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a b s t r a c t

The interplay between radiation loss (diagonal and off-diagonal) and Kerr-type nonlinearity on the light
propagation in 1D array of nonlinear dissipative optical waveguides are investigated numerically. Our results
show that, at low nonlinear parameters, the diagonal loss only reduces the light intensity in the guides and does
not affect the ballistic regime of light spreading. However, for nonlinear parameters above a critical value, the
transition from the localized to the ballistic regime can be observed, after certain propagation distance. The study
of the interplay between off-diagonal loss term and Kerr type nonlinearity, demonstrates that the results depend
mainly to the nonlinear parameter strength. In this case, and for low strength of nonlinearity, the transition from
ballistic to diffusive regime is observed after a critical propagation distance, while, spreading from localized to
diffusive regime occurs at high nonlinear parameters (above the critical one). In addition, we have examined the
impact of the both diagonal and off-diagonal losses in highly nonlinear optical lattices. In this case, by increasing
the propagation distance, three different regimes of light spreading (from localized to the ballistic, and then,
from ballistic to the diffusive) can be observed. Both critical propagation distances in which these transitions
occur increase by the magnitude of the nonlinear parameter, while, decrease by the enhancement of the loss
coefficients.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, by appropriate design of guides for light propagation,
the optical waveguide arrays provide experimental tools to simulating
and testing certain fundamental theories and phenomena in some
branches of physics, such as condensed matter and quantum optics
[1–4]. In design, there are some basic effects such as disorder, loss and
gain, surface and nonlinear effects, which affects the light propagation
in optical waveguide arrays [1–3,5–8]. The presence of loss leads to
a non-Hermitian system with imaginary eigenvalues, and violates the
energy conservation, because of the energy transfer from the guides to
the environment. The co-existence of loss and gain in double lattices
open a new research about the non-Hermitian parity-time reversal ( )
symmetric lattices with real eigenvalues and conserved energy [9–16].

The  -symmetric lattices can be created by importing the gain
and loss to the double-lattices and appropriate design of the coupling
coefficients between guides [9–14]. Moreover, the symmetric treatment
can be observed in the passive systems contain the diagonal loss term
without the gain [9,14].
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In the previous work [17], we investigated the impact of loss on the
light propagation in linear optical waveguide arrays. As shown in [17],
loss introduces an extra imaginary term to the coupling coefficients
between neighbor guides, beside an imaginary term to the propagation
constant of each guide, which are called off-diagonal and diagonal loss
terms, respectively. In a linear system, the off-diagonal loss term results
on the transition of the light spreading from the ballistic to the diffusive
regime, after a critical propagation distance.

In propagation of high-power light in optical waveguide arrays, the
nonlinear effects must be considered. The most important nonlinear
effect on light propagation in the coupled waveguide array is the
third-order Kerr-type nonlinearity. In the absence of loss, and for a
nonlinear parameter above the critical one, the Kerr-type nonlinearity
hindered the ballistic expansion of light, through the self-trapping
mechanism [18–21].

In this paper, we investigate the interplay between the loss (diagonal
and off-diagonal terms) and Kerr-type nonlinearity. Both effects exist in
1D optical waveguide array, and in the case of high-power input light
and striking loss of guides, should be considered together.
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We have obtained different regimes of light spreading (from the
transverse localization to diffusive and ballistic regimes) based on
interplay between diagonal/off-diagonal loss term and Kerr-type non-
linearity. The transition between different regimes occurs after some
critical propagation distances that depend to the loss coefficients and
nonlinear parameter.

We believe that our findings are significant for the study of discrete-
optical solitons in waveguide arrays and optical fibers. Furthermore,
these results can be useful for high-intensity light propagation in non-
Hermitian and  -symmetric waveguide lattices [1,3,15,16].

This paper is organized in four sections. Section 2 is devoted to the
theoretical model. Numerical results and discussion are presented in
Section 3. Finally, we conclude and summarize our results in Section 4.

2. Theoretical model

There are two sources of loss in waveguide lattices: material ab-
sorption and geometrical loss. The first source play a role when the
frequency of incident light is near the one of absorption frequencies of
waveguide material [22]. The later loss is related to the geometry of the
waveguide’s boundary. At the boundary, tail of the electric field, in the
nearby environment, move with different velocity respect to the electric
field profile in the guide, and causes the transfer of energy from the
middle of guide to its surrounding medium, to compensate the velocity
mismatch. This type of loss is known as a radiation loss and can be
controlled by the appropriate design of guide’s boundaries [22]. The
radiation loss introduces inherently in the light propagation along the
1D array of optical waveguides, while the material loss needs tuning of
the incident light frequency.

