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ABSTRACT
Recent observations of the filamentary molecular clouds show that their properties deviate
from the isothermal equation of state. Theoretical investigations proposed that the logatropic
and the polytropic equations of state with negative indexes can provide a better description for
these filamentary structures. Here, we aim to compare the effects of these softer non-isothermal
equations of state with their isothermal counterpart on the global gravitational instability of a
filamentary molecular cloud. By incorporating the ambipolar diffusion, we use the non-ideal
magnetohydrodynamics framework for a filament that is threaded by a uniform axial magnetic
field. We perturb the fluid and obtain the dispersion relation both for the logatropic and
polytropic equations of state by taking the effects of magnetic field and ambipolar diffusion
into account. Our results suggest that, in absence of the magnetic field, a softer equation of state
makes the system more prone to gravitational instability. We also observed that a moderate
magnetic field is able to enhance the stability of the filament in a way that is sensitive to
the equation of state in general. However, when the magnetic field is strong, this effect is
suppressed and all the equations of state have almost the same stability properties. Moreover,
we find that for all the considered equations of state, the ambipolar diffusion has destabilizing
effects on the filament.
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1 IN T RO D U C T I O N

It has been well established that the filamentary molecular clouds
(MCs) are the preferred birthplaces of stars (André 2017). Recent
observations of the nearest Galactic MCs in the submillimeter wave-
lengths with Herschel Space Observatory (Pilbratt et al. 2010) has
opened a new window to the understanding of the complex star for-
mation process (André et al. 2010; Molinari et al. 2010). Herschel
shows the filaments are omnipresent in the cold interstellar medium
(ISM). They are found both in star-forming (Bontemps et al. 2010;
Könyves et al. 2010) and non-star-forming regions (Men’shchikov
et al. 2010; Miville-Deschênes et al. 2010; Ward-Thompson et al.
2010). This fact strengthens the idea that the filaments are the hosts
of the early stages of formation of stars. Filaments are also pervasive
in numerical simulations of MCs with various formation scenarios
such as models in which gravity is the dominant agent and fila-
ments formed by the global cloud collapse (e.g. Nagai, Inutsuka
& Miyama 1998; Burkert & Hartmann 2004; Hartmann & Burkert
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2007; Vázquez-Semadeni et al. 2007; Gómez & Vázquez-Semadeni
2014; Camacho et al. 2016; Wareing et al. 2016) or models in which
filaments are formed from the large-scale supersonic shocks (e.g.
Klessen, Burkert & Bate 1998; Dib et al. 2007; McKee & Ostriker
2007; Pudritz & Kevlahan 2013; Padoan, Haugbølle & Nordlund
2014) and models in which the filaments are formed preferentially
perpendicular to the magnetic field direction in a strongly magne-
tized turbulent cloud (e.g. Nakamura & Li 2008; Chen & Ostriker
2014; Inutsuka et al. 2015; Federrath 2016; Klassen, Pudritz & Kirk
2017).

By taking a census of the filamentary structures in the IC5146
MC plus Aquila and Polaris regions in the Gould Belt, Arzou-
manian et al. (2011) found strikingly that the filaments exhibit a
narrow width distribution with a median value of ∼0.1 pc. It should
be noticed that Juvela et al. (2012) reported a larger width of 0.2–
0.3 pc for the filaments identified in the cold ISM regions previously
found with the Planck satellite. Likewise, Hennemann et al. (2012)
found a range of 0.26–0.34 pc for the massive gravitationally un-
stable filaments in DR21 ridge and filaments in Cygnus X (see also
Panopoulou et al. 2017; André 2017, for a recent debate on the con-
sistency of the existence of a characteristic filament width with the
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observed scale-free spatial power spectrum of the Herschel Polaris
Flare image (at 250 µmetre) Miville-Deschênes et al. 2016).

Another interesting feature of the identified filaments is that their
radial profiles are somehow universal and can be described by a
Plummer-like function of the form (Plummer 1911)

ρp(r) = ρc

[1 + (r/Rflat)2]p/2
, (1)

where ρc is the central density, Rflat is the radius of the flat inner
region, and 1.5 < p < 2.5 is the exponent at large radii (Arzouma-
nian et al. 2011; Juvela et al. 2012; Palmeirim et al. 2013). They
also showed that the dust temperature increases outward from the
centre of the filaments. Taking these two parameters as p = 4 and
Rflat =

√
2c2

s /(πGρc), equation (1) will follow the density pro-
file of an isothermal gas filament in the hydrostatic equilibrium
(Stodólkiewicz 1963; Ostriker 1964a). These facts might lead to
the point that the filaments are not well described by the isothermal
equation of state (IEOS), but instead might be better described by a
cylinder with a polytropic equation of state (PEOS) with the poly-
tropic exponent γ p < 1 (Palmeirim et al. 2013; Toci & Galli 2015).
In another work, Fischera & Martin (2012) used a pressure-confined
isothermal cylinder in equilibrium with the ambient medium to
model the filamentary clouds in the IC5146 region. Another sug-
gested explanation relies on a role that helical magnetic field can
play in decrease of the steep slope of the isothermal profile (Fiege
& Pudritz 2000a). Recently, Recchi, Hacar & Palestini (2013) pro-
posed a thermal nature for the deviation of the density profile of the
filaments from the IEOS. However, this will lead to a temperature
about 70 K to 170 K at a radius about 1 pc which is unlikely (Toci
& Galli 2015).

