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1 Introduction

String theory is a field theory with a finite number of massless fields and a tower of infinite

number of massive fields. An efficient way to study different phenomena in this theory is to

use an effective action in which effects of the massive fields appear in higher derivatives of

the massless fields. There are verity of methods for finding such higher derivative couplings.

S-matrix element approach [1, 2], sigma-model approach [3–5], supersymmetry approach [6–

8], Double Field Theory (DFT) approach [9–13], and duality approach [14–16]. In the

duality approach, the consistency of the effective actions with duality transformations are

imposed to find the higher derivative couplings [16]. In this paper, we are interested in

constraining the couplings to be consistent with T-duality transformations.

The T-duality in string theory is realized by studying the spectrum of the closed string

on a tours. The spectrum is invariant under the transformation in which the Kaluza-Kelin

modes and the winding modes are interchanged, and at the same time the set of scalar fields

parametrizing the tours transforms to another set of scalar fields parametrizing the dual

tours. The transformations on the scalar fields have been extended to curved spacetime

with background fields by Buscher [17, 18]. It has been observed that the effective actions

at the leading order of α′ are invariant under the Buscher rules [19]. When this idea

is going to be implemented on the higher derivative corrections to the effective actions,

however, one runs into the problem that the Buscher rules should receive higher derivative

corrections as well [20].

There are covariant and non-covariant approaches for applying the T-duality on the

effective actions at the higher order of α′ [16]. In the non-covariant approach, non-covariant

effective actions are constrained to be invariant under the standard Buscher rules with no

higher derivative correction [21, 22]. Since the effective actions are not covariant under the

general coordinate transformations, some non-covariant field redefinitions are required to

convert the effective actions to the covariant forms. The field redefinitions may cause the

Buscher rules to receive higher covariant derivative corrections as well. Alternatively, in

the covariant approach in which we are interested in this paper, one considers covariant
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effective actions and then requires them to be invariant under the appropriate T-duality

transformations which are the Buscher rules plus their corresponding higher covariant

derivative corrections.

In the bosonic and in the heterotic string theories, the higher derivative corrections to

the effective actions begin at order α′, whereas, in type II superstring theory, the higher

derivative corrections begin at order α′3. As a result, the corrections to the Buscher rules in

the covariant approach begin at order α′ in the bosonic and heterotic theories, and begin at

order α′3 in the superstring theory. Since there is no higher derivative correction at order

α′2 to the Buscher rules in the superstring theory, a covariant effective action for Op-plane

at order α′2 has been found in [23, 24] by requiring it to be consistent with the standard

Buscher rule. In this paper, we are interested in α′, α′2 corrections to the bulk effective

actions of the bosonic and heterotic theories. Hence, in the covariant approach, we have

to work with the Buscher rules plus their α′ and α′2 corrections.

Using effective action of the bosonic and heterotic string theories at order α′ in an spe-

cific field variables, Kaloper and Meissner have found corrections at order α′ to the Buscher

rules that make the effective action to be consistent with T-duality [20]. In this paper, we

are going to answer the following question: if one considers an effective action with all

possible independent covariant couplings at each order of α′ with unknown coefficients

and considers the Buscher rules plus all possible higher covariant derivative corrections at

the same order of α′, then, is the requirement that the action to be consistent with the

T-duality transformation is strong enough to fix the coefficients in the effective action and

in the T-duality transformations? At orders α′ and α′2, and for the simple case that there

is no B-field and the metric is diagonal that we have done the calculations, we have found

that the T-duality constraint fixes the action up to field redefinitions and up to an overall

factor. It also fixes many unknown coefficients in the T-duality transformations. There

are, however, some residual T-duality parameters that may be fixed by the calculations in

the presence of B-field or by the calculations at the higher orders of α′.

The T-duality transformations at the leading order of α′ are given by the Buscher rules.

They form a Z2 group. One may impose this condition on the T-duality transformation

at the higher order of α′ to constrain the higher derivative corrections to the Buscher

rules. As we will see, this condition excludes many covariant derivative terms in the T-

duality transformations and interrelate coefficients of many other terms. Furthermore, the

criterion that the effective actions are invariant under the T-duality transformations relate

the non-zero coefficients in the T-duality transformations to the coefficients of the effective

actions. Using these conditions, one may find both the effective actions and the T-duality

transformations at any order of α′.

In general, apart from coefficients of the Riemann curvature couplings which are inde-

pendent of field redefinitions, the coefficients of all other couplings in the effective actions

are a priori ambiguous. The ambiguous coefficients transform under the field redefinitions

Gµν → Gµν + α′δG
(1)
µν + · · · and Φ → Φ + α′δΦ(1) + · · · . So there are a large number of

effective actions, which all are physically identical, i.e. all correspond to the same S-matrix

elements. At order α′, it has been shown in [28] that there are 8 ambiguous coefficients and

they satisfy one relation which is invariant under the field redefinitions. So one can set all
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the ambiguous coefficients to arbitrary numbers except one of them. The S-matrix calcu-

lation can fix the remaining coefficient. At order α′2, there are 42 ambiguous coefficients.

They satisfy 5 relations which are invariant under the field redefinitions [30, 32, 33]. So

one can fix all ambiguous coefficients to arbitrary numbers except 5 of them. The unfixed

coefficients can be found from the corresponding S-matrix elements. Similarly for couplings

at higher order of α′. The combinations of the ambiguous coefficients that remain invariant

under the field redefinitions may be functions of the coefficients of the Riemann curvature

terms which are also invariant under the field redefinitions. Theses functions may be found

from the S-matrix calculations. In this paper, among other things, we are going to find

these functions from the T-duality constraints on the effective actions. We will find that

these functions are all in fact zero. That is, there is no combination of the coefficients

of the T-duality invariant theory which remains invariant under field redefinitions. This

indicates that the T-duality transformations do not relate the coefficients of the Riemann

curvature couplings to all other couplings. For example, as we will see, the T-duality fixes

the effective action at order α′ to be

S1 =
−2

κ
α′

∫
dd+1xe−2Φ

√
−G

(
b1RαβγδR

αβγδ + b2RαβR
αβ + b3R

2

+ b4Rαβ∇αΦ∇βΦ+ b5R∇αΦ∇αΦ+ b6R∇α∇αΦ+ b7∇α∇αΦ∇β∇βΦ

+ b8∇αΦ∇αΦ∇β∇βΦ− 2(8b3 − 2b5 − 4b6 + 2b7 + b8)∇αΦ∇αΦ∇βΦ∇βΦ
)

(1.1)

where the coefficients b1, b2, · · · , b8 are all arbitrary. The corresponding T-duality cor-

rections to the Buscher rules appear in (3.30). Note that in the effective action (1.1),

the coefficient of the Riemann curvature coupling does not relate to any other coupling.

Moreover, there are no ambiguous coefficients in the action any more, i.e. there is no combi-

nation of the coefficients b2, · · · , b8 which is invariant nuder the field redefinitions. Different

choices for these coefficients give the effective action in different schemes. For example, the

effective action in the “Gauss-Bonnet” scheme is

S1 =
−2b1
κ2

α′

∫
e−2Φ

√
−G

(
RαβγδR

αβγδ − 4RαβR
αβ +R2 − 16∇αΦ∇αΦ∇βΦ∇βΦ

)
.

(1.2)

This action is consistent with the S-matrix calculation [29].

One may consider the higher covariant derivative corrections (3.30) to the Buscher

rules as field redefinitions in the reduced (D − 1)-dimensional effective action. If one is

not interested in the explicit form of the field redefinitions at order α′, one may substitute

the equations of motion at order α′0 to the effective action at order α′ (see e.g. [27]).

We will find the T-duality invariant effective action (1.1) in this way as well. However, at

higher orders of α′, in general, making the field redefinitions is not equivalent to all possible

substitutions of the lower order equations of motion in the effective action at order α′n.

The outline of the paper is as follows: in section 2, we consider the most general T-

duality transformations at order α′, α′2, and use the fact that the T-duality transformations

must form a Z2 group, to exclude some of the terms in the transformations and to find

some relations between the non-zero terms. In section 3, we use the compatibility of a
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priori unknown effective actions with the T-duality transformations to fix both the effective

actions and their corresponding T-duality transformations. In subsection 3.1, we show

that the effective action at the leading order of α′ is fixed up to an overall factor. In

subsection 3.2, we show that the effective action at order α′ is fixed up to an overall factor

and up to field redefinitions. The corresponding T-duality transformations at order α′ are

also found in this section. We show that for one particular field variables, the effective

action and its corresponding T-duality transformations are those appear in the literature.

In subsection 3.3, we repeat the calculations to the order α′2 and find the effective action

and its corresponding T-duality transformations. The effective action is again fixed up to

an overall factor and up to field redefinitions. In two particular field variables, we show

that the effective actions are those appear in the literature which have been found from

the S-matrix and the sigma-model calculations.