In our previous work [17], the radiation loss is introduced by
considering the electric permittivity of guides and surrounding medium
as two different complex numbers. In the presence of radiation loss and
by employing the slowly varying envelope approximation (SVEA), the
light propagation in 1D array of optical waveguides (see Fig. 1) can be
described by the following tight-binding (TB) equations [17]:

−𝑖
𝑑𝐸𝑛(𝑧)
𝑑𝑧

= (𝐾𝑛 + 𝑖𝜅𝑛)𝐸𝑛(𝑧) + (𝐶𝑛−1 + 𝑖𝐶 ′
𝑛−1)𝐸𝑛−1 + (𝐶𝑛 + 𝑖𝐶 ′

𝑛)𝐸𝑛+1,

𝑛 = 1, 2,… , 𝑁, (1)

where, 𝐸𝑛(𝑧) is the electric field amplitude of light wave in the 𝑛th
guide, which propagate along the 𝑧 direction (see Fig. 1), 𝐾𝑛 is the
propagation constant of 𝑛th guide, 𝐶𝑛 is the coupling coefficient between
𝑛th and (𝑛+1)th guides, and 𝑁 is the number of waveguides. Imaginary
parts 𝜅𝑛 and 𝐶 ′

𝑛 indicate the radiation loss. Diagonal loss term 𝜅𝑛
depends on the imaginary parts of the dielectric constants of the system,
while off-diagonal term 𝐶 ′

𝑛 is proportional to the mismatch between
the imaginary parts of the dielectric constants of guides and their
surrounding medium(absorption discrepancy). 𝐶 ′

𝑛 is also proportional to
the coupling coefficient 𝐶𝑛 between guides. This imaginary off-diagonal
term strongly affects the dispersion relation of the system and, in the
linear case, after a critical propagation distance, changes the transverse
spreading of light from the ballistic to diffusive regime [17].

In the presence of third-order Kerr-type nonlinearity, the system of
Eq. (1) are modified as follow:

−𝑖
𝑑𝐸𝑛(𝑧)
𝑑𝑧

= (𝐾𝑛 + 𝑖𝜅𝑛)𝐸𝑛(𝑧) + (𝐶𝑛−1 + 𝑖𝐶 ′
𝑛−1)𝐸𝑛−1 + (𝐶𝑛 + 𝑖𝐶 ′

𝑛)𝐸𝑛+1

+𝛾 ∣ 𝐸𝑛(𝑧)∣
2𝐸𝑛(𝑧), (2)

where 𝛾 = 𝑛2𝜔
𝑐𝐴𝑒𝑓𝑓

is the nonlinear parameter. Moreover, 𝑛2, 𝜔, 𝑐 and
𝐴𝑒𝑓𝑓 are the nonlinear refractive index, frequency of incident light,
speed of light in vacuum and the effective area of single-mode guide,
respectively.

Here, we consider a periodic 1D array of identical guides surrounded
by the same medium. Therefore, 𝐾𝑛 = 𝐾, 𝜅𝑛 = 𝜅0, 𝐶𝑛 = 𝐶, 𝐶 ′

𝑛 = 𝐶 ′ = 𝛼𝐶,
and we have:

−𝑖
𝑑𝐸𝑛(𝑧)
𝑑𝑧

= (𝐾 + 𝑖𝜅0)𝐸𝑛(𝑧) + 𝐶(1 + 𝑖𝛼)(𝐸𝑛−1 + 𝐸𝑛+1)

+𝛾 ∣ 𝐸𝑛(𝑧)∣
2𝐸𝑛(𝑧). (3)

Fig. 1. (Color online) Array of optical waveguides.