It is also reported by Arzoumanian et al. (2013) that for a sample
of filaments in the Gould Belt, the molecular line observations show
that these filaments can be divided into two subsets in terms of vari-
ation of their internal velocity dispersions with the column density.
The first subset is gravitationally unbound and is thermally sub-
critical with a transonic total velocity dispersion (cs ! σ tot < 2cs)
(where cs is the isothermal sound speed for a gas at T = 10 K, corre-
sponding to cs ≃ 0.2 km s−1) that show no meaningful relation with
their measured column density, while the second subset is gravita-
tionally bound and is thermally supercritical with a total velocity
dispersion that roughly depends on the column density as σ tot ∝
%0.5. Using a broad range of environments in the Galactic Plane
that likely includes the filaments observed by Herschel, however,
Heyer et al. (2009) found that the velocity dispersion systematically
varies with the surface density. In addition to this recent observation
of the filaments, the outward increase of the velocity dispersion has
been proven within GMCs (Larson 1981; Miesch & Bally 1994)
and also individual dense cores (Fuller & Myers 1992; Caselli &
Myers 1995).

Many papers have been devoted to the theoretical study of the
stability and the fragmentation of the filamentary MCs. In the pi-
oneering work by Chandrasekhar & Fermi (1953), the stability
of a homogeneous incompressible cylindrically symmetric gas was
studied. They showed that a poloidal magnetic field can stabilize the
filament. Other authors attempted to investigate this basic problem
in more practical sense (e.g. Stodólkiewicz 1963; Ostriker 1964b;
Larson 1985; Nagasawa 1987; Inutsuka & Miyama 1992; Naka-
mura, Hanawa & Nakano 1993; Matsumoto, Nakamura & Hanawa
1994; Gehman et al. 1996a; Gehman, Adams & Watkins 1996b; Fis-
chera & Martin 2012; Freundlich, Jog & Combes 2014; Hanawa &
Tomisaka 2015; Sadhukhan, Mondal & Chakraborty 2016; Hanawa,
Kudoh & Tomisaka 2017).

Recently Hosseinirad et al. (2017, hereafter H17) studied the
global gravitational instability of a magnetized filamentary cloud
by carrying out linear perturbation analysis. They took into account
the filament as a very long cylinder of the isothermal gas, threaded
by a uniform poloidal magnetic field. Furthermore, they used the
unperturbed magnetohydrodynamic (MHD) equations in the non-
ideal framework, by incorporating the effect of ambipolar diffusion
(AD) in the strong coupling approximation (see Section 2.1). They
found that addition of the AD can destabilize the magnetized fil-
ament by increasing the growth rate of the most unstable mode.
Additionally, they found that the AD leads to an enhancement of
the fragmentation scale of the filament. They also showed that the
system will proceed in this manner before it reaches to the state
wherein no magnetic filed has been added.

The purpose of this paper is to complement H17 by extending it
to the non-isothermal equation of state (EOS). Our first candidate is
the logatropic1 equation of state (LEOS). This EOS is proposed by
Lizano & Shu (1989) for the first time to compromise between the
theory and the observations that indicate the line width-determined
velocity dispersion increases with the radius (e.g. Larson 1981, but
see also Heyer et al. 2009). Later, Gehman et al. (1996a,b) examined
this EOS in a filamentary cloud as a proxy for the turbulence and per-
formed a linear perturbation analysis. They demonstrated that using
the LEOS can destabilize the filament considerably in comparison
with the IEOS. Later on, by using a modified version, McLaughlin
& Pudritz (1996) successfully fitted the velocity dispersions of both
low- and high-mass cores derived from various MCs. After that,
Fiege & Pudritz (2000a) incorporated this modified version into
the magnetohydrostatic equilibrium of a filamentary cloud, which
is pervaded by a helical magnetic field. They found that the mag-
netized filaments with the LEOS show shallower density profiles
that fall off as r−1 to r−1.8 than those of magnetized filaments with
the IEOS for which the density profiles fall off as r−1.8 to r−2. The
second candidate is the PEOS. As mentioned earlier, observations
suggest that the PEOS seems to be a better choice for the mod-
elling of the filaments. Recently, Freundlich et al. (2014) made use
of the local stability analysis and showed that a filament with the
PEOS is more stable than its isothermal counterpart. Following it,
Sadhukhan et al. (2016) added the magnetic field to this problem.
Moreover, Toci & Galli (2015) demonstrated that the filaments with
non-isentropic pressure support are stable against radial collapse in
the observed range of axis-to-surface density contrast.We are en-
couraged by this findings to extend our analysis to the PEOS. We
aim this paper can shed some insight into this problem.

The paper is structured as follows. In Section 2.1, we describe
the non-ideal MHD equations. The EOSs, physical parameters and
unperturbed state are introduced in Sections 2.2 to 2.4, respectively.
We linearize the non-ideal MHD equations in Section 2.5. The
boundary conditions (BCs) and the numerical method are outlined in
Sections 2.6 and 2.7, respectively. The results are given in Section 3.
Finally, we conclude and summarize our results in Section 4.

