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A B S T R A C T

Torque estimation needs intensive efforts and costly sensors. In this research, a model was proposed based on
soft computing to estimate the ITM285 tractor engine torque using some low cost sensors. To this end, two
models including the radial basis function (RBF) neural network and adaptive neuro fuzzy inference system
(ANFIS) were used. Thirteen training algorithms were examined to train the RBF. These algorithms were
compared using three statistical methods, namely k-fold cross validation, completely randomized design (CRD)
and least significant difference (LSD). Moreover, three methods, namely grid partitioning (GP), sub-clustering
(SC) and fuzzy c-means (FCM), were used to construct the fuzzy inference system (FIS). However, the FCM was
the most suitable method. The sensitivity analysis showed that only measuring engine speed, fuel mass flow and
exhaust gas temperature was sufficient for proper engine torque estimation. The RBF had a better performance
(R2=0.99, RMSE=0.5 and EF= 0.99) than the ANFIS and hence, was suggested for estimating the engine
torque.

1. Introduction

Diesel engines are widely used in vehicles, ships, power generators,
military equipment, heavy industries and agricultural machinery,
especially tractors. They offer a better fuel to power conversion effi-
ciency than spark ignition (SI) types [1] and the lower volatility of their
fuel makes them safer to handle [2]. The engine is the heart of such
equipment and thus, keeping it in a good working condition is vital for
a good overall efficiency [3]. Most of agricultural implements with
active tillage tools (e.g., rotary tiller, power harrow), balers, choppers,
mowers, threshing machinery, sprayers, spreaders, etc., are powered by
a power-take-off (PTO) shaft. On the go estimation of rotary power
consumption in these implements is very important for the farm power
management purpose. Monitoring the tractor engine load is crucial for
engineers to design implements as well as for farm experts to manage
machinery and make proper decisions. Furthermore, accurate mea-
surement of the engine rotary load is time intensive and costly. Hence,
the condition monitoring (CM) of the transmitted torque and power of
the tractor engine can be beneficial for control system applications. The
above concerns were among the motivating elements to conduct this

research.
The CM is the process of monitoring the condition parameter(s) in

machinery (vibration, temperature, sound, etc.) in order to identify a
significant change, which might be indicative of a developing fault.
Moreover, the CM is a major element of predictive maintenance. Many
publications on the CM to diagnose faults of mechanical systems and
components, such as the metal lathe machine [4], rolling element [5],
cutting tools [6,7], grinding process [8], mining equipment [9], pump-
turbines [10], wind turbines [11], flexible rotor [12], centrifugal pump
[13], reciprocating compressor [14], bearings [15–17], planetary
gearboxes [18–22], gear transmission systems (a review) [23], helical
gears [24], cylinder misfire [25], engine power disturbance [26] and
engine valve leakage [27], have appeared in the literature, showing an
attractive subject for scholarly speculation. In addition, the CM is used
in control systems to assess the situation and make proper decisions.
Monitoring the tractor engine load in agricultural operations with harsh
working condition is one such CM application, which can assist the
operator to regulate the engine load in accordance with the working
conditions.

In automation control system applications, the CM of the
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transmitted engine torque is unavoidable for control strategies [28].
Furthermore, manufacturers require to know the engine torque range in
order to design the power train components (e.g., gearbox and crank-
shaft) and regulate the engine and gearbox for optimized performance
and reduced emissions [29]. Several solutions are presented for drive-
line automation to manage the engine performance, all of which need
accurate torque estimation [28]. For example, the engine torque is used
in hybrid vehicle applications to assess the proportion of electric motor
and thermal engine torque [30,31]. Furthermore, the engine torque is
necessary for engine management [32,33]. As another example, an
estimator for the transmitted clutch torque is used in the driveline to
improve the clutch control performance during vehicle launch and
gearshifts [34]. Zhao et al. [35] analyzed a dual clutch transmission
(DCT) shifting process, wherein the torque transmitted by a twin clutch
during the upshifting process was estimated by employing the un-
scented Kalman filter (UKF) algorithm. The experimental results de-
monstrated that the applied UKF torque estimation algorithm could
adequately estimate the transmission torques of the two clutches in a
real time manner.