By applying 𝜑𝑛(𝑧) =
𝐸𝑛(𝑧)
√

𝑃
𝑒−𝑖(𝐾+𝑖𝜅0)𝑧, 𝑍 = 𝐶𝑧, 𝜅 = 𝜅0

𝐶 and 𝜒 = 𝛾𝑃
𝐶 ,

we obtain the following set of the dimensionless nonlinear coupled
equations:

−𝑖
𝑑𝜑𝑛(𝑍)
𝑑𝑍

= (1 + 𝑖𝛼)(𝜑𝑛−1(𝑍) + 𝜑𝑛+1(𝑍)) + 𝜒𝑒−2𝜅𝑍 ∣ 𝜑𝑛(𝑍)∣2𝜑𝑛(𝑍),

𝑛 = 1, 2,… , 𝑁. (4)

Here 𝜒 is normalized nonlinear parameter, 𝑃 =
∑𝑁

𝑛=1 ∣ 𝐸𝑛(𝑍 = 0)∣2 is
the total power of light at the entrance plane, and 𝜅 and 𝛼 are the dimen-
sionless diagonal and off-diagonal loss terms, which are normalized to
the coupling coefficient 𝐶 between neighbor guides. It is important to
note that, in these equations, the exponential decay of light intensity
is factored out in 𝜑𝑛(𝑍), and instead of it, dimensionless nonlinear
parameter 𝜒𝑒−2𝜅𝑍 decreases along the propagation distance. This clearly
shows the reduction of nonlinear effects by loss, during propagation.
We use the Runge–Kutta Fehlberg method to solve numerically these
equations for 𝑁 = 200 waveguides, with zero boundary conditions,
when the middle guide (𝑛0 = 100) is excited at the entrance plane
(𝜑𝑛(𝑍 = 0) = 𝛿𝑛,𝑛0 ).

3. Numerical results and discussion

We define the participation rate (𝑃𝑅(𝑍)) in (1 + 1)D optical
waveguide arrays as a measure to study the different regimes of light
spreading along the transverse direction:

𝑃𝑅(𝑍) =

(

∫ ∞
−∞ ∣ 𝜑(𝑋,𝑍)∣2𝑑𝑋

)2

∫ ∞
−∞ ∣ 𝜑(𝑋,𝑍)∣4𝑑𝑋

=

( ∞
∑

𝑛=−∞
∣ 𝜑𝑛(𝑍)∣2

)2

∞
∑

𝑛=−∞
∣ 𝜑𝑛(𝑍)∣4

. (5)

The last term comes from the discretization of the middle term along
the transverse direction. This measure counts the number of guides
contain nonzero light amplitude. In completely extended finite system
with 𝜑𝑛(𝑍) = 1

√

𝑁
, the participation rate equals to the total number

of guides, i.e. 𝑃𝑅(𝑍) = 𝑁 , while in exactly localized regime where
𝜑𝑛(𝑍) = 𝛿𝑛,𝑛0 , the participation rate equals one.

In (1 + 1)D optical system, the participation rate has the length
dimension and can be interpreted as a beamwidth of light (𝑤(𝑍) =
𝑃𝑅(𝑍)), while in (2 + 1)D systems the participation rate has the length
square dimension and the beam width can be defined as the square
root of the participation rate (𝑤(𝑍) =

√

𝑃𝑅(𝑍)). The participation
rate (beamwidth) in 1D array of optical guides can change with the
propagation distance as 𝑃𝑅(𝑍) ∝ 𝑍𝛽 , where 𝛽 = 1, 0.5, 0 referring to the
light spreading in ballistic, diffusive and localized regimes, respectively.

Fig. 2 shows the light intensity distribution (𝐼𝑛(𝑍) =∣ 𝜑𝑛(𝑍)∣2) and
their corresponding beamwidth along the propagation distance in linear
(𝜒 = 0) dissipative system for different off-diagonal loss terms (𝛼) [17].
In this case, according to Eqs. (4), the value of diagonal loss 𝜅 does not
affect the intensity distribution of the system. As shown in this figure,
in the presence of off-diagonal imaginary term (𝛼), the mechanism of
light spreading in transverse direction changes from ballistic to diffusive
regime after a critical propagation distance (𝑍𝑐 ≃ 10, 5 in Fig. 2(b)
and (c), respectively). The critical propagation distance decreases by
enhancement of 𝛼. This result is in agreement with previous results
in [17] .

In Fig. 3, we investigated the impact of Kerr-type nonlinearity on
light propagation in the absence of any loss (𝜅 = 0, 𝛼 = 0). Kerr-type

388



M. Khazaei Nezhad et al. Optics Communications 405 (2017) 387–393

Fig. 2. (Color online) Light intensity profiles in linear (𝜒 = 0) dissipative system, with: (a) 𝛼 = 0.0, (b) 𝛼 = 0.1, (c) 𝛼 = 0.2 and (d) their corresponding beam widths.