2 BA SIC S

2.1 MHD equations with AD

In partially ionized media such as ISM, MCs, and protoplanetary
discs, MHD equations must be modified to account for non-ideal

1 Some authors called it logotropic.
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MHD effects namely ohmic dissipation, Hall effect, and AD, ac-
cording to the degree of ionization and the strength of magnetic
field. In the literature, two approaches are usually exploited for for-
mulation of non-ideal MHD (see Zweibel 2015, for a review). In the
first approach, the tensor conductivity is used to replace the current
density in the induction equation. This method is specially useful
when there are several types of charge carriers (see e.g. Cowling
1956; Norman & Heyvaerts 1985; Nakano & Umebayashi 1986;
Wardle & Ng 1999; Salmeron & Wardle 2003; Wardle 2007; Mas-
son et al. 2016; Wurster 2016; Zhao et al. 2016). In the second
one, the fluid equations for different charge species are used as a
start point. This multifluid formulation, can be simplified to a single
coupled ion-neutral fluid form, when the degree of ionization is
low enough. This will happen if the gravitational force and pressure
gradient of the ions can be neglected in comparison with the fric-
tional and Lorentz forces2 (see e.g. Mac Low et al. 1995; Balbus
& Terquem 2001; Oishi & Mac Low 2006; Choi, Kim & Wiita
2009; Gressel et al. 2015; Ntormousi et al. 2016). In what follows,
we make use of this so-called strong coupling approximation (Shu
1983). Our set of MHD equations with the self-gravity and the AD
term are the continuity equation

∂ ρ

∂t
+ ∇ · (ρu) = 0, (2)

the equation of motion

ρ
∂ u
∂t

+ ρ (u · ∇) u + ∇p + ρ∇ψ − 1
4π

(∇ × B) × B = 0, (3)

the induction equation

∂B
∂t

+ ∇ × (B × u) − ∇ × {[ηA(∇ × B) × B] × B} = 0, (4)

and the Poisson equation for gravity

∇2ψ = 4πGρ . (5)

In these equations, ρ is the neutral gas density, u is the fluid velocity,
p is the pressure, ψ is the gravitational potential, and B is the
magnetic field strength, where ηA is the AD coefficient.

2.2 Equation of state

To complete our set of equations (2)–(5), we need a prescription for
the pressure. In the H17, we used the simplest case i.e. the IEOS for
describing the equilibrium state of a filament of gas in cylindrical
coordinates. Here, we extend our analysis in H17 to include more
physically plausible equations of state. More specifically, we use
two other types of barotropic EOS, i.e. the LEOS and the PEOS.
We formulate the LOES in two different ways which have already
been used in the relevant literature

p = c2
s ρ + p0 log (ρ/ρc) (6)

(Gehman et al. 1996a,b, but see also Lizano & Shu 1989) and

p = pc[1 + A log (ρ/ρc)] (7)

(McLaughlin & Pudritz 1996; Fiege & Pudritz 2000a), where ρc is
the density at the filament axis, cs is the isothermal sound speed and
p0 and A are empirical constants. Gehman et al. (1996b) suggested
that 10 < p0 < 70 picodynes cm−2 is an acceptable range for
MCs. By analysing MC cores, McLaughlin & Pudritz (1996) found

2 Electrons contribution to the momentum exchange is negligible and ig-
nored.

A ≃ 0.2. Moreover, Fiege & Pudritz (2000a) used this value in
equation (7) to construct the magnetohydrostatic equilibrium for
the filamentary clouds. We refer to equations (6) and (7) as the
GEOS and the MPEOS, respectively.

On the other hand, in the case of PEOS, we use the following
form:

p = pc (ρ/ρc)γp , (8)

where γ p is the polytropic exponent. We assume γ p to be the same
as the adiabatic exponent γ A, i.e. the filament is isentropic. This
means during a density perturbation, entropy remains both spatially
and temporally constant. Observations of GMCs, filamentary clouds
and individual dense cores, put forward a family of PEOS for which
0 < γ p < 1. Since, it is common to define γ p = 1 + 1/n, this will
correspond to −∞ < n < −1(Viala & Horedt 1974; Maloney 1988).

2.3 Physical parameters

It is obvious that in the strong coupling approximation, the effect
of AD is appeared only in the induction equation where the new
introduced term determines the amount of AD. Considering γ as the
drag coefficient in ion-neutral collisions and ρ i as the ion density,
the AD coefficient can be expressed as

ηA = 1
4πγρiρ

, (9)

(Shu, Adams & Lizano 1987). The ion-neutral drag coefficient is

γ = ⟨σw⟩
mi + µ

, (10)

where mi and µ are the ion mass and mean molecular weight both
per hydrogen atom mass that are taken to be about 30 mH and
2.36, respectively. ⟨σw⟩ is the ion-neutral coupling coefficient that
is taken to be 1.9 × 10−9 cm3 s−1 (Draine, Roberge & Dalgarno
1983). Having considered foregoing quantities the estimated values
for γ is 3.5 × 1013 cm3 g−1 s−1. To fully determine ηA, we also need
to know the ion density. Following Elmegreen (1979), it is assumed
that due to the cosmic radiation, one can approximate ion density
in MCs as

ρi = Cρ1/2, (11)

where the constant C is 3 × 10−16 cm−3/2 g1/2. Substituting equa-
tion (11) in equation (9) and considering γ C as a new parameter α

will give us

ηA = 1
4παρ3/2

. (12)

With these characteristics, a typical MC with density of
4 × 10−20g cm−3/2 will have the fractional ionization of ∼10−7,
which seems consonant with values of 10−6–10−8 that come from
observation.