Most of former researches on torque estimation have focused on
internal combustion (IC) engine models. The inputs of these models
typically consist of some engine measurements such as air [36] or fuel
[37] mass flow, throttle position [38,39], fuel properties [40], spark
advance [36,39], engine speed [36,37,39–41], and acoustic emission
features [42]. Lee et al. [33] introduced two torque estimation tech-
niques, namely “stochastic estimation technique” and “frequency ana-
lysis technique”, for an in-line, four-cylinder SI engine under a wide
range of engine operating conditions (different engine speeds and
loads). Franco et al. [43] presented a real-time engine brake torque
estimation model, where the instantaneous engine speed served as the
model input. Liu et al. [44] proposed a practical method to estimate the
friction and torque load based on the characteristics of the in-
stantaneous torque profile during an engine cycle. The work aimed to
develop a practical solution for estimating the in-cylinder gas pressure
from the crankshaft speed fluctuation. Lin et al. [45] employed in-
stantaneous crank angular speed as a non-intrusive CM technique to
estimate the load on a four-stroke, four-cylinder diesel engine in a la-
boratory condition. Aono et al. [46] developed an easier estimation
method using finite impulse response (FIR) filter to derive the crank-
shaft rotational speed, which required less calculation load. The FIR
filter for differentiation was designed based on the frequency domain
characteristics between the crankshaft rotation speed and combustion
torque. Numerous static and dynamic torque estimation methods were
presented to monitor the engine torque [38,47]. In one study, four
statistical methods were reviewed in a unified framework and com-
pared for building the torque model: linear least squares, linear neural
networks (NNs), non-linear NNs and support vector machines (SVMs). It
was concluded that a non-linear model structure is essential for accu-
rate torque estimation [29].

Soft computing methods are also appropriate for modeling diesel
engines with highly nonlinear dynamic systems. These intelligent
methods are used for identification, modeling, control and optimization
purposes [48]. A variety of soft computing methods such as fuzzy
[49–51], adaptive neuro fuzzy inference system (ANFIS) [52,53], SVM
[54–56], local linear model tree (LoLiMoT) [57,58] and recurrent ar-
tificial neural network (RANN) [59,60] were used to model the per-
formance parameters of IC engines. Among them, artificial neural net-
works (ANNs) were intensively employed for modeling and
identification of IC engine parameters [4,54,61–67].

The ANN is a parallel computing system containing hardware and
software [68]. It is widely used in various applications such as control
systems, pattern recognition, robotics, manufacturing, optimization,
forecasting, medicine, power systems, signal processing, and social and
psychological sciences [69]. Moreover, it basically provides a non-de-
terministic mapping between sets of random input-output vectors.
Learning directly from instances without attempting to estimate the

statistical parameters is the main advantage of using ANNs [70]. With
such capability, ANNs can be used for analyzing the engine behavior.
The ANN is also a powerful tool for modeling engines based on input-
output data [48]. Using the ANN to improve torque estimation of IC
engines has become increasingly widespread [71]. Tosun et al. [40]
used the ANN based on the back-propagation Levenberg-Marquardt
(BPLM) training algorithm and linear regression (LR) modeling to
predict engine torque and some other engine performance parameters
of a diesel engine fueled with standard diesel and biodiesel-alcohol
mixtures. Engine speed (rpm) and fuel properties (lower heating value,
Cetane number and density) were applied as input parameters in order
to predict the performance parameters. They mentioned that experi-
mental determination of the performance and emission characteristics
of an IC engine was complex, costly and time consuming. Therefore,
they modeled the engine performance parameters using the ANN in
order to eliminate these disadvantages and complexities. They used
some parameters including exhaust temperature, fuel consumption and
engine vibration as inputs and the models were presented for different
fuel types, separately. The performance comparison of the LR and ANN
showed that more accurate results can be obtained for the predicted
parameters with the ANN technique. Noor et al. [37] utilized the ANN
modeling based on a standard BPLM training algorithm to predict the
output torque and some engine characteristics of a marine diesel en-
gine, with various inputs such as engine speed and fuel flow rate. The
results showed that the ANN model was more accurate than the
mathematical model. The authors stated that the ANN was flexible and
easy to use. Consequently, it can be preferred for many predictive data-
mining applications. Moreover, the ANN is a robust, powerful and
suitable technique for nonlinear and complex processes. Bietresato
et al. [72] used ANNs to predict the instant torque and brake specific
fuel consumption (BSFC) of farm tractor diesel engines with input
parameters such as engine speed, exhaust gas (EG) temperature and
motor oil temperature. ANNs were trained with EG and lubricant
temperatures data through the error back-propagation algorithm.