Fig. 3. (Color online) Light intensity profiles in nonlinear non dissipative system (𝜅 = 𝛼 = 0.0), with: (a) 𝜒 = 1.0, (b) 𝜒 = 4.0, (c) 𝜒 = 7.0 and (d) their corresponding beam widths.

nonlinearity can be appeared for the high light intensity at the entrance
plane (𝜒 ∝ 𝑃 ), within the waveguide lattices that fabricated from the
materials with high nonlinear refractive index such as 𝐺𝑎𝐴𝑠 or 𝐶𝑆3−68
glasses [23]. For instance in 𝐶𝑆3 − 68 glass lattices with 𝑛0 = 1.5, 𝑛2 =
2.3× 10−14 m2

W [23] and typical values of 𝐴𝑒𝑓𝑓 = 50 μm2, 𝜆 = 0.8 μm, 𝐶 =
0.1 mm−1 [17], the input power equals 𝑃 ≅ 18.5𝜒 (mW). As known
the Kerr-type nonlinearity affects the light propagation throw the self-
trapping mechanism [24,25]. For nonlinear parameters above a critical
value (𝜒 ≥ 𝜒𝑐 ≃ 4.0), the self-trapping effect leads to the confinement of
light in the incident waveguide. As shown in Fig. 3(a), light spreading is
not affected by small nonlinear parameters [7]. However, by increasing
the nonlinear parameter above the critical value, the self-trapping
causes the transverse light localization. The figure for 𝜒 = 4.0 shows the
strong interplay between discrete diffraction and Kerr-type nonlinearity
confinement, and marked as the critical nonlinear parameter.

In the next step, we investigate interplay between the diagonal loss
(𝜅 ≠ 0, 𝛼 = 0) and Kerr-type nonlinearity. Figs. 4 and 5 shows the
light intensity profiles and their corresponding beam widths versus the

propagation distance, at critical nonlinear parameter 𝜒𝑐 = 4.0 and a
higher value 𝜒 = 7.0, respectively. As can be seen from Fig. 4, for
𝜒 = 4.0, diagonal radiation loss quenches the nonlinear effect, and
leads to the light spread in the ballistic regime. We find that, the
behavior is the same for 𝜒 < 𝜒𝑐 . At higher value of nonlinear parameter
𝜒 = 7.0, and at the initial propagation distances, one can observe
the transverse localized regime, which demonstrates the self-trapping
effect. However, after a critical propagation distance (𝑍𝑐 ≃ 5, 2.5 in
Fig. 5(b) and (c), respectively), the diagonal radiation loss suppresses
the nonlinear effect, causes the scape of light from the initial injected
guide, and the light spread in the ballistic regime. Also, we find that
the critical propagation distance that the transition from the localized
to the ballistic regime occurs, depends on the ratio between nonlinear
and diagonal loss coefficients (𝑍𝑐 ∝

𝜒
𝜅 ).

Figs. 6 and 7 indicate the interplay between off-diagonal radiation
loss (𝜅 = 0, 𝛼 ≠ 0) and Kerr-type nonlinearity. These figures show
the light intensity profiles and their corresponding beam widths versus
the propagation distance, at two different nonlinear parameters, below
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Fig. 4. (Color online) Light intensity profiles in nonlinear system (𝜒 = 4.0), in the absence of off-diagonal loss (𝛼 = 0.0), with: (a) 𝜅 = 0.0, (b) 𝜅 = 0.1, (c) 𝜅 = 0.2 and (d) their
corresponding beam widths.

Fig. 5. (Color online) Light intensity profiles in nonlinear system (𝜒 = 7.0), in the absence of off-diagonal loss (𝛼 = 0.0), with: (a) 𝜅 = 0.0, (b) 𝜅 = 0.1, (c) 𝜅 = 0.2 and (d) their
corresponding beam widths.

the critical one 𝜒 < 𝜒𝑐 , and a 𝜒 > 𝜒𝑐 , respectively. At low nonlinear
parameters 𝜒 ≤ 𝜒𝑐 , where light spreading is not affected by nonlinear
self-trapping mechanism, the off-diagonal loss term causes the transition
from ballistic to diffusive regime after a critical propagation distance
(see the inset of Fig. 6(d) in log–log scale). This behavior is similar to
the linear dissipative system [17].

