, (αj )j ) be a universal shear-
let system. We assume that the following conditions are satisfied:

(INP1) There exist δ > 0 and j0 ∈ N such that αj > δ for all j ≥ j0, i.e.,

lim inf
j→∞

αj > 0.

(INP2) For a fixed ε > 0, the sequence of gap widths satisfies

hj = (
h

x1
j × · · · × h

xD−1
j

)
j
∈ o

(
2−((D−1)αj +ε)j

)
.

Then
(‖wL∗

j − wLj‖1,Ψ

‖wLj‖1,Ψ

)

j

∈ o
(
2−Nj

)
, as j → ∞

for every N ∈N0. Here, the recovery provided by Algorithm 1 is denoted by wL∗
j .

Proof A similar computations as in the proof the Lemma 1 show that there exists an N ≥ 0
such that ‖wLj‖1,Ψ ∈ o(2Nj ) as j → ∞. In addition, it is easy to obtain a lower bound
for this term. Now we apply the abstract error estimate of Theorem 1, Proposition 1 and
Lemma 2 to obtain the desired result. �

We would like to remark at this point that the condition (INP2) on the gap width in The-
orem 3 is only the sufficient conditions for asymptotically perfect inpainting, for instance,
the superiority of shearlets over wavelets also need a necessary condition. To tackle this
problem one could use another inpainting which was analyzed in [16].

Also, we believe that a weaker version of (hj )j ∈ o(2−((D−1)αj +ε)j ) is necessary to
achieve asymptotically perfect inpainting. In order to give an argument for this conjec-

ture, we observe that ψ
αj ,D

j,l,k is concentrated inside of Mhj
provided that |ki | ≤ 2αj jhi

j for
i = 1, . . . ,D − 1. Therefore the missing part might be estimated by

‖PMwLj‖1,Ψ =
∑

ψ∈Ψ

|〈PMwLj ,ψ〉| �
∑

(j,k,α,D)∈Λj , l1...lD=0

∣∣〈wLj ,ψ
αj ,(D)

j,l,k

〉∣∣

� 2εj 2αj jhj 2(D−1)(6−αj )
j
2 = 2((D−1)6+2ε)

j
2 2(D−1)αj

j
2 hj

This display that enlarging hj produces a lack of information and will cause inappropriate
error for recovery by �1-minimization.
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Fig. 6 Sketch of the corrupted
modeling image

4 Inpainting with Specific Image Model on L2(R2)

The general approach in this section is the same as in the previous one. We investigate the
inpainting results of �1 minimization by chosen proper index set Λj and estimate the relative
sparsity and cluster coherence respect to this set.

At first, we would like to analyze a specific mathematical model which is the model
of corrupted line segments. Let w ∈ C∞(R2) be a function that is supported in [−ρ,ρ] ×
[−η,η] where ρ,η > 0. A whole sequence of models (wj )j≥0 is given by

wj(x) = w ∗ Fj (x) = 〈
w,Fj

(
x − [·])〉, x ∈R

2,

where filters Fj are defined by the inverse Fourier transform of the corona functions (2).
Now, we define the mask of a missing part of image as follows. The mask Mh is the

intersection of a small vertical strip around the x2-axis and a small horizontal strip around
the x1-axis which is given by

Mh = {
(x1, x2) ∈ R

2 : |x1| ≤ hx1 , |x2| ≤ hx2
}
.

For fix some ε > 0, we define the clusters

Λj = {
(j, l, k,αj , d) : |l| < 1, |k2| < 2εj , k ∈ Z

2, d = 1,2
}
, j ≥ 0.

We may determine the relative sparsity of the shearlet coefficient with respect to the clus-
ter Λ±1

j .

Lemma 3 Assuming that lim infj→∞ αj > 0 (recall that αj is scaling parameter), then

δj ∈ o
(
2−Nj

)
, j → ∞,

for every N ∈N.