2 ZZZ2-constraint on T-duality transformations

In this section, we are going to consider the T-duality transformations which include all

higher derivative terms at each order of α′ with unknown coefficients and constrain the

coefficients such that they form a Z2 group. To simplify the calculations, we are going to

consider the case that the theory is compactified on a circle with the killing coordinate y

and radius ρ, i.e.D = d+1 where D is the dimension of spacetime. In this case, the Buscher

rules which are the T-duality transformations at the leading order of α′, are [17, 18]

e2Φ
T (0)

−−→ e2Φ

Gyy
; Gyy

T (0)

−−→ 1

Gyy

Gay
T (0)

−−→ Bay

Gyy
; Gab

T (0)

−−→ Gab −
GayGby −BayBby

Gyy

Bay
T (0)

−−→ Gay

Gyy
; Bab

T (0)

−−→ Bab −
BayGby −GayBby

Gyy
(2.1)

where a, b denote any direction other than y. In above transformation, the metric is in the

string frame. It is easy to verify that the above transformations form a Z2 group, i.e.

e2Φ
T (0)

−−→ e2Φ

Gyy

T (0)

−−→ e2Φ ; Gyy
T (0)

−−→ 1

Gyy

T (0)

−−→ Gyy

Gay
T (0)

−−→ Bay

Gyy

T (0)

−−→ Gay ; Gab
T (0)

−−→ Gab −
GayGby −BayBby

Gyy

T (0)

−−→ Gab

Bay
T (0)

−−→ Gay

Gyy

T (0)

−−→ Bay ; Bab
T (0)

−−→ Bab −
BayGby −GayBby

Gyy

T (0)

−−→ Bab .

This property must be carried out by all the higher derivative corrections to the Buscher

rules.

The Buscher rules are the T-duality transformations corresponding to the effective

action at the leading order of α′. The T-duality transformations corresponding to the
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effective action at all orders of α′ may have the following α′-expansion:

T =
∞∑

n=0

(α′)nT (n) , (2.2)

where T (0) is the above Buscher rules, T (1) is correction to the Buscher rules at order

α′, and so on. The fact that the T-duality transformation (2.2) must form a Z2 group,

produces schematically the following constraints:

T (0)T (0) = 1,

T (0)T (1) = 0,

T (0)T (2) + T (1)T (1) = 0,

T (0)T (3) + T (1)T (2) = 0,

T (0)T (4) + T (1)T (3) + T (2)T (2) = 0, (2.3)

...

The first relation is the Z2-constraint at order α
′0, the second one is the Z2-constraint at

order α′, the third one is the Z2-constraint at order α′2, and so on. One can write the

correction T (n) in terms of all possible d-dimensional tensors at order α′n with unknown

coefficients. Then the above relations may be used to constrain the unknown coefficients

in T (1), T (2), · · · .
For the simple case that the metric is diagonal and B-field is zero, the Buscher rules

become

e2Φ
T (0)

−−→ e2Φ

Gyy
; Gyy

T (0)

−−→ 1

Gyy
(2.4)

and the d-dimensional metric Gab ≡ gab is invariant. Parametrizing the d-dimensional

scalar Gyy as Gyy = e2σ, then the Buscher rules simplify to

σ
T (0)

−−→ −σ

P
T (0)

−−→ P

gab
T (0)

−−→ gab (2.5)

where P is the d-dimensional dilaton, i.e. P = Φ− σ/2.

The corrections at order α′ to the Buscher rules in general are:

σ
T−→ −σ + α′δσ1 +O(α′2)

P
T−→ P + α′δP 1 +O(α′2) (2.6)

gab
T−→ gab + α′δg1ab +O(α′2)

where δσ1, δP 1 and δg1ab are functions of σ, P, gab which have two d-dimensional covariant

derivatives. To impose the constraint (2.3), it is convenient to separate δσ, δP and δgab to
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σ-odd and σ-even parts. We then define the class A in which δσ has even number of σ and

δP, δgab have odd number of σ. All other terms are defind to be in class B, i.e.

δσ = δσA + δσB

δP = δPA + δPB

δgab = δgAab + δgBab . (2.7)

The corrections to the Buscher rule at order α′ in class A are:

δσ1
A(σ, P, g) = A1R̃+A2∇̃a∇̃aP +A3∇̃aP ∇̃aP +A4∇̃aσ∇̃aσ

δP 1
A(σ, P, g) = A5∇̃a∇̃aσ +A6∇̃aσ∇̃aP

δg1Aab(σ, P, g) = A7

(
1

2
∇̃aσ∇̃bP +

1

2
∇̃aP ∇̃bσ

)
+A8∇̃b∇̃aσ

+gab

(
A9∇̃c∇̃cσ +A10∇̃cσ∇̃cP

)
(2.8)

where A1, . . . A10 are some unknown coefficients. The tilde sign over the covariant deriva-

tives means the metric in them is the d-dimensional metric gab. One should exclude the

transformations that are correspond to the d-dimensional coordinate transformations. Un-

der infinitesimal coordinate transformation xa → xa − ζa(x), the metric gab, the dilaton P

and σ transform as δgab = ∇̃aζb + ∇̃bζa, δP = ζa∇̃aP and δσ = ζa∇̃aσ. If one chooses the

infinitesimal parameter as ζa = (A8/2)∇̃aσ, then the corresponding coordinate transfor-

mations are δgab = A8∇̃a∇̃bσ, δP = (A8/2)∇̃aσ∇̃aP and δσ = (A8/2)∇̃aσ∇̃aσ. Therefore,

one should exclude the term A8∇̃a∇̃bσ in δg1Aab(σ, P, g). Since we are working in covariant

approach, the presence of such term should not however affect our calculations, so we keep

the term with coefficient A8 and set it to zero at the end of our calculations.

Using the Z2-constraints at order α′, one finds δσ1
B, δP

1
B, δg

1
Bab are all zero. That is,

the Z2-constraints are

σ
T−→ −σ + α′(δσ1

A + δσ1
B) +O(α′2)

T−→ σ − 2α′δσ1
B +O(α′2) = σ

P
T−→ P + α′(δP 1

A + δP 1
B) +O(α′2)

T−→ P + 2α′δP 1
B +O(α′2) = P

gab
T−→ gab + α′(δg1Aab + δg1Bab) +O(α′2)

T−→ gab + 2α′δg1Bab +O(α′2) = gab ,

where we have used the fact that

δσA(−σ) = δσA(σ) ; δPA(−σ) = −δPA(σ) ; δgAab(−σ) = −δgAab(σ)

δσB(−σ) = −δσB(σ) ; δPB(−σ) = δPB(σ) ; δgBab(−σ) = δgBab(σ) . (2.9)

So the only non-zero terms at order α′ are those in (2.8).

We extend the above calculations to one higher order of α′, i.e.

σ
T−→ −σ + α′δσ1

A +
1

2
α′2(δσ2

A + δσ2
B) +O(α′3)

P
T−→ P + α′δP 1

A +
1

2
α′2(δP 2

A + δP 2
B) +O(α′3) (2.10)

gab
T−→ gab + α′δg1Aab +

1

2
α′2(δg2Aab + δg2Bab) +O(α′3)
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where δσ2, δP 2 and δg2ab are functions of σ, P, gab which have four d-dimensional covari-

ant derivatives. Using the symmetries (2.8), the Z2-constraint now leaves δσ2
A, δp

2
A, δg

2
Aab

arbitrary and fixes δσ2
B, δp

2
B, δg

2
Bab as

α′2δσ2
B = α′δσ1

A(−σ + α′δσ1
A, P + α′δP 1

A, g + α′δg1A)− α′δσ1
A(σ, P, g)

α′2δP 2
B = −α′δP 1

A(−σ + α′δσ1
A, P + α′δP 1

A, g + α′δg1A)− α′δP 1
A(σ, P, g)

α′2δg2Bab = −α′δg1Aab(−σ + α′δσ1
A, P + α′δP 1

A, g + α′δg1A)− α′δ g1Aab(σ, P, g) . (2.11)