Our numerical results show that the off-diagonal loss term suppress
the nonlinear self-trapping effect, and causes the light expansion in a
diffusive regime. This result is reasonable; loss reduces the light power
in the system, and leads to the reduction of nonlinear effects. In this
case, as shown in Ref. [17] and also observed in Fig. 2, the off-diagonal
loss causes the transverse light spreading from ballistic to diffusive
regime, after a critical propagation distance. This critical propagation
distance depends inversely to the off-diagonal loss coefficient 𝛼. Thus,
by increasing of 𝛼, diffusive regime starts at lower propagation distance,
and results in the smaller beam width. Therefore, the beam width is
decreased by increasing of 𝛼 (see Fig. 6(d)).

Fig. 7 is similar to Fig. 6, but for the higher nonlinear parameter
𝜒 = 7.0. This figure confirms the strong interplay between the nonlinear

parameter and off-diagonal loss term. The loss term, by suppressing
the nonlinear effect, leads to the scape of light from the initially
injected guides. Therefore, the loss eliminates the light self-trapping
effect after a certain propagation distance. This critical propagation
distance decreased by increasing the off-diagonal loss coefficient. After
this critical propagation distance, system behaves same as a linear one.
Therefore, the loss term, by reduction of the energy and removing
the self-trapping effect, causes the transition from nonlinear to linear
system.

As known, in linear waveguide lattices, the discrete diffraction
plays the role and causes the light wave spreading in the transverse
direction [26]. There is a main difference between the types of diffrac-
tion in discrete and continuous mediums. In continuous medium, the
light beam experiences normal diffraction and spreads gradually in
the transverse direction during propagation. This changes dramatically
in a discrete medium in which the light spread non-uniformly in the
transverse direction, and the most of the optical energy is carried out
along two major side lobes far from the center [1]. This behavior comes
from the nature of different order Bessel functions as a Green function

390



M. Khazaei Nezhad et al. Optics Communications 405 (2017) 387–393

Fig. 6. (Color online) Light intensity profiles in nonlinear system (𝜒 = 3.0), in the absence of diagonal loss (𝜅 = 0.0), with: (a) 𝛼 = 0.0, (b) 𝛼 = 0.1, (c) 𝛼 = 0.2 and (d) their corresponding
beam widths.

Fig. 7. (Color online) Light intensity profiles in nonlinear system (𝜒 = 7.0), in the absence of diagonal loss (𝜅 = 0.0), with: (a) 𝛼 = 0.0, (b) 𝛼 = 0.1, (c) 𝛼 = 0.2 and (d) their corresponding
beam widths.

of the waveguide lattices [1]. In discrete nonlinear waveguide lattices
there is a competition between nonlinear self-trapping mechanism and
the discrete diffraction. For strongly nonlinear (𝜒 > 𝜒𝑐 = 4.0) dissipative
system (𝛼 ≠ 0), at low propagation distance, the nonlinear self-trapping
mechanism is predominated and causes the transverse localization of
light. However, at high propagation distance, due to the presence of
off-diagonal loss 𝛼, the light intensity (and hence the nonlinear effect)
decreases and the discrete diffraction dominates. Therefore, after a
certain propagation distance (which decreases by increasing 𝛼), light
wave spreads along two strong side lobes. This phenomenon appears
as a light split into two branches (high intensity at side lobes and
negligible intensity at the center). See Fig. 7(b) and (c) at 𝑍 ≃ 15 and
𝑍 ≃ 8, respectively. Furthermore, at higher propagation distance, the
off-diagonal loss, by reduction of the interference effects, causes the light
expansion in the diffusive regime [17]. In this case, the light intensity
follows the diffusive regime profile, in which the light wave intensity is
concentrated mostly in the central guides (see Fig. 7(c) for 𝑍 > 15).

In the last step, we have investigated the interplay between co-
existence of diagonal and off-diagonal loss terms, and nonlinear pa-
rameter. In experiment, the off-diagonal loss coefficient is lower than
the diagonal one [17]. Fig. 8(c) and (d) show the results for high
nonlinear parameter (𝜒 = 7.0 > 𝜒𝑐) (Fig. 8(a) and (b) are depicted
for comparison). These figures indicate three different regimes of light
expansion. At the low propagation distances, where the power does not
attenuate gravely, the nonlinear mechanism is dominated and causes
the transverse light localization (𝑍 ≤ 𝑍1 ≃ 2.5, black dashed line in
Fig. 8). At larger propagation distances, the diagonal loss term causes
the transition to the ballistic regime (𝑍1 ≤ 𝑍 ≤ 𝑍2 ≃ 7.5, yellow
dashed line in Fig. 8). Finally, at higher propagation distances, the
off-diagonal loss term affects the diffraction pattern and causes the
transition to the diffusive regime (𝑍 ≥ 𝑍2). Inset in Fig. 8(d) shows the
beam width (𝑤(𝑍)) versus the propagation direction, in log–log scale,
at high propagation distances (𝑍 > 𝑍2), correspond to Fig. 8(a), (b)
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Fig. 8. (Color online) Light intensity profiles in nonlinear system (𝜒 = 7.0), with: (a) 𝜅 = 0.0, 𝛼 = 0.0, (b) 𝜅 = 0.2, 𝛼 = 0.0, (c) 𝜅 = 0.2, 𝛼 = 0.2 and (d) their corresponding beam widths.