Ge et al. [71] categorized the torque estimation models in two
groups. In one category, the engine is modeled in detail according to the
physical mechanism of engine, and then the engine torque is estimated
using the detailed model [43,73,74]. In the other category, the complex
nonlinear physical process of the detailed model is identified by using
an ANN, resulting in a simplified model, and then the torque is esti-
mated using the simplified model.

Togun and Baysec [39] presented a back-propagation (BP) network
to predict the torque and BSFC of a 1400 cc, four-cylinder, four-stroke
FIAT gasoline engine. The engine speed (in nine levels) as well as spark
advance and throttle position (both in three levels) were used as inputs
of the ANN models. The authors noted that the ANN model did not
require detailed information of the system, and operated like a black
box. Additionally, it was able to learn the relationship between the
controlled/uncontrolled variables and input parameters by studying
previously recorded data, similar to a nonlinear regression perfor-
mance. As a prominent innovation, explicit mathematical formulations
of torque and BSFC were presented based on the proposed ANN models.

Zweiri and Seneviratne [75] presented an ANN approach based on
the BP algorithm to estimate the indicated torque of a single-cylinder
diesel engine in terms of crankshaft angular velocity and displacement
as input parameters. The authors mentioned that measuring these
parameters did not need costly sensors; hence, the estimator may be
practical in control or diagnostic strategies that require indicated
torque, which is not simply measured and needs expensive sensor.
Other prediction works related to the engine torque of IC engines based
on the ANN approach were presented elsewhere [76–84].

Recently, many researchers have made comparative studies on dif-
ferent learning algorithms such as multilayer perception (MLP), SVM,
radial basis function (RBF), and BP to predict the performance and
emission characteristics of IC engines. Some of these studies are sum-
marized in Table 1. As shown in the table, there are few comparative
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studies of engine torque estimation. The literature review revealed that
the applications of RBF networks and ANFIS for modeling engine torque
are rare. The prime benefit of using RBF feed-forward neural networks
is less required training time, which is due to the simpler structure of
these ANNs compared to MLP networks. Moreover, the RBF has com-
paratively low extrapolation errors and is generally more reliable [85].
Therefore, in the present study, the ability of the RBF neural network
with various training algorithms and ANFIS was investigated to predict
the CI engine torque under various working conditions, and their per-
formances were compared. This was done with the aim of improving
the accuracy of torque estimation.

In conclusion, the engine torque is one of the most important per-
formance parameters of IC engines, which frequently needs to be esti-
mated during operations. However its accurate measuring is laborious,
time-consuming and costly. ITM285 is the most common tractor in Iran,
which is widely used in agricultural operations. Accurate estimate of
the output engine torque exerted by active agricultural implements
through the tractor PTO shaft can be used for instantaneous system
management during field operations.

This is an important and effective aspect of precision farming, which
is developing in the current century. Hence, the main objective of this
study was to develop engine torque estimation models in a wide range
of engine operating conditions (load and speed) based on soft com-
puting methods. The specific objectives were: 1 – to investigate and
compare the effectiveness of the RBF neural network and ANFIS for
engine torque estimation; 2 – to study the variation of the model per-
formance with different model parameters; 3 – to select the most ap-
propriate model for accurate prediction of the engine torque.