Using (2.8), one can write δσ2
B, δp

2
B, δg

2
Bab in terms of product of two A1, · · ·A10. The

arbitrary corrections δσ2
A, δp

2
A, δg

2
Aab are:

δσ2
A = A11R̃abR̃

ab+A12R̃
2+A13R̃abcdR̃

abcd+A14R̃∇̃a∇̃aP+A15∇̃a∇̃aR̃+A16R̃∇̃aP ∇̃aP

+A17∇̃aR̃∇̃aP+A18R̃∇̃aσ∇̃aσ+A19R̃
ab∇̃b∇̃aP+A20∇̃a∇̃aP ∇̃b∇̃bP

+A21∇̃aP ∇̃aP ∇̃b∇̃bP+A22∇̃aσ∇̃aσ∇̃b∇̃bP+A23∇̃a∇̃aσ∇̃b∇̃bσ

+A24∇̃aσ∇̃aP ∇̃b∇̃bσ+A25∇̃aP ∇̃b∇̃b∇̃aP+A26∇̃aσ∇̃b∇̃b∇̃aσ

+A27∇̃b∇̃b∇̃a∇̃aP+A28R̃ab∇̃aP ∇̃bP+A29∇̃aP ∇̃aP ∇̃bP ∇̃bP

+A30∇̃aσ∇̃aP ∇̃bσ∇̃bP+A31∇̃aP ∇̃b∇̃aP ∇̃bP+A32R̃ab∇̃aσ∇̃bσ

+A33∇̃aP ∇̃aP ∇̃bσ∇̃bσ+A34∇̃aσ∇̃aσ∇̃bσ∇̃bσ+A35∇̃aσ∇̃b∇̃aP ∇̃bσ

+A36∇̃aP ∇̃b∇̃aσ∇̃bσ+A37∇̃b∇̃aP ∇̃b∇̃aP+A38∇̃b∇̃aσ∇̃b∇̃aσ

δP 2
A = A39R̃∇̃a∇̃aσ+A40R̃∇̃aσ∇̃aP+A41∇̃aσ∇̃aR̃+A42R̃

ab∇̃b∇̃aσ

+A43∇̃aσ∇̃aP ∇̃b∇̃bP+A44∇̃a∇̃aP ∇̃b∇̃bσ+A45∇̃aP ∇̃aP ∇̃b∇̃bσ

+A46∇̃aσ∇̃aσ∇̃b∇̃bσ+A47∇̃aσ∇̃b∇̃b∇̃aP+A48∇̃aP ∇̃b∇̃b∇̃aσ

+A49∇̃b∇̃b∇̃a∇̃aσ+A50∇̃aP ∇̃aP ∇̃bσ∇̃bP+A51∇̃aP ∇̃b∇̃aσ∇̃bP

+A52R̃ab∇̃aP ∇̃bσ+A53∇̃aσ∇̃aP ∇̃bσ∇̃bσ+A54∇̃aP ∇̃b∇̃aP ∇̃bσ

+A55∇̃aσ∇̃b∇̃aσ∇̃bσ+A56∇̃b∇̃aσ∇̃b∇̃aP

δg2Aab =
1

2
A57(R̃∇̃aσ∇̃bP+R̃∇̃aP ∇̃bσ)+

1

2
A58(∇̃aσ∇̃bR̃+∇̃aR̃∇̃bσ)

+A59R̃∇̃b∇̃aσ+
1

2
A60(R̃b

c∇̃c∇̃aσ+R̃a
c∇̃c∇̃bσ)+A61∇̃b∇̃aσ∇̃c∇̃cP

+
1

2
A62(∇̃aσ∇̃bP ∇̃c∇̃cP+∇̃aP ∇̃bσ∇̃c∇̃cP )+A63R̃ab∇̃c∇̃cσ

+A64∇̃aP ∇̃bP ∇̃c∇̃cσ+A65∇̃aσ∇̃bσ∇̃c∇̃cσ+A66∇̃b∇̃aP ∇̃c∇̃cσ

+
1

2
A67(∇̃bσ∇̃c∇̃c∇̃aP+∇̃aσ∇̃c∇̃c∇̃bP )+

1

2
A68(∇̃bP ∇̃c∇̃c∇̃aσ

+∇̃aP ∇̃c∇̃c∇̃bσ)+A69∇̃c∇̃c∇̃b∇̃aσ+A70∇̃b∇̃aσ∇̃cP ∇̃cP+A71R̃ab∇̃cσ∇̃cP

+A72∇̃aP ∇̃bP ∇̃cσ∇̃cP+A73∇̃aσ∇̃bσ∇̃cσ∇̃cP+A74∇̃b∇̃aP ∇̃cσ∇̃cP

+A75∇̃c∇̃b∇̃aσ∇̃cP+
1

2
A76(R̃bc∇̃aσ∇̃cP+R̃ac∇̃bσ∇̃cP )

+
1

2
A77(∇̃aσ∇̃bP ∇̃cP ∇̃cP+∇̃aP ∇̃bσ∇̃cP ∇̃cP )

+
1

2
A78(∇̃bσ∇̃c∇̃aP ∇̃cP+∇̃aσ∇̃c∇̃bP ∇̃cP )
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+
1

2
A79(∇̃bP ∇̃c∇̃aσ∇̃cP+∇̃aP ∇̃c∇̃bσ∇̃cP )

+A80∇̃cR̃ab∇̃cσ+A81∇̃b∇̃aσ∇̃cσ∇̃cσ+A82∇̃c∇̃b∇̃aP ∇̃cσ

+
1

2
A83(R̃ac∇̃bP ∇̃cσ+R̃bc∇̃aP ∇̃cσ)+

1

2
A84(∇̃bR̃ac∇̃cσ+∇̃aR̃bc∇̃cσ)

+
1

2
A85(∇̃aσ∇̃bP ∇̃cσ∇̃cσ+∇̃aP ∇̃bσ∇̃cσ∇̃cσ)+

1

2
A86(∇̃bP ∇̃c∇̃aP ∇̃cσ

+∇̃aP ∇̃c∇̃bP ∇̃cσ)+
1

2
A87(∇̃bσ∇̃c∇̃aσ∇̃cσ+∇̃aσ∇̃c∇̃bσ∇̃cσ)

+
1

2
A88(∇̃c∇̃bσ∇̃c∇̃aP+∇̃c∇̃aσ∇̃c∇̃bP )+

1

2
A89(R̃acbd∇̃cP ∇̃dσ+R̃adbc∇̃cP ∇̃dσ)

+A90R̃acbd∇̃d∇̃cσ+g̃ab

(
A91R̃∇̃c∇̃cσ+A92R̃∇̃cσ∇̃cP+A93∇̃cσ∇̃cR̃

+A94R̃
cd∇̃d∇̃cσ+A95∇̃cσ∇̃cP ∇̃d∇̃dP+A96∇̃c∇̃cP ∇̃d∇̃dσ+A97∇̃cP ∇̃cP ∇̃d∇̃dσ

+A98∇̃cσ∇̃cσ∇̃d∇̃dσ+A99∇̃cσ∇̃d∇̃d∇̃cP+A100∇̃cP ∇̃d∇̃d∇̃cσ+A101∇̃d∇̃d∇̃c∇̃cσ

+A102∇̃cP ∇̃cP ∇̃dσ∇̃dP+A103∇̃cP ∇̃d∇̃cσ∇̃dP+A104R̃cd∇̃cP ∇̃dσ

+A105∇̃cσ∇̃cP ∇̃dσ∇̃dσ+A106∇̃cP ∇̃d∇̃cP ∇̃dσ

+A107∇̃cσ∇̃d∇̃cσ∇̃dσ+A108∇̃d∇̃cσ∇̃d∇̃cP
)

(2.12)

where A11, · · ·A108 are some unknown coefficients. Some of the above terms again corre-

spond to the d-dimansional coordinate transformations. The presence of those terms does

not affect our calculations because we are working in covariant approach, hence, we do not

try to exclude them from the above list of corrections.

The Z2-constraint for the higher order terms leaves the corrections in the class A to

be arbitrary and the corrections in class B to be written in terms of corrections in class A.

In the next section we fix the arbitrary coefficients in the class A by requiring the effective

actions to be invariant under the above T-duality transformations.

3 T-duality constraint on effective actions

In the covariant approach for constructing the effective action from T-duality constraint,

one considers a D-dimensional covariant effective action Seff which has the following α′-

expansion:

Seff =

∞∑

n=0

α′nSn (3.1)

where S0 is the effective action at the leading order which contains all covariant cou-

plings at 2-derivative level with unknown coefficients, S1 contains all covariant couplings

at 4-derivative level with unknown coefficients, and so on. The invariance of the effective

action (3.1) under the T-duality means the following: one should reduce the theory on a

circle with the killing direction y to produce d-dimensional action Seff . Then one should

transform this reduced action under the T-duality transformation (2.2) to produce S
′
eff .

The T-duality constraint is Seff = S
′
eff . In other words,

Seff
T−→ S

′
eff = Seff . (3.2)
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This constraint is expected to be held at each order of α′. That is, the action at the leading

order of α′ must be invariant under the Buscher rules, i.e.

S0
T (0)

−−→ S
′
0 = S0 . (3.3)

At order α′, the invariance means

S1
T (0)

−−→ S
′
1 = S1 − δS1 , (3.4)

S0
T (0)+α′T (1)

−−−−−−−→ S0 + δS1 + · · ·

where δS1 is at order α′ and dots refer to the terms at higher orders of α′ which are

produced by applying the T-duality transformation T (1) on the reduced action S0. The

above relations mean that the effective action at order α′ is not invariant under the Buscher

rules, however, the non-invariance terms must be reproduced by the transformation of the

leading order action under the Buscher rules pluse their α′-corrections.