Proof By the definition, we have

δj =
∑

k∈Z2,|l|�1

|k2|>2εj

∣∣〈wj ,ψ
αj ,(1)

j,l,k

〉∣∣+
∑

k∈Z2
|l|>1

∣∣〈wj ,ψ
αj ,(1)

j,l,k

〉∣∣

+
∑

k∈Z2,|l|�1

|k2|>2εj

∣∣〈wj ,ψ
αj ,(2)

j,l,k

〉∣∣+
∑

k∈Z2
|l|>1

∣∣〈wj ,ψ
αj ,(2)

j,l,k

〉∣∣+
∑

k∈Z2

|l|=2(2−αj )j

∣∣〈wj ,ψ
αj ,(b)

j,l,k

〉∣∣

= T1 + T2 + T3 + T4 + T5.
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Let αj � o and |l| > 1. By Plancherel’s Theorem, we obtain

〈
wj ,ψ

αj ,(1)

j,l,k

〉=
∫

R

e2πit2ξ2

∫

R

ŵ(ξ)W
(
2−2j ξ

)
ψ̂

αj ,(1)

j,l,0 (ξ)
︸ ︷︷ ︸

=σj,l (ξ)

e2πit1ξ1dξ1dξ2.

We repeatedly apply integration by parts, hence

∣∣〈wj ,ψ
αj (1)

j,l,k

〉∣∣≤ cL,M |t1|−L|t2|−M‖hL,M‖L1(R2),

where hL,M(ξ1, ξ2) = ∫
R2 |D(L,M)ŵ(ξ1, ξ2)σj,l(ξ1, ξ2)|dξ1dξ2. By a similar argumentation as

proof Lemma 1 in part (1), we can estimate the term hL,M(ξ1, ξ2) as of the of following

hL,M(ξ1, ξ2) ≤ cL,N 2−(2+αj )
j
2
〈∣∣2αj j

∣∣〉−N 〈∣∣22j
∣∣〉−N

2−Lαj j .

The final estimate gives

∣∣〈wj ,ψ
αj (1)

j,l,k

〉∣∣≤ cL,M,N |t1|−L|t2|−M2−(2+αj )
j
2
〈∣∣2αj j

∣∣〉−N 〈∣∣22j
∣∣〉−N

2−Lαj j .

Now we can estimate T2. For fix j > o and some index (j, l, k,αj ,1) ∈ Γj , we have
(N ≥ 2)

∑

k∈Z2

|t1|−L|t2|−M ≤ cN 2(Lαj +2M)j .

Now, we can compute T2:

T2 ≤ cL,M,N

∑

k∈Z2

1<|l|≤2(2−αj )j

|t1|−L|t2|−M2−(2+αj )
j
2
〈∣∣2αj j

∣∣〉−N 〈∣∣22j
∣∣〉−N

2−Lαj j

≤ cM,N 2−(2+αj )
j
2
〈∣∣2αj j

∣∣〉−N 〈∣∣22j
∣∣〉−N

22Mj .

The assumption lim infj→∞ αj > 0 and choice N sufficiently large, imply the desired result.
Note that, the strategy for T4 and T5 are analogous, therefore we remove at this point. In the
following, we estimate T3 and T4 are done similarly.

To estimate T3, we benefit of rapid decay of shearlet elements and model wj . Let αj ≥ 0
and |l| ≤ 1,

∣∣〈wj ,ψ
αj (1)

j,l,k

〉∣∣≤ cN 2(2+αj )
j
2

∫

R2
〈|x1|〉−N 〈|x2|〉−N 〈|x1 − k1|〉−N 〈|lx1 + x2 − k2|〉−Ndx,

with this, we have

T3 ≤ cN 2(2+αj )
j
2

∑

k2∈Z,|l|≤1

|k2|>2εj

∫

R2
〈|x1|〉−N 〈|x2|〉−N

∑

k1∈Z
〈|x1 − k1|〉−N

︸ ︷︷ ︸
≤cN

〈|lx1 + x2 − k2|〉−Ndx

≤ cN 2(2+αj )
j
2

∑

k2∈Z,|l|�1

|k2|>2εj

∫

R

〈|x1|〉−N

∫

R

〈|x2|〉−N 〈|lx1 + x2 − k2|〉−Ndx.
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The factors of the integral can be compute by (13), so we obtain

T3 ≤ cN 2(2+αj )
j
2

∑

k2∈Z,|l|�1

|k2|>2εj

∫

R

〈|x1|〉−N 〈|lx1 − k2|〉−Ndx1

≤ cN 2(2+αj )
j
2

∑

k2∈Z
|k2|>2εj

〈|k2|〉−N

≤ cN 2(2+αj )
j
2 2−(N−1)εj .

Choosing N arbitrary large proving the claim. �

Next we estimate the cluster coherence and show that the size of the gaps which can be
filled by the geometric shape of clusters Λ±1

j .

Lemma 4 Presume that (h
x1
j × h

x2
j )j ∈ o(2−(αj +2+ε)j ), we have

μc

(
Λ∓1

j , χMhj
Ψ
)→ 0, j → ∞.