2. Materials and methods

2.1. Engine characteristics

Currently, ITM285 tractor is the most popular tractor in Iran. This
tractor is adapted to different weather conditions in the country and
hence, most of agricultural operations are performed by this model
[92]. An ITM285 tractor was employed and the experiments were
performed at the Department of Biosystems Engineering, College of
Agriculture, Ferdowsi University of Mashhad, Iran. The detailed char-
acteristics of the tractor’s engine are shown in Table 2. Before com-
mencing the experiments, all filters of the fuel and lubrication systems
were renewed. Some preliminarily inspections were conducted to verify
the instruments conditions (proper installations, appropriate transfer of
data to PC, etc.) and ensure the proper status of the engine (checking
the coolant and oil levels, adjusting the clearance of the intake and
exhaust valves for each cylinder, etc.) before the main tests [93].

2.2. Experimental procedures

The experiments were conducted at 11 levels of primary engine
speed (PES) including: 779, 921, 1063, 1204, 1346, 1488, 1629, 1771,
1818 (engine rated speed), 1913 and 2054 rpm (from 935 to 2465 rpm
of the dynamometer speed by steps of 170 rpm). The tractor's PTO was

coupled to a hydraulic dynamometer through a universal joint. At the
beginning of each test, the engine speed was set and fixed at the desired
level using the hand throttle lever of the tractor and the engine was
sufficiently warmed up [94]. In other words, the engine hand throttle
position was kept fixed while exerting the load. In each PES, the applied
torque on the engine started from zero (no load) and continued to full
load by increment of 10 N·m. As expected, the engine speed con-
tinuously decreased with increasing the applied torque. Hence, the
engine speed at zero load and during the experiment (corresponding to
the applied torque) was named PES and instantaneous engine speed
(IES), respectively. The overall view of the test setup is shown in Fig. 1.
The measured parameters included fuel consumption mass flow
(FCMF), exhaust gas temperature (EGT), IES, maximum exhaust opacity
(MAEO) and mean exhaust opacity (MEEO). The experiments were
carried out at ambient temperature range of 23 ± 7 °C [95].

2.3. Measuring parameters

A hydraulic water-flow dynamometer (PLINT, England) with max-
imum loading capacity of 325 N·m, resolution of 0.1 N·m and measuring
range of 0–325 N·m was used to exert rotational load on the engine via
the PTO shaft (Fig. 1). The instrumentations for measuring the para-
meters and the schematic of the test bed are shown in Figs. 2 and 3,
respectively. Data recording was performed after achieving stability in
values of the instrumentations at each new torque or speed point [93].
To measure the torque applied on the engine by the dynamometer, it
was equipped with a load cell with capacity of 100 kg. The load cell
output was sent to a PC and then converted to torque unit by multi-
plying with torque arm (0.365m). Prior to starting the experiments, the
dynamometer was statically calibrated using the existing standard
weights (two weights corresponding to 50 N·m and two weights to
75 N·m). Moreover, the rotational measuring component of the dy-
namometer was calibrated using an optical tachometer. The readings of
the dynamometer for the RPM (resolution of 1 rpm, measuring range of
0–3000 rpm, accuracy of 0.1%) and torque were received by an elec-
tronic interface circuit, digitally sent to the PC and then, displayed on a
monitor. The conversion ratio of the engine speed to dynamometer
speed was 1:1.2. In other words, the engine speed was calculated by
dividing the dynamometer speed to 1.2. For precise adjustment of a PES
at an intended level, the tractor's hand throttle was disconnected from
the injection pump and replaced with a suitable scaled screw on the
control rack lever of the injection pump.

Fuel consumption (by mass) was accurately determined by means of
a digital scale through weighing a temporary small fuel supply con-
tainer (instead of the tractor’s main fuel tank). The volumetric mea-
surement of fuel consumption is much easier than the mass

Table 2
Characteristics of the tractor’s engine.