At order (α′)2, the invariance means

S2
T (0)

−−→ S
′
2 = S2 − δS2 ,

S0 + S1
T (0)+α′T (1)+α′2T (2)

−−−−−−−−−−−−−→ S0 + S1 + δS2 + · · · (3.5)

where δS2 is at order α′2. So if the effective action at order α′2 is not invariant under the

Buscher rules, the non-invariance terms must be reproduced by the transformation of the

lower order actions under the Buscher rules pulse α′ and α′2 corrections.

At order (α′)3, the invariance means

S3
T (0)

−−→ S
′
3 = S3 − δS3 ,

S0 + S1 + S2
T (0)+α′T (1)+α′2T (2)+α′3T (3)

−−−−−−−−−−−−−−−−−−−→ S0 + S1 + S2 + δS3 + · · · (3.6)

where δS3 is at order α′3. Similarly for the higher orders of α′. Since the constraint (3.2)

is on the effective actions, one is free to add any total derivative term to the d-dimensional

Lagrangian in (3.2).

The corrections α′T (1) + α′2T (2) + α′3T (3) + · · · to the Buscher rule T (0), are in fact

the higher derivative transformations to the d-dimensional fields, i.e.

σ → −σ + · · ·
P → P + · · ·
gab → gab + · · · (3.7)

As a result, the transformations in the second lines in (3.4), (3.5) and (3.6) are the transfor-

mations of S0, S0+S1 and S0+S1+S2, respectively, under the above field redefinitions.

So, one may write the T-duality constraint (3.2) as

Seff
T (0)

−→ S
′
eff = Seff or δSeff = 0 (3.8)

up to the d-dimensional field redefinitions (3.7).

The unknown coefficients in the reduced action Seff are inherited from the original

action Seff , as a result, the constraint (3.2) or (3.8) may fix the coefficients in Seff . Let us

check this for the trivial case at order α′0 in the next subsection.
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3.1 Effective action at order α
′0

We begin with the effective action at order α′0, which has 2-derivative couplings. The only

2-derivative couplings are:

R , ∇αΦ∇αΦ , ∇α∇αΦ .

However, using the fact that the effective action in the string frame has an overall factor

of e−2Φ
√
−G, one realizes that the coupling ∇α∇αΦ is related to ∇αΦ∇αΦ by using inte-

gration by parts, so one can eliminate this coupling in the effective action. As a result, the

most general covariant action at order α′0 is

S0 = − 2

κ2

∫
dd+1xe−2Φ

√
−G (a1R+ a2∇αΦ∇αΦ) (3.9)

where a1, a2 are two unknown constants.

The reduction of different terms in this action to d-dimensional spacetime is

e−2Φ
√
−G = e−2P√−g

R = R̃− 2∇̃a∇̃aσ − 2∇̃aσ∇̃aσ

∇αΦ∇αΦ = ∇̃aP ∇̃aP + ∇̃aσ∇̃aP +
1

4
∇̃aσ∇̃aσ (3.10)

where we have assumed that the fields are independent of the killing coordinate y. The

reduction of the action (3.9) is then

S0 = − 2

κ2

∫
ddxe−2P√−g

(
a1R̃+ a2∇̃aP ∇̃aP + (−4a1 + a2)∇̃aσ∇̃aP

+
1

4
(−8a1 + a2)∇̃aσ∇̃aσ

)
(3.11)

where we have also used the integration by parts in d-dimensional spacetime to write

∇̃a∇̃aσ = 2∇̃aP ∇̃aσ. Now under the T-duality transformation (2.5), it transforms to the

following action:

S0
T (0)

−−→ S
′
0 = − 2

κ2

∫
ddxe−2P√−g

(
a1R̃+ a2∇̃aP ∇̃aP − (−4a1 + a2)∇̃aσ∇̃aP

+
1

4
(−8a1 + a2)∇̃aσ∇̃aσ

)
. (3.12)

Requiring the two d-dimensionl actions to be identical, i.e. (3.3), one finds a2 = 4a1. This

fixes the original D-dimensional action (3.9) up to an overall constant factor to be

S0 = − 2

κ2

∫
dd+1xe−2Φ

√
−Ga1 (R+ 4∇αΦ∇αΦ) . (3.13)

This is the known effective action at order α′ in absence of B-fields when the overall factor

is a1 = 1. In the next subsection, we continue the above calculations for the couplings at

order α′.
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3.2 Effective action at order α
′

The covariant couplings at order α′ have the following structures:

RR, ∇∇R, ∇Φ∇R, ∇∇ΦR, ∇Φ∇ΦR, ∇Φ∇Φ∇Φ∇Φ, ∇∇Φ∇∇Φ, ∇∇Φ∇Φ∇Φ,

∇Φ∇∇∇Φ, ∇∇∇∇Φ

where R stands for the Riemann curvature. One should consider all contractions in each

structure. Using the Bianchi identities, one finds that there are only 16 independent

couplings in the Lagrangian. However, in the action, one should consider all terms that

are independent up to total derivative terms. In fact, seven terms in the Lagrangian are

related to the other terms by some total derivative terms. They are

∇α∇αR ⇒ −2R∇α∇αΦ+ 4R∇αΦ∇αΦ

∇αΦ∇αR ⇒ −R∇α∇αΦ+ 2R∇αΦ∇αΦ

Rαβ∇β∇αΦ ⇒ 1

2
R∇α∇αΦ−R∇αΦ∇αΦ+ 2Rαβ∇αΦ∇βΦ

∇β∇β∇α∇αΦ ⇒ −2∇α∇αΦ∇β∇βΦ+ 4∇αΦ∇αΦ∇β∇βΦ

∇αΦ∇β∇β∇αΦ ⇒ −∇α∇αΦ∇β∇βΦ+ 2∇αΦ∇αΦ∇β∇βΦ+Rαβ∇αΦ∇βΦ

∇αΦ∇β∇αΦ∇βΦ ⇒ −1

2
∇αΦ∇αΦ∇β∇βΦ+∇αΦ∇αΦ∇βΦ∇βΦ

∇β∇αΦ∇β∇αΦ ⇒ ∇α∇αΦ∇β∇βΦ− 3∇αΦ∇αΦ∇β∇βΦ−Rαβ∇αΦ∇βΦ

+ 2∇αΦ∇αΦ∇βΦ∇βΦ (3.14)

where we have used the fact that the effective action has the overall factor of e−2Φ
√
−G.

These seven identities, reduce the number of independent couplings to 9 couplings, i.e.

S1 =
−2

κ2
α′

∫
dd+1xe−2Φ

√
−G

(
b1RαβγδR

αβγδ + b2RαβR
αβ + b3R

2

+ b4Rαβ∇αΦ∇βΦ+ b5R∇αΦ∇αΦ+ b6R∇α∇αΦ

+ b7∇α∇αΦ∇β∇βΦ+ b8∇αΦ∇αΦ∇β∇βΦ+ b9∇αΦ∇αΦ∇βΦ∇βΦ
)

(3.15)

where b1, · · · , b9 are unknown coefficients.

Apart from the coefficient of the Riemann squared term, all other 8 coefficients are a

priori ambiguous because they are changed under field redefinition. Consider transforma-

tion of effective action S0 under the general field redefinitions Gµν → Gµν + α′δG
(1)
µν + · · ·

and Φ → Φ+ α′δΦ(1) + · · · , i.e.

S0 → S0 + α′ δS0

δGαβ
δG

(1)
αβ + α′ δS0

δΦ
δΦ(1) . (3.16)

The variations at order α′ are

δG(1)
µν = a1Rµν + a2∇µΦ∇νΦ+Gµν(a3R+ a4∇αΦ∇αΦ+ a5∇α∇αΦ)

δΦ(1) = c1R+ c2∇αΦ∇αΦ+ c3∇α∇αΦ . (3.17)
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None of them correspond to the coordinate transformations. Under the above transforma-

tion, all the bi-coefficients (except b1) in (3.15) are changed to b′i such that one particular

combination of these terms is invariant [28], i.e.

δb9 + 2δb8 + 4δb7 − 8δb6 − 4δb5 + 16δb3 = 0 (3.18)

where δbi = b′i − bi. In other words, if one defines

ξ ≡ b9 + 2b8 + 4b7 − 8b6 − 4b5 + 16b3 . (3.19)

Then ξ is invariant under field redefinitions.