2.4 Unperturbed state

The unperturbed filament is considered to be in hydrostatic equi-
librium. We use standard cylindrical coordinates (r, φ, z) with the
origin at the filament centre. The filament is supposed to be very
long. An initial uniform magnetic field B0 = B0 ẑ threads the fil-
ament, so it does not contribute in supporting the filament against
its self-gravity. Having such a configuration, equations (3) and (5),
i.e. the momentum and the Poisson equations can be combined and
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Figure 1. From the left- to right-hand panel, the density, the pressure, and the effective sound speed profiles of the IEOS, MPEOS, GEOS (κ = 0.1, 1, 10),
and PEOS (n = −1.5, −2 and −4).

solved to determine the density profile at the equilibrium state. For
the isothermal filament a well-known analytical solution exists as

ρ(r) = ρc

(
1 + r2

8H 2

)−2

, (13)

where ρc is the central density (Stodólkiewicz 1963; Ostriker
1964a). H is a radial scale length which is defined as

H = cs√
4πGρc

(14)

where cs is the isothermal sound speed and G is the gravitational
constant. For a filament with the temperature of 10 K or equiva-
lently the thermal sound speed of 0.2 km s−1and a central density of
4 × 10−20g cm−3, H will be ≈0.035 pc. For the GEOS, MPEOS, and
the negative index PEOS, the analytical solution does not exist. De-
termining the initial values is indeed the main obstacle in the way of
computing the density of equations (3) and (5) (e.g. Gehman et al.
1996a), which can be solved numerically. This were done using
odeint routine from the SCIPY library (Jones et al. 2001).

Fig. 1 demonstrates the density, the pressure, and the effective
sound speed of the above-stated EOSs. We use dimensionless quan-
tities as described in Section A. In the GEOS, we set the dimension-
less free parameter κ = 0.1, 1 or 10. Gehman et al. (1996b) pointed
out 6 < κ < 50 matches the observation. For the MPEOS, we set
the dimensionless parameter A = 0.2, as suggested by McLaughlin
& Pudritz (1996). For the PEOS, we choose the polytropic indexes
as n = −1.5, −2 and −4 (γ p = 1 + 1/n = 1/3, 1/2, and 3/4). This
encompasses the observed range of filaments in the IC5146 (Arzou-
manian et al. 2011; Toci & Galli 2015). The density and pressure
are normalized by their central values. The left-hand panel depicts
the density profiles. Comparing with the isothermal filament, ones
with the GEOS have larger density all over the radial extent. Fila-
ments with the MPEOS and PEOSs are slightly more concentrated
at the centre but fall off more slowly at larger radii. The middle
panel shows the pressure profile for each EOS. It should be noted
that for the GEOS, there is a cut-off radius at which the pressure
becomes negative. This cut-off radius is very near the centre of the
filament and takes smaller values for larger κ . This is also the case
for the MPEOS but at very larger radius. However, filaments with
the PEOS do not exhibit this characteristic. Their pressure asymp-
totically approach to the zero, but they have larger pressure all over

the way with respect to the isothermal filament. In the right-hand
panel, we illustrate the effective sound speed ceff = (dp/dρ)1/2,
which is crucial for estimating the length-scale of fragmentation
i.e. the Jeans length, λJ = ceff(π/Gρ)1/2. This panel shows that the
effective sound speed increases monotonically with radius in all
filaments with the GEOS, MPEOS, and PEOS.

2.5 The Linearized non-ideal MHD equations

In this section, we perform global perturbation analysis of the gov-
erning non-ideal MHD equations in the presence of self-gravity,
equations (2)–(5). Perturbing these equations in dimensionless form
(see Section A) to the first order gives

∂ ρ1

∂t
+ ∇ρ0· u1 + ρ0∇· u1 = 0, (15)

ρ0
∂ u1

∂t
+ ∇p1 + ρ0∇ψ1 + ρ1∇ψ0 − (∇ × B1) × B0 = 0, (16)

∂B1

∂t
+ ∇ × (B0 × u1) − ηA∇ × {[(∇ × B1) × B0] × B0} = 0.