Engine type Perkins, four-cylinder, four-stroke, CI
Model year (MY) 2005
Cylinder bore 101mm
Cylinder stroke 127mm
Compression ratio 16:1
Fuel Diesel fuel
Fuel pump In-line injection pump
Combustion system Direct injection
Maximum power 75 hp @ engine speed of 2000 rpm
PTO RPM 540 rpm @ engine speed of 1818 rpm

Fig. 1. The overall view of the test setup.
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measurement; however, temperature corrections must be applied [93].
When consumption is measured by volume, the fuel density at 15 °C
should be multiplied by the fuel temperature, at which the measure-
ment is made [95]. Hence, fuel density variations with temperature
must be considered. A digital scale (Japan, A&D Co., GF-6100 model,
repeatability/Std. Dev. of 0.01 g, linearity of± 0.03 g, measuring range
of 0–6.1 kg, resolution of± 0.01 g) was used to measure FCMF of the
engine (Fig. 2). The tractor’s fuel tank was disconnected from the fuel
system and instead, a small fuel container was used and carefully put on
the scale. The fuel flow from the container was conveyed to primary
fuel filters through a plastic pipe and another pipe was used to return
the surplus fuel from injectors to the container (Fig. 3). The weight of
the container on the scale was recorded with the sampling rate of five
samples per second. Afterwards, the scatter plot of the recorded values
was drawn by Excel software and then, the trend line of the plot was
fitted. The FCMF was determined in gram per second, which corre-
sponded to the slop of the trend line.

A diesel emission tester (Germany, MAHA Co., MDO2-LON model,
measuring range of 0–9.99m−1, and resolution of 0.01m−1) was used

to measure the exhaust opacity (Fig. 2). Before starting the experiments,
the device was calibrated by the authorized company (Iran, Tavan
Sazan Co.). The device measured and recorded the exhaust opacity in
m−1 and displayed the variations of the MAEO at the end of each test
run.

A K-type temperature sensor (thermocouple) capable of measuring
temperature up to 700 °C (resolution of 1 °C, accuracy of± 2 °C) [96]
was installed on the exhaust elbow [97]. Moreover, a temperature
monitor (Lutron Co., TM-902C model, capable of monitoring tem-
perature from −50 to 1300 °C, resolution of 1 °C) was used (Fig. 2). The
accuracy of the temperature sensor was examined by measuring the
temperatures of the saturated mixture of water and ice (0 °C) and
boiling water (99.62 °C) at atmospheric pressure of 100 kPa [98]. The
exhaust elbow was drilled to install the temperature sensor on the en-
gine [97] and a hexagon nut was welded on the drilled hole. The sensor
completely entered into the elbow by tightening the sensor base to the
nut (Fig. 2). The exhaust elbow was selected to install the temperature
sensor for two reasons: 1 – all exhaust gases of the cylinders passed
through this component, and 2 – this component was the nearest place
to the exhaust manifold and hence, minimum reduction of exhaust gas
temperature occurred. Precisely speaking, the midpoint of the elbow
curvature was considered as the installation location of the sensor,
where the exhaust gases passed tangentially to the internal wall and
hence, better affected the temperature sensor (Fig. 3).

2.4. Data analysis

2.4.1. Radial basis function (RBF) model
In the present study, the RBF neural network model was employed

to estimate the engine output torque. The RBF is a kind of learning
algorithm method of ANNs, which offers faster prediction than a con-
ventional simulation program or mathematical technique [89]. An RBF-
based ANN structure includes three layers named input, hidden, and
output layers [64]. The hidden layer consists of many RBF neurons and
its nodes are calculated from the Euclidean distance between the center
and network input vectors [99]. The RBF neural network offers more

Fig. 2. The instrumentations for the parameters measurements: 1 – Digital scale to measure fuel consumption, 2 – Diesel emission tester, 3 – Temperature monitor and sensor, 4 –
Emission probe and 5 – Load cell.