From the transformation of S0 under the field redefinitions, i.e. (3.16), one realizes

that the effect of field redefinitions in the action at order α′ is the same as all possible

substitutions of the equations of motion at order α′0, i.e. δS0
δGαβ

= δS0
δΦ = 0, in the effective

action at order α′. Hence, if one is not interested in the explicit form of the field redefini-

tions, one may use equations of motion to remove the ambiguous coefficients in the effective

action (3.15). In fact using

Rαβ + 2∇α∇βΦ = 0

R+ 4∇αΦ∇αΦ = 0 (3.20)

one can write the action (3.15) as

S1 =
−2

κ2
α′

∫
dd+1xe−2Φ

√
−G

(
b1RαβγδR

αβγδ + ξ∇αΦ∇αΦ∇βΦ∇βΦ
)
. (3.21)

The last term may be written in other forms using the equations of motion (3.20). One can

use the field redefinitions (3.17) to rewrite (3.15) as (3.21). In performing this calculation,

one finds one of the coefficients a3, a4, a5, c1, c2, c3 to be arbitrary. We will find that similar

calculations in the d-dimensional theory leave two coefficients in the d-dimensional field

redefinitions (2.8) to be arbitrary.

Since ξ is invariant under the field redefinition, one can find this function from the

S-matrix calculation. The field redefinition allows us to choose seven coefficients among

the coefficients b2, · · · b9 to be arbitrary, so one may choose b2 = b3 = b4 = b5 = b6 = b7 =

b8 = 0. Then ξ = b9. For this choice for the coefficients, on the other hand, the S-matrix

calculation fixes b9 = 0 [29], so ξ = 0. Therefore, the effective action (1.1) is consistent

with S-matrix for any value for coefficients b2, · · · , b8.
We are going, however, to find this function from the T-duality constraint (3.4). To this

end, one first needs to reduce the effective action (3.15) to the d-dimensional spacetime, i.e.

S1 = − 2

κ2
α′

∫
ddxe−2P√−g

(
b1R̃abcdR̃

abcd + b2R̃abR̃
ab + b3R̃

2 + b6R̃∇̃a∇̃aP

+ b5R̃∇̃aP ∇̃aP + (b5 + b6)R̃∇̃aσ∇̃aP +
1

4
(−16b3 + b5 + 2b6)R̃∇̃aσ∇̃aσ

− 2b2R̃
ab∇̃b∇̃aσ + b7∇̃a∇̃aP ∇̃b∇̃bP + b8∇̃aP ∇̃aP ∇̃b∇̃bP
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+ (2b7 + b8)∇̃aσ∇̃aP ∇̃b∇̃bP +

(
−2b6 + b7 +

1

4
b8

)
∇̃aσ∇̃aσ∇̃b∇̃bP

+ (−2b6 + b7)∇̃a∇̃aP ∇̃b∇̃bσ +

(
b2 + 4b3 − b6 +

1

4
b7

)
∇̃a∇̃aσ∇̃b∇̃bσ

+
1

2
(−4b5 + b8)∇̃aP ∇̃aP ∇̃b∇̃bσ +

(
−2b5 − 2b6 + b7 +

1

2
b8

)
∇̃aσ∇̃aP ∇̃b∇̃bσ

+
1

8
(16b2 + 64b3 − 4b5 − 16b6 + 4b7 + b8)∇̃aσ∇̃aσ∇̃b∇̃bσ + b4R̃ab∇̃aP ∇̃bP

+ b9∇̃aP ∇̃aP ∇̃bP ∇̃bP + (b8 + 2b9)∇̃aP ∇̃aP ∇̃bσ∇̃bP

+ (−b4 + b7 + b8 + b9)∇̃aσ∇̃aP ∇̃bσ∇̃bP − b4∇̃aP ∇̃b∇̃aσ∇̃bP + b4R̃ab∇̃aP ∇̃bσ

+
1

4
(−8b2 + b4)R̃ab∇̃aσ∇̃bσ +

1

2
(−4b5 + b8 + b9)∇̃aP ∇̃aP ∇̃bσ∇̃bσ

+

(
−b4 − 2b5 − 2b6 + b7 +

3

4
b8 +

1

2
b9

)
∇̃aσ∇̃aP ∇̃bσ∇̃bσ

+
1

16
(64b1 + 32b2 + 64b3 − 4b4 − 8b5 − 16b6 + 4b7 + 2b8 + b9)∇̃aσ∇̃aσ∇̃bσ∇̃bσ

− b4∇̃aP ∇̃b∇̃aσ∇̃bσ +

(
8b1 + 2b2 −

1

4
b4

)
∇̃aσ∇̃b∇̃aσ∇̃bσ

+
1

2
(−8b3 + b6)R̃∇̃a∇̃aσ + (4b1 + b2)∇̃b∇̃aσ∇̃b∇̃aσ

)
. (3.22)

Using the Buscher rule (2.5), one can easily find the d-dimensional dual action. It can be

written as S′
1 = S1 − δS1 where δS1 is twice the terms in (3.22) that have odd number of

σ, i.e.

δS1 =

∫
ddxe−2P√−g

(
(b5+b6)R̃∇̃aσ∇̃aP−2b2R̃

ab∇̃b∇̃aσ+(2b7+b8)∇̃aσ∇̃aP ∇̃b∇̃bP

+(−2b6+b7)∇̃a∇̃aP ∇̃b∇̃bσ+
1

2
(−4b5+b8)∇̃aP ∇̃aP ∇̃b∇̃bσ+

1

2
(−8b3+b6)R̃∇̃a∇̃aσ

+
1

8
(16b2+64b3−4b5−16b6+4b7+b8)∇̃aσ∇̃aσ∇̃b∇̃bσ+(b8+2b9)∇̃aP ∇̃aP ∇̃bσ∇̃bP

+

(
8b1+2b2−

1

4
b4

)
∇̃aσ∇̃b∇̃aσ∇̃bσ−b4∇̃aP ∇̃b∇̃aσ∇̃bP+b4R̃ab∇̃aP ∇̃bσ

+

(
−b4−2b5−2b6+b7+

3

4
b8+

1

2
b9

)
∇̃aσ∇̃aP ∇̃bσ∇̃bσ

)(
− 4

κ2
α′

)
. (3.23)

This should be zero up to field redefinitions.

On the other hand, the d-dimensional effective action at the leading order of α′ that

we have found in the previous subsection is

S0 = − 2

κ2

∫
ddxe−2P√−g

(
R̃+ 4∇̃aP ∇̃aP − ∇̃aσ∇̃aσ

)
. (3.24)
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Variation of this action under the T-duality transformation (2.8) at order α′ is

δS1 = −α′ 2

κ2

∫
ddxe−2P√−g

(
−
(
R̃ab + 2∇̃a∇̃bP − ∇̃aσ∇̃bσ

−1

2
g̃ab(R̃+ 4∇̃c∇̃cP − 4∇̃cP ∇̃cP − ∇̃cσ∇̃cσ)

)
δg1Aab

− 2(R̃+ 4∇̃a∇̃aP − 4∇̃aP ∇̃aP − ∇̃aσ∇̃aσ)δP 1
A − 2(∇̃a∇̃aσ − 2∇̃aσ∇̃aP )δσ1

A

)

(3.25)

where δσ1
A, δP 1

A, δg
1
Aab are given in (2.8).

According to (3.4), by equating the right hand sides of the equations (3.23) and (3.25),

one finds the following constraint:

−α′ 2

κ2

∫
ddxe−2P√−g

[
1

2
(4A5−A8+3A9−16b3+2b6−A9D)R̃∇̃a∇̃aσ

+
1

2

(
4A6−A7+4b5+4b6−A10(−3+D)

)
R̃∇̃aσ∇̃aP−1

2
(4A1+A8)∇̃aσ∇̃aR̃

−4b2R̃
ab∇̃b∇̃aσ+2(2b7+b8)∇̃aσ∇̃aP ∇̃b∇̃bP−(A7+4b6−2b7)∇̃a∇̃aP ∇̃b∇̃bσ

+(8A5−2A8+6A9−4b5+b8−2A9D)∇̃aP ∇̃aP ∇̃b∇̃bσ

+
1

4
(−8A5+2A8−6A9+16b2+64b3−4b5−16b6+4b7+b8+2A9D)∇̃aσ∇̃aσ∇̃b∇̃bσ

+
(
−2A2+A10(−2+D)

)
∇̃aσ∇̃b∇̃b∇̃aP+

(
−8A5+A10(−2+D)

)
∇̃aP ∇̃b∇̃b∇̃aσ

+A9(−2+D)∇̃b∇̃b∇̃a∇̃aσ+2
(
4A6+A7+b8+2b9−A10(−3+D)

)
∇̃aP ∇̃aP ∇̃bσ∇̃bP

−2(4A6−2A8+b4)∇̃aP ∇̃b∇̃aσ∇̃bP+2(A2+4A5+A7+b4)R̃ab∇̃aP ∇̃bσ

−1

2

(
4A6+A7+4b4+8b5+8b6−4b7−3b8−2b9−A10(−3+D)

)
∇̃aσ∇̃aP ∇̃bσ∇̃bσ

−4(A3+2A6)∇̃aP ∇̃b∇̃aP ∇̃bσ−1

2
(8A4+2A8−32b1−8b2+b4)∇̃aσ∇̃b∇̃aσ∇̃bσ

+
(
A7+2A10(−2+D)

)
∇̃b∇̃aσ∇̃b∇̃aP

]
= 0 .