Proof We will investigate the main-scale-term:

μc(Λj ,χMhj
ψ) ≤ max

γ2∈Γ

d=1

∑

γ1∈Λj

d=1

|〈χMhj
ψγ1 ,ψγ2〉|

︸ ︷︷ ︸
=:T1

+max
γ2∈Γ

d=1

∑

γ1∈Λj

d=2

|〈χMhj
ψγ1 ,ψγ2〉|

︸ ︷︷ ︸
=:T2

+ max
γ2∈Γ

d=2

∑

γ1∈Λj

d=1

|〈χMhj
ψγ1 ,ψγ2〉|

︸ ︷︷ ︸
=:T3

+max
γ2∈Γ

d=2

∑

γ1∈Λj

d=2

|〈χMhj
ψγ1 ,ψγ2〉|

︸ ︷︷ ︸
=:T4

+ max
γ2∈Γ

b

∑

γ1∈Λj

|〈χMhj
ψγ1 ,ψγ2〉|

︸ ︷︷ ︸
:=Tb

.

Let γ1 = (j, l, k,αj ,1) ∈ Λj , γ2 ∈ (j, l′, k′, αj ,1) ∈ Γj . We obtain (N ≥ 2)

∣∣〈χMhj
ψ

αj ,(1)

j,l,k ,ψ
αj ,(1)

j,l′,k′
〉∣∣

≤ cN

∫ 2j h
x1
j

−2j h
x1
j

∫ −2αj j
h
x2
j

−2αj j
h
x2
j

〈|x1 + lx2 − k1|〉−N

× 〈|x2 − k2|〉−N
〈|x1 + l′x2 − k′

1|
〉−N

︸ ︷︷ ︸
≤1

〈|x2 − k′
2|
〉−N

dx2dx1.
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Hence, we have

T1 ≤ cN max
(j,l′,k′,αj ,1)∈Γj

∑

|l|≤1

∫ 2j h
x1
j

−2j h
x1
j

∫ −2αj j
h
x2
j

−2αj j
h
x2
j

〈|x2 − k′
2|
〉−N

×
∑

k∈Z2

〈|x1 + lx2 − k1|〉−N 〈|x2 − k2|〉−N

︸ ︷︷ ︸
≤cN

dx2dx1

≤ cN max
(j,l′,k′,αj ,1)∈Γj

∫ 2j h
x1
j

−2j h
x1
j

∫ −2αj j
h
x2
j

−2αj j
h
x2
j

〈|x2 − k′
2|
〉−N

︸ ︷︷ ︸
≤1

dx2dx1

≤ cN 2(αj +2)j h
x1
j × h

x2
j → 0, j → ∞.

For the factor T2, let γ1 = (j, l, k,αj ,2) ∈ Λj , γ2 ∈ (j, l′, k′, αj ,1) ∈ Γj . For N ≥ 2, we can
compute as following:

∣∣〈χMhj
ψ

αj ,(2)

j,l,k ,ψ
αj ,(1)

j,l′,k′
〉∣∣

≤ cN 2(αj +2)j

∫ h
x1
j

h
x1
j

∫ h
x2
j

h
x2
j

〈∣∣2αj j x1 − k1

∣∣〉−N

× 〈∣∣l2αj j x1 + 22j x2 − k2

∣∣〉−N 〈∣∣l′2αj j x2 + 22j x1 − k′
1

∣∣〉−N

︸ ︷︷ ︸
≤1

〈∣∣2αj j x2 − k′
2

∣∣〉−N
dx.

Finally, we obtain

T2 ≤ cN 2(αj +2)j max
(j,l′,k′,αj ,1)∈Γj

∑

|l|≤1
|k2|≤2εj

∫ h
x1
j

−h
x1
j

∫ h
x2
j

−h
x2
j

〈∣∣2αj j x2 − k′
2

∣∣〉−N

×
∑

k1∈Z

〈∣∣2αj j x1 − k1

∣∣〉−N

︸ ︷︷ ︸
≤cN

dx2dx1

≤ cN 2(αj +2)j 2εj max
(j,l′,k′,αj ,1)∈Γj

∫ h
x1
j

−h
x1
j

∫ h
x2
j

−h
x2
j

〈∣∣2αj j x2 − k′
2

∣∣〉−N

︸ ︷︷ ︸
≤1

dx

≤ cN 2(αj +2+ε)jh
x1
j × h

x2
j → 0, j → ∞.