Fig. 3. Schematic of the test bed: 1 – Data acquisition system, 2 – Dynamometer, 3 –
Universal joint, 4 – Primary fuel filters, 5 – Temperature monitor, 6 – Temperature sensor,
7 – Fuel return pipe, 8 – Tractor exhaust, 9 – Emission measurement probe, 10 – Diesel
emission tester, 11 – Fuel inlet pipe, 12 – Fuel container and 13 – Digital scale.
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effective methods to train and organize its structure and does not have
the problem of trapping into the local minimum [91]. It is one of the
variants of feed-forward ANN types. Such ANNs are applied to execute
mapping functions of the form →f : nR R . sed on the following
equation:

∑= + −
=

f x W W φ x c( ) (‖ ‖)
i

m

i i0
0 (1)

where ∈x nR . presents the input vector, φ (.). a non-linear transfor-
mation function, ‖. ‖. presents the Euclidean distance, Wi . ving a range
of ⩽ ⩽i m1 . presents the weights, ∈ci

nR . ving a range of ⩽ ⩽i m1 .
notes the kernel nodes or centers, and m. presents the number of kernel
nodes. A radial basis function network based on Eq. (1), which is
adopted for the inputs and output of this study, is shown in Fig. 4 [85].

Thirteen training algorithms including Bayesian regularization
(Trainbr), BFGS quasi-Newton back-propagation (Trainbfg), Powell-
Beale conjugate gradient back-propagation (Traincgb), scaled conjugate
gradient back-propagation (Trainscg), Fletcher-Powell conjugate gra-
dient backpropagation (Traincgf), one step secant back-propagation
(Trainoss), Polak-Ribiere conjugate gradient back-propagation
(Traincgp), Levenberg-Marquardt back-propagation (Trainlm), resilient
back-propagation (Trainrp), gradient descent w/momentum and
adaptive lr back-propagation (Traingdx), gradient descent with adap-
tive lr back-propagation (Traingda), gradient descent with momentum
back-propagation (Traingdm) and gradient descent back-propagation
(Traingd) were used to examine their effectiveness in training the RBF
neural network. Kumar et al. [69] used four different training algo-
rithms (Trainrp, Traingdx, Trainscg and Trainlm) for training the net-
work. The training algorithms were compared together using the

combination of three statistical methods namely: k-fold cross validation
[70], completely randomized design (CRD) and least significant dif-
ference (LSD).

2.4.2. Adaptive neuro fuzzy inference system (ANFIS) model
In addition to the RBF neural network, the ANFIS model was used as

an alternative method for estimating the engine torque. The ANFIS
model can extract relationships between the inputs and output (torque)
based on some fuzzy rules. In order to reduce the computations of the
fuzzy model, some of the independent variables were selected and used
as inputs of the ANFIS model, based on the results obtained from sen-
sitivity analysis of the RBF model. Three methods, namely comprising
grid partition (GP), subtractive clustering (SC) and fuzzy c-means
(FCM) clustering, were used to construct the fuzzy inference system
(FIS) structure. For a better comparison between the ANFIS and RBF
models, the same datasets of the RBF model were also used for the
ANFIS model.

2.5. Evaluation of models’ performance

Some important and common criteria including root mean squared
error (RMSE), coefficient of determination (R2), total sum of squared
error (TSSE) and model efficiency (EF) were used to evaluate the
models’ performance. They are defined as follows [70]:
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Fig. 4. The RBF feed-forward neural network.
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where dv is the actual (desired) output; pv is the predicted (fitted)
output produced by the model; and d and p are the average of the
desired and predicted output, respectively. A model with the lowest
RMSE and TSSE and the highest EF and R2 is considered to be the best.

The mean, variance, kurtosis and skewness of the actual and pre-
dicted datasets were statistically compared to evaluate the RBF model
performance through the training, test and total phases. Some statistical
tests such as paired t-test, F-test and Kolmogorov–Smirnov test were
used to compare the mean, variance and statistical distribution of the
two datasets.