(3.26)

Not all the above 18 terms are independent. One should subtract total derivative terms to

find independent constraints. There are nine d-dimensional total derivative terms, i.e.

R̃ab∇̃b∇̃aσ =
1

2
R̃∇̃a∇̃aσ − R̃∇̃aσ∇̃aP + 2R̃ab∇̃aP ∇̃bσ

∇̃aσ∇̃aR̃ = −R̃∇̃a∇̃aσ + 2R̃∇̃aσ∇̃aP

∇̃aσ∇̃b∇̃aσ∇̃bσ = −1

2
∇̃aσ∇̃aσ∇̃b∇̃bσ + ∇̃aσ∇̃aP ∇̃bσ∇̃bσ

∇̃b∇̃b∇̃a∇̃aσ = −2∇̃a∇̃aP ∇̃b∇̃bσ + 4∇̃aP ∇̃aP ∇̃b∇̃bσ
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∇̃aP ∇̃b∇̃b∇̃aσ = −∇̃a∇̃aP ∇̃b∇̃bσ + 2∇̃aP ∇̃aP ∇̃b∇̃bσ + R̃ab∇̃aP ∇̃bσ

∇̃aP ∇̃b∇̃aσ∇̃bP = −∇̃aσ∇̃aP ∇̃b∇̃bP +
1

2
∇̃aP ∇̃aP ∇̃b∇̃bσ + ∇̃aP ∇̃aP ∇̃bσ∇̃bP

∇̃aP ∇̃b∇̃aP ∇̃bσ = −1

2
∇̃aP ∇̃aP ∇̃b∇̃bσ + ∇̃aP ∇̃aP ∇̃bσ∇̃bP

∇̃aσ∇̃b∇̃b∇̃aP = 2∇̃aσ∇̃aP ∇̃b∇̃bP − ∇̃a∇̃aP ∇̃b∇̃bσ + R̃ab∇̃aP ∇̃bσ

∇̃b∇̃aσ∇̃b∇̃aP = −2∇̃aσ∇̃aP ∇̃b∇̃bP + ∇̃a∇̃aP ∇̃b∇̃bσ − ∇̃aP ∇̃aP ∇̃b∇̃bσ

+ 2∇̃aP ∇̃aP ∇̃bσ∇̃bP − R̃ab∇̃aP ∇̃bσ . (3.27)

Using the above total derivative terms, one finds the following constraint in which all terms

are independent:
∫

ddxe−2P√−g

[
1

2
(4A1 + 4A5 + 3A9 − 4b2 − 16b3 + 2b6 −A9D)R̃∇̃a∇̃aσ

−1

2

(
8A1 − 4A6 +A7 + 2A8 − 8b2 − 4b5 − 4b6 +A10(−3 +D)

)
R̃∇̃aσ∇̃aP

+2
(
−2A2 + 4A6 −A7 − 2A8 + b4 + 2b7 + b8 −A10(−2 +D)

)
∇̃aσ∇̃aP ∇̃b∇̃bP

+2(A2 + 4A5 + 2A9 − 2b6 + b7 −A9D)∇̃a∇̃aP ∇̃b∇̃bσ

+(2A3 − 8A5 −A7 − 2A9 − b4 − 4b5 + b8 + 2A9D)∇̃aP ∇̃aP ∇̃b∇̃bσ

+
1

4
(8A4 − 8A5 + 4A8 − 6A9 − 32b1 + 8b2 + 64b3 + b4 − 4b5 − 16b6

+4b7 + b8 + 2A9D)∇̃aσ∇̃aσ∇̃b∇̃bσ

+2
(
−2A3 − 4A6 + 2A7 + 2A8 − b4 + b8 + 2b9 +A10(−1 +D)

)
∇̃aP ∇̃aP ∇̃bσ∇̃bP

+(A7 − 8b2 + 2b4)R̃ab∇̃aP ∇̃bσ

−1

2

(
8A4 + 4A6 +A7 + 2A8 − 32b1 − 8b2 + 5b4 + 8b5 + 8b6 − 4b7 − 3b8 − 2b9

−A10(−3 +D)
)
∇̃aσ∇̃aP ∇̃bσ∇̃bσ

]
= 0 .

(3.28)

Solving the above 9 independent constraints, one finds effective action at order α′ and its

corresponding T-duality transformation.

One finds the following solution for the constraints (3.28):

A1 =
1

8
(4A6 − 2A8 −A10(D − 3) + 2b4 + 4b5 + 4b6),

A2 =
1

2

(
4A6 − 2A8 −A10(D − 2)− 8b2 + 3b4 + 2b7 + b8

)
,

A3 =
1

2

(
−4A6 + 2A8 +A10(D − 1) + 16b2 − 32b3 − 5b4 + 8b5 + 16b6 − 8b7 − 3b8

)
,

A4 =
1

8

(
−4A6 − 2A8 +A10(D − 3) + 32b1 − 32b3 − 3b4 + 8b6 − 4b7 − b8

)
,
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A5 =
1

8
(−4A6 + 2A8 + 8b2 + 32(D − 2)b3 + (D − 5)b4 − 4(D − 2)b5 − 4(3D − 7)b6

+ 4(D − 3)b7 + (D − 3)b8),

A7 = 8b2 − 2b4,

A9 =
1

2
(−A10 + 32b3 + b4 − 4b5 − 12b6 + 4b7 + b8),

ξ = 0 (3.29)

where ξ is the combination of the coefficients in (3.15) that appears in (3.19). The last equa-

tion in (3.29) gives exactly the value for ξ which is fixed by the S-matrix calculation. Using

this value for ξ, one finds the T-duality invariant effective action at order α′ to be (1.1) for

the arbitrary coefficients b1, b2, · · · , b9. The corresponding T-duality transformations are

δσ1
A =

1

8
(4A6−2A8−A10(D−3)+2b4+4b5+4b6)R̃

+
1

2

(
4A6−2A8−A10(D−2)−8b2+3b4+2b7+b8

)
∇̃a∇̃aP

+
1

2

(
−4A6+2A8+A10(D−1)+16b2−32b3−5b4+8b5+16b6−8b7−3b8

)
∇̃aP ∇̃aP

+
1

8

(
−4A6−2A8+A10(D−3)+32b1−32b3−3b4+8b6−4b7−b8

)
∇̃aσ∇̃aσ

δP 1
A =

1

8
(−4A6+2A8+8b2+32(D−2)b3+(D−5)b4−4(D−2)b5−4(3D−7)b6

+4(D−3)b7+(D−3)b8)∇̃a∇̃aσ+A6∇̃aσ∇̃aP

δg1Aab = (8b2−2b4)

(
1

2
∇̃aσ∇̃bP+

1

2
∇̃aP ∇̃bσ

)
+A8∇̃b∇̃aσ

+gab

(
1

2
(−A10+32b3+b4−4b5−12b6+4b7+b8)∇̃c∇̃cσ+A10∇̃cσ∇̃cP

)
. (3.30)

The terms with coefficients A6, A8, A10 are the transformations at order α′ which leave

the leading d-dimensional effective action (3.24) to be invariant. As we have shown in

the section 2, the terms with coefficient A8 correspond to the d-dimensional coordinate

transformations. They have no effect on our covariant calculations. So we can set A8 =

0. The other two coefficients which are not correspond to the d-dimensional coordinate

transformations, may be fixed at the higher order of α′. Our calculations at order α′2,

however, do not fix these coefficients either. There is only one such unfixed coefficients in

the D-dimensional field redefinitions at order α′.

Therefore, the T-duality constraint on the effective action fixes the effective action

up to D-dimensional field redefinitions and up to the overall factor of b1. The S-matrix

calculations fix b1 = 1/4 for the bosonic theory, b1 = 1/8 for heterotic theory, and b1 = 0

for the superstring theory [29].
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For the particular choice of b2 = −4b1, b3 = b1, b4 = −16b1, b5 = 8b1, b6 = 0, b7 =

0, b8 = 16b1, the T-duality invariant action (1.1) becomes

S1 =
−2b1
κ

α′

∫
dd+1xe−2Φ

√
−G

(
RαβγδR

αβγδ − 4RαβR
αβ +R2 − 16Rαβ∇αΦ∇βΦ

+8R∇αΦ∇αΦ+ 16∇αΦ∇αΦ∇β∇βΦ− 16∇αΦ∇αΦ∇βΦ∇βΦ
)

(3.31)

and the corresponding T-duality transformations (3.30) become

δσ1
A =

1

8
(4A6 −A10(D − 3))R̃+

1

2

(
4A6 −A10(D − 2)

)
∇̃a∇̃aP

+
1

2

(
−4A6 +A10(D − 1)

)
∇̃aP ∇̃aP +

1

8

(
−4A6 +A10(D − 3) + 32b1

)
∇̃aσ∇̃aσ

δP 1
A = A6

(
−1

2
∇̃a∇̃aσ + ∇̃aσ∇̃aP

)

δg1Aab = gabA10

(
−1

2
∇̃c∇̃cσ + ∇̃cσ∇̃cP

)
. (3.32)

The effective action (3.31) is the one considered in [20], and the T-duality transforma-

tions (3.32) for the particular case of A6 = A10 = 0, are those have been found in [20].