and (c). This figure confirms three different regimes of light spreading:
transverse localization with zero slope curve in nonlinear lossless system
(Fig. 8(a)), ballistic regime with the slope equals one in the presence of
diagonal loss (Fig. 8(b)) and diffusive regime with half slope when off-
diagonal loss effect dominates (Fig. 8(c) at high propagation distances).

At the end, we explored the experimental conditions to see the
radiation loss effects. In the experiment, the waveguide arrays can be
written with a high power femtosecond laser in (2 + 1)D bulk silica
glass or other materials [1,9]. To enhance the radiation loss, each
guide is sinusoidal bended along the one of the transverse directions
(𝑌 -direction). All of the bended guides are located periodically in the
other transverse direction (𝑋-direction). The light wave is injected in
one guide at the entrance plane, and the light intensity is monitored
along the 𝑍-direction. The loss coefficient can be tuned with the period
and the amplitude of bended guides. The nonlinear parameter can be
altered with the initial light intensity.

We expect these results help us to much understand the physics
behind the non-Hermitian (for example  -symmetric) photonic struc-
tures. Also, these results may be useful in the study of optical solitons
in the waveguide arrays and fibers.

4. Conclusion

In conclusion, we have investigated the interplay between diagonal
and off-diagonal loss terms, and Kerr-type nonlinearity on the light
propagation in 1D optical waveguide lattices. Our numerical results
show that, in the presence of diagonal loss, for low nonlinear parame-
ters, the light spreads ballistically in the transverse direction. However,
by enhancement of the nonlinear parameter above a critical one, the
situation changes dramatically. In this case, at low propagation distance,
the light localized transversely in the injected guide because of the
self-trapping mechanism. Meanwhile, by increasing the propagation
distance, the diagonal loss term, by reduction the power, decreases
the nonlinear effect, and causes the scape of light from the excited
waveguide. In this position, light spreads in the ballistic regime similar
to the linear system. The critical propagation distance, where the
transition from nonlinear behavior to linear one occurs, depends to
the ratio between the nonlinear parameter and diagonal loss coefficient
(𝑍𝑐 ∝

𝜒
𝜅 ).

In addition, the interplay between off-diagonal loss and Kerr type
nonlinearity, at low nonlinear parameter causes the light spreading tran-
sition from ballistic to the diffusive regime. In this manner, the system

behaves similar to the linear ones and our result is in agreement with
previous work [17]. Meanwhile, by increasing the nonlinear parameter,
the self-trapping mechanism is predominated at low propagation dis-
tance and the light localized in the injected guide. Although, at high
propagation distance the off-diagonal loss decreases the self-trapping
chance by exchange the light intensity between injected guide and envi-
ronment. Therefore, above the critical propagation distance the system
behaves similar to the linear ones and light spreads in diffusive regime.
Again, the critical propagation distance, depends on the ratio between
the nonlinear parameter and off-diagonal loss coefficient (𝑍𝑐 ∝

𝜒
𝛼 ).

Furthermore, for simultaneous interplay between diagonal loss, off-
diagonal loss, and Kerr type nonlinearity (at high nonlinear parame-
ters), one can observe three different regimes of light spreading. At
low propagation distance (𝑍 < 𝑍1), the self-trapping mechanism is
predominated and the light wave is trapped in the injected guide. For
larger propagation distance (𝑍1 < 𝑍 < 𝑍2), the diagonal loss plays the
role and causes the light spreading in the ballistic regime. Nevertheless,
at higher propagation distance (𝑍 > 𝑍2), the off-diagonal loss causes the
light spreading transition from ballistic to diffusive regime. Both critical
propagation distances 𝑍1 and 𝑍2 increase by the nonlinear parameter,
while, diagonal and off-diagonal loss terms reduce them, respectively.
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