3. Results and discussion

Two parameters, namely spread parameter and number of neurons
in the hidden layer, affected the performance prediction of the RBF
neural network. The variations of the RMSE and EF for all the data
(train and test) against the spread parameter are shown in Fig. 5(a). The
number of neurons in the hidden layer was assumed to be constant and
equal to 10. As it was seen, with increase in the spread parameter, the
RMSE and EF had downward and upward trends, respectively. Our
investigation showed that the trend of the spread parameter variations
changed for the spread parameter of greater than 0.8. Fig. 5(b) shows
the effect of the number of neurons (hidden size) in the hidden layer on
the performance of the RBF neural network. As shown in this figure, the
RMSE had downward trend with increase in the number of neurons.
However, the number of neurons had no noticeable effect on the EF.
Hence, it can be concluded that the EF was only affected by the op-
timum value of the spread parameter. On the basis of Fig. 5, it can be
concluded that having 10 neurons was the best state for the network.
Increasing the number of neurons more than 10 could lower the RMSE;
however, this reduction was negligible, considering training and com-
puting times.

In the next step, the thirteen selected training algorithms previously
mentioned were evaluated for engine torque predictions. The combi-
nation of the CRD and k-fold cross validation methods was used to
evaluate the training algorithms. The analysis of variance (ANOVA) of
the CRD is shown in Table 3 considering the RMSE, TSSE, EF and R2

criteria. Each training algorithm was trained using 20 different datasets
obtained from 5-fold cross validation with four replications.

Consequently, the total degree of freedom (df) of the CRD was 259
according to the 13 treatments (the training algorithms) and 20 re-
plications (the datasets). The p-values obtained from F statistic de-
monstrated that the training algorithms had significant differences at
the one percent probability level based on the four performance cri-
teria.

Means comparison of the RMSE, TSSE, EF and R2 criteria was per-
formed using the LSD method. The means comparison result of the
performance criteria of the 13 RBF's training algorithms is shown in
Table 4. It was observed that the RMSE and TSSE criteria demonstrated
the differences of the training algorithms better than the R2 and EF
criteria. This was because most of the training algorithms except
Traingdm had not significant differences with each other based on the
R2 and EF criteria. Moreover, the RMSE represented the differences of
the algorithms better than the TSSE, because it classified the algorithms
in various classes. Hence, the selection of the algorithms was optimized
based on the smaller value of the RMSE. The results showed that the
Traindm algorithm, in comparison with the others, had the worst per-
formance with significant difference at the one percent probability
level. The algorithms can be arranged based on the RMSE in ascending
order as follows: Trainbr, Trainbfg, Traincgb, Trainscg, Traincgf, Trai-
noss, Traincgp, Trainlm, Trainrp, Traingdx, Traingda, Traingdm and
Traingda. Although the Trainlm algorithm was used to train the RBF in
most studies [69,86], the results of the present study showed that this
algorithm was ranked eighth among the 13 algorithms and the Trainbr
algorithm was selected as the best. It should be noted that although the
Trainbr algorithm had no significant difference with the Trainbfg al-
gorithm, its RMSE and TSSE values were 15 and 40 percent lower than
those of the Trainbfg algorithm, respectively. The performance of the
RBF neural network might be varied with different data sets. Hence,
among the 20 different data sets from the 5-fold cross validation, the
data set with the ability to lower the errors of the training phase, assign
good generalization to the RBF network and prevent overfitting was
selected as the best training and test data set.