(17)

∇2ψ1 = ρ1. (18)

Here, the subscripts ‘0’ and ‘1’ are reserved for the unperturbed and
perturbed quantities. It should also be emphasized that meanwhile
of linearization ηA is taken to be constant. This simplifies the calcu-
lations as well as interpretation of the results. The barotropic form
of EOSs, let us to linearize them as

p1 = dP

dρ
(ρ0)ρ1 ≡ P ′(ρ0)ρ1. (19)

In the following, for the sake of simplicity, we restrict ourselves
to the propagation of axisymmetric perturbations. In this case all
the perturbations can be expressed as superposition of their axisym-
metric Fourier modes. Furthermore, we investigate the perturbations
which propagate only along the axis of the filament, i.e. the z axis.
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Therefore, the general form for the Fourier mode for this type of
perturbations reads as
⎛

⎜⎜⎜⎝

ρ1(x, t)

u1(x, t)

B1(x, t)

ψ1(x, t)

⎞

⎟⎟⎟⎠
= ℜ

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

f (r)

v(r)

b(r)

φ(r)

⎞

⎟⎟⎟⎠
exp (ikz − iωt)

⎤

⎥⎥⎥⎦
, (20)

where ω is the angular frequency, k is the vertical wavenumber, and
ℜ denotes to the real part. Now we substitute these Fourier modes to
the linearized equations (15)–(17). We simplify this set of equations
while restricting ourselves to the unstable modes which grow with
time for which iω is a real negative number. If we substitute −- for
iω and w for iωvr the resultant equations read

− ρ0w + f P ′′ dρ0

dr
+ P ′ df

dr
+ ρ0

dφ

dr
+ f

dψ0

dr

−
(

B3
0 k2ηA

ηAB2
0 k2 + -

)
dbz

dr
− B2

0 k2w

-(ηAB2
0 k2 + -)

+ B0
dbz

dr
= 0, (21)

rρ0
dw

dr
+ρ0w + r(−-2 − k2P ′)f − rk2ρ0φ+rw

dρ0

dr
=0, (22)

−ηAB2
0

(
bzk

2r − r(
d2bz

dr2
) − dbz

dr

)
− -bzr

−B0r

(
−-f

ρ0
− k2 φ

-
− k2 f P ′

-ρ0
+ w

-ρ0

dρ0

dr

)
= 0, (23)

and

r
d2φ

dr2
+ dφ

dr
− rk2φ − rf = 0. (24)

2.6 Boundary conditions

Equations (21)–(24) constitute a system of coupled ordinary dif-
ferential equations (ODEs) that must meet, in total, seven BCs at
the centre of the filament and infinity. Due to the axial symmetry
of the perturbations, all the radial force components, as well as the
radial velocity, must vanish at the filament centre. Moreover, all
the perturbations and their derivatives must vanish at the infinity.
The linear ODE system, leaves also the freedom of choosing all
dependent variable but one and then solve for the other variables.
Considering all the above conditions, we choose BCs as

f = 1,
dφ

dr
= 0, w = 0,

dbz

dr
= 0 at r = 0. (25)

f = 0, w = 0,
dbz

dr
= 0 at r = ∞. (26)

2.7 Numerical methods

Having determined BCs, equations (21)–(24) can be solved simul-
taneously. To do so, we take into account k as the eigenvalue3

and - as a parameter, which is initialized before calculation. We
use a Newton–Raphson–Kantorovich (NRK) relaxation algorithm

3 The ODE system under consideration is actually a disguised eigensystem.

(Garaud 2001) that takes the advantage of the second order finite-
difference discretization over a mesh. This algorithm indeed convert
the ODE system to an algebraic system of equations. We use 2000
equally spaced mesh points throughout the calculation. We choose
r = 50 as the effective infinity, however, the values of the eigen-
functions at the large radii, sometimes enforce a larger or smaller
value for the effective infinity chosen as r = 300 and r = 25, re-
spectively. The NRK algorithm needs an initial guess to start. At the
first, when the AD and the magnetic field are not present, using a
reasonable initial guess will readily make the system to converge.
We use this result as an initial guess when magnetic field is present.
The appropriate initial guess when the AD is present is taken from
the nearest previous solution.

3 R ESULTS

Based on the aforementioned numerical method, we search for
the ω values for which a solution exists in order to determine the
dispersion relation. H17 determined the dispersion relation of an
isothermal filament threaded by a uniform axial magnetic field in
the presence of AD. It showed that for the IEOS, the effect of
magnetic field in the weak regime (B = 0.1) on the shape of dis-
persion relation can be ignored, even in a very strong AD regime
(ηA = 104).

Fig. 2 shows the dispersion relations for two flavors of the LEOS,
namely the MPEOS (left-hand panel) and the GEOS (middle and
right-hand panel) (see Section 2.2). For the MPEOS, A = 0.2, while
for the GEOS, κ = 1 or κ = 10. In the top and bottom panels, the
magnetic field strength is B = 1 and B = 10, respectively. Each panel
demonstrates dispersion relations in different AD regimes, from
ηA = 1 to ηA = 103. We found that the ηA < 1 has not any significant
effect on the dispersion relation even in a very strong magnetic field
regime. We also found that for ηA > 103, the dispersion relation
coincides, effectively, with a system in which the magnetic field
is zero. In other words, systems with large values of ηA, respond
against global perturbations in a way that is very similar to the
systems which do not include magnetic field.

One should note that the wavenumber k is scaled by the factors
A1/2 and (1 + κ)1/2 in the case of the MPEOS and the GEOS,
respectively, which is indeed the effective sound speed (dp/dρ)1/2 at
the centre. This scaling is done because in the scale length definition
we have used the isothermal sound speed cs.