Not that, the estimate for T3 and T4 are done similar to T1 and T2, respectively. By the
definition of the boundary shearlets, it can estimate easily. �

Now, we can apply the error estimate of Theorem 1 to show the success of image inpaint-
ing with special image model. By considering the gap size as asymptotically smaller than the
length of the corresponding shearlet elements, asymptotically perfect inpainting is achieved.
Inpainting result for shearlets and wavelets in special cases can be found in [9, 16].
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Fig. 7 (a) Original image. (b) Missing data. (c) Masked image inpainted with shearlets using iterative thresh-
olding. (d) Masked image inpainted with wavelets using iterative thresholding

Theorem 4 Let (αj )j be a scaling sequence and Ψ = SH(φ,υ, (αj )j ) be a universal shear-
let system. If

(INP1) lim inf
j→∞

αj > 0.

(INP2) For a fixed ε > 0, hj = (
h

x1
j × h

x2
j

)
j
∈ o

(
2−(2+αj +ε)j

)
.

Then
(‖w∗

j − wj‖1,Ψ

‖wj‖1,Ψ

)

j

∈ o
(
2−Nj

)
, as j → ∞

for every N ∈N0, where the recover provided by Algorithm 1 is denoted by w∗
j .

Proof The claim follows from the abstract error estimate of Theorem 1, Lemma 3 and
Lemma 4. �

Note that our goal was to show that results make sense and provide insight. In Theo-
rem 4, we focused on the recovery of anisotropic fashion. However, one might ask about
isotropic method such as wavelet which may lead to improve error estimate. This certainly
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Fig. 8 Video inpainting of mobile video sequence. Starting from the top left: original frame, missing data,
inpainted frame using 3DSHEAR (PSNR = 27.32) and 2DSHEAR (PSNR = 24.12)

requires a careful adaption of the argument which is being investigated in our current re-
search.

5 Numerical Experiments

This section is devoted to a set of numerical experiments. We focus on the inpainting prob-
lem and present a number of examples comparing various inpainting methods. In Fig. 7,
vertical lines were removed from a grayscale Barbara image. The lines were inpainted using
the methods from [15]. When using iterative thresholding to inpaint an image which consists
almost completely of curvilinear features, shearlets outperform wavelets.

In Fig. 8 we compare the performance of the various video inpainting on a typical frame
extracted from the inpainted video sequence. Although more subjective in nature, the figures
show that the visual quality of the 3D shearlet frame is superior [18].

Our results are also of interest in the case considering the algorithm developed in [20]
together with shearlet transforms (SIRL1 + TGV). We give a precise description of the
crucial multiscale transform we used and the parameters. For shearlets, we have used the
shearlet transform available at www.ShearLab.org. The discrete shearlet system is generated
by using 4 scales and [1 1 2 2] for directional parameters. The chosen parameters for the
proposed algorithm are:

http://www.ShearLab.org
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Fig. 9 Comparison of iterative thresholding (IT) algorithm as used in the ShearLab package and proposed
method. Both methods use the same shearlet system with 4 scales. Image (a) shows the original test image
“Lena” and (b) displays the image distorted image. Second row shows intermediate results of the proposed al-
gorithm combining iterative thresholding and TGV. Last row shows intermediate results of different iterations
of the IT algorithm

– β = 103,
– α = [1,2],
– μ = [10,10,20],
– ε = 5 × 10−5.

We have compared the results and parameters provided in the ShearLab package, based
on iterative thresholding (IT) [18] with shearlets and total generalized variation (SIRL1 +
TGV) [20]. To visualize the difference between the two methods, we demonstrate results of
various number of iterations in Figs. 9 and 10. While both methods in total yield a similarly
good performance, differences are clearly visible. The IT method smooths the signal more
than the method of SIRL1 + TGV. There are still shadows of inpainting gaps visible in
the results of SIRL1 + TGV, but the texture and sharp edges are preserved in a better way,
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Fig. 10 Comparison of iterative thresholding (IT) algorithm as used in the ShearLab package and proposed
method. Both methods use the same shearlet system with 4 scales. Image (a) shows the original test image
and (b) displays the image distorted image. Second row shows intermediate results of the proposed algorithm
combining iterative thresholding and TGV. Last row shows intermediate results of different iterations of the
IT algorithm

which is in particular due to the additional TGV regularizer. Although proposed method is
not optimized at all, it takes 440 s, for 25 iterations, while the lean method of IT needs 462 s,
for computing the final result after 400 iterations.
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