For the particular choice of b4 = 4b2, b5 = −4b2 − 8b3, b6 = 2b2 + 8b3, b7 = 4b2 + 16b3
and b8 = −12b2 − 32b3, the T-duality transformations become (3.30) and the effective

action, after using some integrations by part, becomes

S1 =
−2

κ2
α′

∫
dDxe−2Φ

√
−G

(
b1RαβγδR

αβγδ + b2R2
αβ + b3R2

)
(3.33)

where Rαβ and R are

Rαβ = Rαβ + 2∇α∇βΦ ; R = R+ 4∇α∇αΦ− 4∇αΦ∇αΦ . (3.34)

It has been shown in [22] that in the superstring theory, the T-duality invariant effective

action of Op-plane at order α′2 can be written in terms of R′
αβ = Rαβ + ∇α∇βΦ. The

reason for the extra factor of 2 for the dilaton inRαβ with respect toR′
αβ , is that the overall

dilaton factor in the bulk action is e−2Φ whereas in the brane action is e−Φ. Similarly, in

the bosonic string theory, the T-duality invariant effective action of Op-plane at order α′

which has been found in [25] can be written in terms of R′ = R + 2∇a∇aΦ − ∇aΦ∇aΦ,

after using an integration by part.

If one is not interested in the explicit form of the T-duality corrections at order α′,

the T-duality invariant action at order α′ can more easily be found by replacing the d-

dimensional equations of motion of (3.24), into (3.23). Using these equations one can write

∇̃a∇̃aσ, ∇̃aP ∇̃aP and R̃ab in (3.23) in terms of other terms, i.e.

∇̃a∇̃aσ = 2∇̃aσ∇̃aP

∇̃aP ∇̃aP =
1

4
R̃+ ∇̃a∇̃aP − 1

4
∇̃aσ∇̃aσ

R̃ab = ∇̃aσ∇̃bσ − 2∇̃b∇̃aP . (3.35)
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Using the total derivative terms (3.27) to write independent terms, one can simplify δS1

in (3.23) as

δS1 =− 2

κ2
α′

∫
ddxe−2P√−g

(
∇̃aσ∇̃aσ∇̃bσ∇̃bP + 2∇̃a∇̃aP ∇̃bσ∇̃bP

)
ξ . (3.36)

The T-duality constraint (3.8) then requires δS1 = 0 which reproduces the last equation

in (3.29).

Using the equations of motion, one may rewrite the above δS1 as

δS1 =− 2

κ2
α′

∫
ddxe−2P√−g

(
∇̃aσ∇̃aσ∇̃bσ∇̃bP + 4∇̃aP ∇̃aP ∇̃bσ∇̃bP

)
ξ . (3.37)

If one replaces the T-duality corrections (3.29) to the constraint (3.28), one finds exactly

the above constraint that has been found by using the d-dimensional equations of motion.

3.3 Effective action at order α
′2

In this subsection, we continue the calculations to find the effective action at order α′2.

The covariant effective action at order α′2 is constructed from the combinations of the

following terms:

Rαβγδ , ∇µRαβγδ , ∇ν∇µRαβγδ , ∇σ∇ν∇µRαβγδ, ∇ǫ∇σ∇ν∇µRαβγδ,

∇αΦ , ∇β∇αΦ , ∇γ∇β∇αΦ , ∇δ∇γ∇β∇αΦ ,

∇µ∇δ∇γ∇β∇αΦ , ∇ν∇µ∇δ∇γ∇β∇αΦ . (3.38)

Each term must have six derivatives. There are 203 such couplings! Some of them are

related by the Bianchi identities. For example:

∇αR
αβ

γδ = ∇γR
β
δ −∇δR

β
γ . (3.39)

So each independent term should not contain ∇αR
αβ

γδ. Using these identities, one finds

there are only 100 independent terms in the Lagrangian. In the action, however, we are

free to drop total derivative terms. So many of these independent terms are related by

total derivative terms. For example, up to a total derivative term, we have the following

relation:

e−2Φ
√
−G∇ǫRαβγδ∇ǫRαβγδ = −e−2Φ

√
−G

(
2RαβRα

γδǫRβγδǫ

− 4Rα
ǫ
γ
ζRαβγδRβǫδζ −Rαβ

ǫζRαβγδRγδǫζ

− 2Rβγδǫ∇αRβγδǫ∇αΦ+ 4Rαγβδ∇δ∇γRαβ
)
. (3.40)

Using all such relations and the Bianchi identities, one finds there are only 44 independent

couplings in the effective action, i.e.

S2 =
−2α′2

κ2

∫
dd+1x e−2Φ

√
−G

(
c1Rαβ

ǫζRαβγδRγδǫζ+c2Rα
ǫ
γ
ζRαβγδRβǫδζ

+c3RαβR
αβR+c4R

3+c5Rα
γRαβRβγ+c6∇γRαβ∇γRαβ+c7RRαβγδR

αβγδ
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+c8R
αβRα

γδζRβγδζ+c9R
αβRγδRαγβδ+c10∇αR∇αR+c11∇α∇αΦ∇β∇βΦ∇γ∇γΦ

+c12∇αΦ∇αΦ∇β∇βΦ∇γ∇γΦ+c13∇αΦ∇αΦ∇βΦ∇βΦ∇γ∇γΦ

+c14∇αΦ∇αΦ∇βΦ∇βΦ∇γΦ∇γΦ+c15∇α∇αΦ∇γ∇γ∇β∇βΦ

+c16∇αΦ∇αΦ∇γ∇γ∇β∇βΦ+c17∇α∇αΦ∇γ∇βΦ∇γ∇βΦ+c18∇αΦ∇αΦ∇γ∇βΦ∇γ∇βΦ

+c19R∇αΦ∇αΦ∇βΦ∇βΦ+c20R∇αΦ∇αΦ∇β∇βΦ+c21R∇α∇αΦ∇β∇βΦ

+c22R∇β∇β∇α∇αΦ+c23R∇β∇αΦ∇β∇αΦ+c24R∇αΦ∇β∇αΦ∇βΦ

+c25R∇αΦ∇β∇β∇αΦ+c26Rαβ∇αΦ∇βΦ∇γ∇γΦ+c27Rβγ∇αΦ∇αΦ∇βΦ∇γΦ

+c28R
αβ∇β∇αΦ∇γ∇γΦ+c29R

βγ∇αΦ∇αΦ∇γ∇βΦ+c30R
αβ∇γ∇βΦ∇γ∇αΦ

+c31Rαγβδ∇αΦ∇βΦ∇δ∇γΦ+c32R
2∇αΦ∇αΦ+c33R

2∇α∇αΦ+c34RβγR
βγ∇αΦ∇αΦ

+c35RαβR
αβ∇γ∇γΦ+c36RαβR∇αΦ∇βΦ+c37R

αβR∇β∇αΦ+c38Rα
γRβγ∇αΦ∇βΦ

+c39Rα
γRαβ∇γ∇βΦ+c40R

γδRαγβδ∇αΦ∇βΦ+c41R
αβRαγβδ∇δ∇γΦ

+c42RβγδζR
βγδζ∇αΦ∇αΦ+c43RβγδζR

βγδζ∇α∇αΦ+c44Rα
γδζRβγδζ∇αΦ∇βΦ

)
(3.41)

where c1, · · · , c44 are the unknown coefficients. Apart from the coefficients c1, c2 which

are invariant under field redefinitions, all other coefficients are a priori ambiguous because

they are changed under the field redefinitions. It has been shown in [30, 32] that there are

five different combinations of the ambiguous coefficients that are invariant under the field

redefinitions. Considering the transformation of effective action S0 + S1 under the general

field redefinitions Gµν → Gµν +α′δG
(1)
µν +α′2δG

(2)
µν + · · · and Φ → Φ+α′δΦ(1)+α′2δΦ(2)+

· · · , i.e.

S0 + S1 → S0 + S1 + α′ δS1

δG
δG(1) + α′ δS1

δΦ
δΦ(1)

+α′2 δS0

δG
δG(2) + α′2 δS0

δΦ
δΦ(2) + α′2S0(δG

(1), δΦ(1)) + · · · (3.42)

where S0 and S1 are the effective actions at order α′0 and α′, respectively. When one

replaces the field redefinitions in the effective action S0, one finds terms which have

δG(1)δG(1), δG(1)δΦ(1) and δΦ(1)δΦ(1). The expression S0(δG
(1), δΦ(1)) represents these

terms. These terms cause the field redefinitions at order α′2 not to be identical to all

possible substitutions of lower order equations of motion, i.e. δS0
δG

= δS1
δG

= δS0
δΦ = δS1

δΦ = 0,

in the effective action at order α′2.