In order to investigate the stability of the filament in the pure Jeans
mode, i.e. without magnetic field (B = 0), one can analogously think
about the dispersion relation in the strong AD regime, because the
AD counteracts the effect of magnetic field (H17). Looking at the
dispersion relations in Fig. 2 when ηA = 103 (the lowest curve in
all panels), it is easy to see that the response of the filament to the
perturbation for the MPEOS is very similar to the GEOS for κ = 10.
In the case of κ = 1, the dispersion relation has also almost the same
shape, but its critical wavelength and its fastest growing mode (i.e.
one with the largest |ω2|) are both a little smaller than those of the
GEOS with κ = 10 and the MPEOS.

Now let us first explain the top panels, where the magnetic field
strength is B = 1, with more details. In this case, when the AD
is gradually reduced, the magnetic field gradually becomes more
effective to stabilize the filament. This is completely visible for the
MPEOS where the magnetic field is able to decrease the growth
rate of the fastest growing mode about 50 per cent. The efficiency
of magnetic field in reinforcing the stability of the filament, is
decreased for the GEOS with κ = 1. For κ = 10, the magnetic
field becomes totally inefficient to stabilize the filament. Reported
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Figure 2. Dispersion relation of the filament with the LEOS. The left-hand columns belong to the MPEOS, and the middle and right-hand columns belong to
the GEOS. Upper and lower panels show the dispersion relation when B = 1 and B = 10, respectively. In the left-hand panel A = 0.2 and in the middle and
right-hand panels κ = 1 and κ = 10, respectively. In each panel the horizontal axis is the wavenumber k and the vertical axis is ω2 that are normalized in the
units of (4πGρc)1/2/cs and 4πGρc, respectively. The wave numbers are multiplied by A1/2 or (1 + κ)1/2 to account for the usage of thermal sound speed as
the velocity unit. The solid red line represents dispersion relation for the case in which ηA = 0. Other lines demonstrate different ηA values from top to bottom
as 1 (blue long dashed), 10 (green dash-dotted), 102 (violet short dashed), and 103 (orange dotted).

by H17 and Gehman et al. (1996b), there exist an upper limit for
the magnetic field strength at which the stability of the filament
is no longer increased. This saturation limit depends on the EOS.
To check it, the computation of dispersion relation is also done for
more powerful magnetic field strength of B = 10. Comparing the
bottom panels of Fig. 2 with the top panels, one can find that the
filament with the MPEOS as well as the GEOS with κ = 1 is already
saturated by the magnetic field strength of B = 1. This is not the
case for the GEOS with κ = 10. Also, as we already mentioned, the
critical wavelength is independent from the magnetic field strength
and is almost the same in these three LEOSs, but smaller when
κ = 1.

It is important mentioning that, it is clear from Figs. 2 and 3,
that changing the magnetic field as well as the AD coefficient does
not influence the instability interval. In other words, the critical
wavelength, i.e. the smallest unstable wavelength, does not depend
on B and ηA. Analytically, one can show that when ω = 0, the
magnetic field and the AD coefficient, are factored out from equa-
tions (21)–(23). However, the AD can effectively change the growth
rate of the perturbations. On the other hand, the κ parameter, sub-
stantially shortens the instability interval. It can be easily understood
in the sense that κ is a representative for the pressure. Therefore,
by increasing κ , the pressure budget of the system increased, and
naturally the stabilizing effects of the pressure suppress the small
wavelengths to grow.

The dispersion relations of three polytropic indexes of n = −1.5,
n = −2, and n = −4 (γ p = 1/3, 1/2, and 3/4), are displayed by
Fig. 3. The horizontal axes are again scaled by the effective sound
speed, which is (1 + 1/n)1/2. Regarding the effect of magnetic field
and AD, Fig. 3 at a glance suggests that the general behaviour of
the dispersion relation for a filament with the PEOS, is similar to
the MPEOS and the GEOS. There is not a meaningful difference
between the top and bottom panels, suggesting that in terms of
the stability, filaments with these three PEOSs, almost have been
saturated by a magnetic field strength of B = 1. In the strongest AD
regime (ηA = 103) that the magnetic field has the least effect on the
stability of the filament, one with n = −1.5 that is shown in the left-
hand panel, has the fastest growth rate and also the largest critical
wavelength. Decreasing n, reduces both the fastest growth rate and
the critical wavelength (middle and left-hand panels). Comparing
this figure with the Fig. 2 in H17, one can realize that among the six
EOSs that we computed their dispersion relations, the PEOS with
n = −4 is the most similar filament to the one with the IEOS in
terms of the gravitational instability.

The fastest growing mode, plays the key role in the fragmenta-
tion process. To better understand the fragmentation of the filament,
we continue with the investigation of the dominant mode in more
details. Fig. 4 shows the growth rate ωfast =

√
|ω2| of the perturba-

tions from weak to strong AD regimes for various EOSs and two
magnetic field strength B = 1 (large open markers) and B = 10

MNRAS 475, 2632–2641 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/475/2/2632/4791590
by Weizmann Institute of Science Library user
on 14 February 2018



2638 M. Hosseinirad et al.

Figure 3. Same as the Fig. 2 but for the polytropic filament. Panels from the left- to right-hand side have polytropic indexes of n = −1.5, −2 and −4,
respectively. The wave numbers are multiplied by (1 + 1/n)1/2 to account for the usage of thermal sound speed as the velocity unit.

Figure 4. The fastest growth rate versus ηA. Large open and small hatched
markers show ωfast for B = 1 and B = 10, respectively. The filled black
markers show ωfast when no magnetic field is present, which are drawn next
to the ηA = 1000 for comparison.

(small hatched markers). Also, the case of pure Jeans instability
is shown by filled black markers. From this figure, one can see
that in the pure Jeans regime, filaments with the LEOS have larger
ωfast than others which is reasonable, because they are supported

by lower gas pressure against their self-gravity (see Fig. 1). Among
LEOSs, the MPEOS has the largest growth rate and the next ones
are GEOSs with κ = 10 and κ = 1, respectively. They are fol-
lowed by n = −1.5, n = −2, and n = −4 until the IEOS, which
has the smallest growth rate. In the presence of a magnetic field of
B = 1, the GEOS with κ = 10 has the largest growth rate. With a
noticeable difference the next one is the GEOS with κ = 1. The dif-
ference between the PEOSs is little and they all have smaller growth
rates than the GEOSs. Here, the MPEOS has the smallest growth
rate. By increasing the AD coefficient ηA, the above-mentioned gap
between κ = 10 and κ = 1 becomes smaller. Also, it is obvious
that with one notable exception the ordering in vertical direction is
preserved. The exception is the MPEOS, which by increasing ηA,
it’s growth rate substantially increased insofar becomes the largest
one. Moreover, similar to H17, one can immediately recognize that
in the presence of the magnetic field, increasing ηA, leads the sta-
bility properties of the system to be more similar to the pure Jeans
case. When the filament is threaded by the stronger magnetic field
B = 10, the overall picture remains the same as B = 1, specially in
the strong AD and the pure Jeans regime, but the magnetic field is
now more capable to suppress the instability for all the EOSs. Fig. 5
illustrates the e-folding growth time of the perturbation. We take
it into account as a representative for the minimum time needed
for the fragmentation which is calculated as τmin = 1/ωfast. All the
above-mentioned details respecting ωfast can be repeated, but cer-
tainly in an inverse picture. For the IEOS without effect of magnetic
field, τmin ≈ 0.51 Myr. All other EOSs have shorter fragmentation
time-scales, with the minimum at ≈0.41 Myr, which belongs to the
MPEOS. Turning on the magnetic fields B = 1 and B = 10, increases
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Figure 5. Same as the Fig. 4, but for the minimum time needed for the
fragmentation.

Figure 6. Same as the Fig. 4, but for the length-scale of the fragmentation.

all the fragmentation time-scales at the most ≈0.59 and 0.6 Myr for
the MPEOS, respectively. It should be noted that, all fragmentation
time-scale experience a reduction by adding AD.

By looking at Fig. 6, we can vividly realize that, the wavelength
that correspond to the fastest growing mode is compared for a given
EOS, magnetic field strength and AD coefficient. It is computed
as λfast = 2π/kfast. This wavelength can be served as a length-scale
for the fragmentation in filamentary clouds, because the fragmenta-
tion is dominated by the fastest growing eigenmode. In the absence
of magnetic field, the IEOS has the smaller length-scale, which is
≈0.78 pc. The next smallest ones are PEOSs with n = −4, n = −2,
and n = −1 that are followed by the GEOS with κ = 1 and κ = 10.
The largest length-scale belongs to the MPEOS with the value
≈1.23 pc. Except for κ = 10, turning on the magnetic field B = 1,
would lead to drop in λfast. However, this is not the case for B = 10
where the fragmentation length-scale of the GEOS is not only in-

creased but also decreased more severely than the other EOSs. Also,
one can see that adding the AD, leads the fragmentation length-
scales to be inclined towards the pure Jeans length-scales gradually,
which is already observed for ωfast.

4 C O N C L U S I O N

It is now accepted that the filamentary MCs play a momentous role
in the first stages of star formation. According to the recent obser-
vations, the IEOS is not the best choice to describe the filamentary
MCs. Softer EOSs such as the LEOS and the PEOS with the nega-
tive index are suggested by the literature to deal with this issue. In
light of the new constraints imposed by the recent data, it is worth-
while to study the stability and the fragmentation of the filaments
in a more accurate setting.