Considering all possible terms for δG and δΦ, one finds the following combinations of

the coefficients remain invariant under the field redefinitions:1

ξ1 ≡ b1

(
24b3 +

1

2
b4 − 3b5 − 8b6 + 2b7 +

1

2
b8

)
− 4c7 + c42 + 2c43,

ξ2 ≡ b1(8b2 − 2b4) + 2c4 − 4c6 − c41 + c44,

1There is an extra factor of 8δc6 in the fifth equation in [30] that our calculation does not produce it.

We think it should be a typo in [30].
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ξ3 ≡ −8c5 − 2c30 − c31 + 4c39 + 2c40,

ξ4 ≡ −1

2
(16b2 + 48b3 − 3b4 − 6b5 − 16b6 + 4b7 + b8)ξ

+64c9 − 8c11 − 4c12 − 2c13 − c14 + 4c19 + 8c20 + 16c21 − 16c32 − 32c33,

ξ5 ≡ 4b22 + 64b23 +
5

8
b24 − b4b5 + b25 − 4b4b6 + 6b5b6 + 10b26 + 2b4b7 − 2b5b7 − 8b6b7 + 2b27

+
1

2
b4b8 −

1

2
b5b8 − 2b6b8 + b7b8 +

1

8
b28 + 4b3(2b4 − 4b5 − 12b6 + 4b7 + b8)

−b2(16b3 + 3b4 − 2b5 − 8b6 + 4b7 + b8)−
1

16
(32b3 + b4 − 4b5 − 12b6 + 4b7 + b8)

2D

−8c8 + 16c10 + 4c15 + 2c16 + c17 +
1

2
c18 − 8c22 − 2c23 − 2c28 − c29 + 2c34 + 4c35

+4c37 − c38 . (3.43)

Hence, the field redefinition freedom allows one to set 37 ambiguous coefficients zero. The

S-matrix calculation, then fixes c1, c2 and the other 5 coefficients that are invariant under

the field redefinition [30, 32]. The values of these constants depend on which effective

action is used at order α′. When one uses the effective action (3.31), the S-matrix fixes

c1 = −3
4c2 6= 0 and all other c-coefficients to be zero [32]. Replacing the corresponding b-

coefficients, i.e. b2 = −4b1, b3 = b1, b4 = −16b1, b5 = 8b1, b6 = 0, b7 = 0, b8 = 16b1, in (3.43),

one finds ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = 0. Since these functions are invariant under the field

redefinitions, in any other field variables these functions are also zero.

We are going, however, to find the effective action from the T-duality constraint (3.5).

So we calculate δS2 which is α′2-terms resulted from the transformation of d-dimensional

action S0 +S1 where S0 is (3.24) and S1 is reduction of action (1.1), under the T-duality

transformation T (0) + α′T (1) + α′2T (2). They must be equated with S2 − S
′
2 where S2

is reduction of the action (3.41) and S
′
2 is its transformation under the Buscher rules.

This equality which is extension of (3.26) to order α′2, produces some constraints on the

coefficients in (3.41). After subtracting some total derivative terms to finds independent

constraints, we have found that there are 67 relations. One of them is

c2 → −4

3
c1 (3.44)

which is a relation between the unambiguous coefficients. There are five relations between

the ambiguous coefficients, i.e.

ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = 0 . (3.45)

The relations (3.44) and (3.45) are exactly the relations that one finds from the S-matrix

calculations. There are also 61 relations which relate 61 A-coefficients in (2.12) in terms

of other 37 A-coefficients at order α′2, b-coefficients, c-coefficients, the dimension of space-

time and the residual T-duality parameters A6, A10 at order α′. They are very lengthy

expressions, so we do not write the form of the T-duality transformations.

If one uses the relations (3.45) to write c18, c19, c31, c42, c44 in terms of all other ambigu-

ous coefficients, and set all the remaining c-coefficients to be zero, the T-duality invariant
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effective action becomes

S2 =
−2α′2

κ2

∫
dd+1x e−2Φ

√
−G

[
c1Rαβ

ǫζRαβγδRγδǫζ−
3

4
c1Rα

ǫ
γ
ζRαβγδRβǫδζ

−1

2
b1(48b3+b4−6b5−16b6+4b7+b8)RβγδζR

βγδζ∇αΦ∇αΦ

+2b1(−4b2+b4)Rα
γδζRβγδζ∇αΦ∇βΦ+

1

8
∇αΦ∇αΦ∇γ∇βΦ∇γ∇βΦ

(
−64b22

+16b2(16b3+3b4−2b5−8b6+4b7+b8)+(32b3+b4−4b5−12b6+4b7+b8)
2D

−2
[
512b23+5b24+8

(
b25+6b5b6+10b26−2(b5+4b6)b7+2b27

)
−4(b5+4b6−2b7)b8+b28

+32b3(2b4−4b5−12b6+4b7+b8)+4b4(−2b5−8b6+4b7+b8)
])]

. (3.46)

Note that the coefficients c19, c31 become zero. As can be seen, the form of the T-duality

invariant action S2 depends on the form of action at order α′.

To compare the above action with the actions at order α′2 in the literature, we choose

the T-duality invariant action S1 to be [31]

S1 =
−2b1
κ

α′

∫
dd+1xe−2Φ

√
−G

(
RαβγδR

αβγδ−4RαβR
αβ+R2−16D

D−3

(D−2)2
Rαβ∇αΦ∇βΦ

+8D
D−3

(D−2)2
R∇αΦ∇αΦ+16

(D−3)(D+2)

(D−2)2
∇αΦ∇αΦ∇β∇βΦ

−16
D2−8

(D−2)2
∇αΦ∇αΦ∇βΦ∇βΦ

)
. (3.47)

The corresponding T-duality invariant action at order α′2 is given by (3.46) in which

c42 =
D − 6

2(D − 2)2

c44 = −2(D − 4)

(D − 2)2

c18 = −5
(D − 3)(D − 6)

(D − 2)4
. (3.48)

These coefficients are exactly those found in [31] by S-matrix and σ-model calculations.

If one chooses the action at order α′ to be (3.31), then the action at order α′2 becomes

S2 =
−2α′2c1

κ2

∫
dd+1x e−2Φ

√
−G

(
Rαβ

ǫζRαβγδRγδǫζ −
4

3
Rα

ǫ
γ
ζRαβγδRβǫδζ

)
. (3.49)

The action (3.49) is exactly the action that has been found in [28, 34] from the S-matrix

calculation. The S-matrix fixes c1 = 1/16 in the bosonic theory and c1 = 0 in the heterotic

and the superstring theories.

In the heterotic theory, there are also couplings at order α′2 which are resulted from

the Green-Schwarz mechanism [26]. In the supergravity at the leading order of α′, the B-

field strength H(B) must be replaced by the improved field strength Ĥ(B,Γ) that includes
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the Chern-Simons term built from the Christoffel connection:

Ĥµνρ(B,Γ) = 3(∂[µBνρ] + α′Ω(Γ)µνρ) (3.50)

with the Chern-Simons three-form

Ω(Γ)µνρ = Γα
[µ|β|∂νΓ

β

ρ]α +
2

3
Γα
[µ|β|Γ

β

ν|γ|Γ
γ

ρ]α . (3.51)

Reducing Ω2 from 10-dimensional to 9-dimensional spacetime, one would find no term

which has σ. As a result, one finds, when metric is diagonal and B-field is zero, α′2Ω2 is

invariant under the Buscher rules.

We have seen that the T-duality does not transform the Riemann curvature couplings

to the couplings involving the Ricci curvature, scalar curvature or the dilaton, i.e. ξ’s are

zero. We expect this property for the T-duality at all higher orders of α′. This may indicate

that in the string frame there is a scheme in which there is no Ricci or the scalar curvatures

and the dilaton appears in the effective action only through the overall dilaton factor. In

this scheme, one may use the T-duality invariance of the effective action that we have used

in this paper, to find only the Riemann curvature couplings. It would be interesting to

perform this calculation at order α′3 to find the Riemann curvature couplings at order α′3

that are known in the literature.

We have assumed in this paper that the B-field is zero and the metric is diagonal.

The covariance form of the gravity couplings ensures that they are correct couplings for

the general metric. It would be interesting to extend the T-duality invariant effective

actions that we have found in this paper to include the B-field. The B-field corrections at

order α′ to the action (3.31) and its corresponding T-duality transformations have been

found in [20]. The DFT formulation of the effective action at order α′ has been also found

in [35, 36].
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