In this paper, we have complemented H17, who investigated the
fragmentation of a self-gravitating filament with the IEOS, which is
threaded by an axial uniform magnetic field in the presence of the
AD. We consider two aforementioned family of EOSs, namely the
LEOS [two flavors; the GEOS and the MPEOS (see Section 2.2)]
and the PEOS with negative index (n < −1). We integrate the hydro-
static equation numerically. This yields us the density, the pressure
and the gravitational potential profiles. Afterward, we globally per-
turb the fluid equations to the first order and solve the resultant
ODEs using the relaxation technique. We continue with computing
the dispersion relation for different EOSs, in the two magnetic field
strength B = 1 and B = 10 and various AD regime from ηA = 1 to
ηA = 103. The growth rate of the fastest growing mode (ωfast) can
be exploited for comparison of the stability of the filament. In addi-
tion, the expected separation between clumps in a filamentary MC,
can be estimated by the length-scale of the fragmentation, which is
predominantly determined by the wavelength of the fastest growing
mode λfast. We can summarize our results as:

(i) In the pure Jeans instability (or equivalently when the AD is
very strong), the MPEOS has the largest growth rate ωfast ≃ 0.42
(the shortest fragmentation time τmin ≃ 0.41 Myr), which followed
closely by the GEOS with κ = 10. This corresponds to about 25 per
cent increase (decrease) in the growth rate (fragmentation time)
with respect to the IEOS that has the smallest growth rate ωfast ≃
0.34 (the largest fragmentation time τmin ≃ 0.51 Myr).

(ii) The moderate magnetic field can generally increase the sta-
bility, but interestingly the degree of stabilization is very different
for the two LEOSs: the MPEOS is very sensitive while the GEOS
with k = 10 is the least sensitive one.

(iii) Going from the moderate magnetic field (B = 1), which
is equivalent with B ≃ 14.3µG, to the strong one (B = 10), the
magnetic field is no longer able to effectively decrease ωfast for the
MPEOS and PEOSs.

(iv) In the strong magnetic field without AD, the difference in
ωfast between all the EOSs, is negligible.

(v) Both in the moderate and the strong magnetic field, PEOSs
have very similar ωfast.

(vi) In the pure Jeans instability, the largest and the smallest
fragmentation length-scales are ≃1.23 and 0.78 pc, which belong
to the MPEOS and the IEOS, respectively.

(vii) In the moderate magnetic field without the AD, the frag-
mentation length-scale is decreased for all the EOSs specially for
the MPEOS except for the GEOS with κ = 10.

(viii) In the strong magnetized medium without AD, λfast for all
the EOSs even the GEOS with κ = 10 is decreased.
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(ix) The effect of magnetic field on the studied PEOSs is less
than LEOSs. More specifically, it has the least effect on the IEOS.

It should be noted that in our perturbation analysis, ηA is assumed
to be constant, while from equation (12) we know that it depends on
the density profile. Moreover, the magnetic field can decrease the
slope of the density profile at large radii (Fiege & Pudritz 2000a),
if it contributes in the equilibrium state. We also know that in the
filamentary star forming regions, the low-density sub-filaments tend
to be parallel to the magnetic field pervading the region, while the
denser main filament tends to be perpendicular to the magnetic
field (e.g. Planck Collaboration XXXV 2016). Another point is that
in this work, filaments are not confined by the external pressure.
Nagasawa (1987) showed that the external pressure can increase
the stability of an isothermal filament by considering an infinitely
hot tenuous external medium. He also showed that in this case, a
uniform axial magnetic field can enhance the stability of the system
by decreasing the growth rate of the instability, however, contrary
to our results the magnetic field increases the critical wavelength.
This is also the case for perturbations triggered in a filament, which
is initially in a magnetohydrostatic equilibrium state threaded by a
more general helical magnetic field (Fiege & Pudritz 2000b). Fur-
thermore, Fischera & Martin (2012) showed that for a filament in
pressure equilibrium with the surrounding medium, a larger exter-
nal pressure can lead to the considerably flatter density profiles. In
this work, we assumed that the AD coefficient ηA is constant, so as
we observed different density and pressure profiles could directly
influence the stability properties of the filament. Considering a den-
sity dependent ηA would add to the complications. Dealing with
these problems could be the matter of next studies.
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André P., 2017, CR - Geosci., 349, 187
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APPENDIX A: AD COEFFICIENT AND
E QUATIONS OF STATE IN DIM ENSIONLESS
U N I T S

In our calculations, all quantities are transformed from cgs units to
the dimensionless ones. These units are

[ρ] = ρc, (A1)

[t] =
√

4πG[ρ]
−1

, (A2)

[p] = pc, (A3)

[u] =

√
[p]
[ρ]

, (A4)

[r] = [t][u], (A5)

[ψ] = [u]2, (A6)

[B] =
√

4π[p]. (A7)

It is obvious that the velocity unit is equal to the isothermal sound
speed cs for the IEOS and the GEOS. For the MPEOS and the
PEOS, it is assumed to be cs. Using these new units, the analytical
solution of the density and gravitational potential of the isothermal
filament can be recast as

ρ(r) =
(

1 + r2

8

)−2

(A8)

and

ψ(r) = 2 ln
(

1 + r2

8

)
. (A9)

Furthermore, the unit of α can be expressed as

[α] = 1
4π(4πG[ρ])−1/2

4π[ρ][u]2

[u]2[ρ]3/2
=

√
4πG, (A10)

which is ≃11.465. Moreover, with the help of equations (12) and
(A10), the unit of ηA reads

[ηA] = 1
4π[α][ρ]3/2

. (A11)

This determines ηA in dimensionless units as

ηA ≃ 0.007ρ−3/2
n . (A12)

This also transforms equations (6)–(8) into

p = ρ + κ log (ρ), (A13)

p = 1 + A log (ρ), and (A14)

p = ργp , (A15)

respectively, where κ = p0
c2

s ρc
.
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