The result of the RBF performance evaluation for estimating the
ITM285 tractor engine torque is shown in Table 5. As seen, the values of
the mean, variance, kurtosis and skewness of the actual and predicted
data sets in the training, test and total phases were displayed to eval-
uate the RBF model performance. However, as shown in this table, the
differences between the values were not considerable. Nevertheless, the
values were statistically compared together. Statistical tests, namely
paired t-test, F-test and Kolmogorov–Smirnov test, were used to com-
pare the mean, variance and statistical distribution of the actual and
predicted data sets, respectively. The p-values obtained from all the
tests were greater than 0.05. Consequently, no statistically significant

Fig. 5. Variations of the RMSE and EF versus the spread parameter and hidden size.
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difference was observed between the actual and predicted data sets.
Furthermore, the values of the RMSE and EF in the training and test
phases were approximately equal to 0.58. This shows that the RBF
network has good generalization.

The agreement between the actual and predicted values during the
training and test phases is shown in Fig. 6. As can be seen, the points
were scattered around the line of 45 deg. On the other hand, the coef-
ficient of determination (R2) of the regression line between the actual
and predicted values was 0.99 in both the training and test phases.
Moreover, the slope and intercept of the line were close to one and zero,
respectively. Considering this result, it can be concluded that there is a
very good agreement between the actual and predicted values in both
the training and test phases. Moreover, the agreement between the
actual and predicted values of the torque for all the samples during the
training and test phases is shown in Fig. 7. Zweiri and Seneviratne [75]
concluded that the average deviation between the measured and esti-
mated torque was not excessive and that the ANN-based nonlinear
torque estimator demonstrated a good agreement and high potential.

Sensitivity analysis was carried out to investigate the effect of the
six studied variables for estimating the engine torque. The sensitivity
analysis results of the RBF model after excluding the input variables in

the training, test and total phases are shown in Table 6. As can be seen,
the exclusion of four independent variables (PES, FCMF, EGT and IES)
from the inputs of the RBF neural network increased the error (TSSE
and RMSE) during the training, test and total phases. It is implied that
for a better performance, this set of input variables of the network
should be used; while the exclusion of the two remaining variables
(MAEO and MEEO) can enhance the network performance. Conse-
quently, the set of input variables including PES, FCMF, EGT and IES
was used as the best combination. It can be concluded that using the
aforementioned variables and removing the MAEO and MEEO can im-
prove the network prediction performance. For instance, with this set of
measurements, the RMSE approximately decreased by 15 percent in the
training, test and total phases. Moreover, the unnecessary measurement
of the opacity parameter decreased estimation costs due to removal of
the opacity sensor from the measuring system of the tractor engine
torque. Franco et al. [43] mentioned that some variables such as
pressure and temperature of intake and exhaust manifolds, engine
speed, fuel quantity, and engine geometry had a significant impact on
engine brake torque. In other researches, lubricant temperature was
inappropriate (very low and diversified R2) to model engine torque and
BSFC using ANNs; while, EGT proved to be a suitable indirect estimator

Table 3
ANOVA of the performance criteria of the RBF network for different training algorithms using CRD.

Source DF RMSE TSSE EF R2

SS F-value SS F-value SS F-value SS F-value

Treatmentsa 12 4174.24 2654.83** 50.37× 10−9 1019.6** 0.1138 1019.96** 0.0216 321.56**

Errors 247 32.36 1.02×10−9 0.0023 0.0014
Total 259 4206.60 51.39× 10−9 0.1161 0.0230

a The training algorithms.
** Significant at the 1% level.

Table 4
Means comparison of the performance criteria of the RBF network for various training algorithms.

Training algorithms RMSE TSSE EF R2

Trainlm 1.14 ± 0.23cd 275.20 ± 152.31a 0.99 ± 0.00a 0.99 ± 0.00a

Trainbr 0.70 ± 0.00a 100.68 ± 0.33a 0.99 ± 0.00a 0.99 ± 0.00a

Trainscg 0.99 ± 0.08bcd 199.56 ± 39.94a 0.99 ± 0.00a 0.99 ± 0.00a

Trainrp 1.17 ± 0.06d 281.62 ± 32.62a 0.99 ± 0.00a 0.99 ± 0.00a

Traingdx 1.67 ± 0.45e 607.14 ± 680.50a 0.99 ± 0.00a 0.99 ± 0.00a

Traingdm 3.63 ± 0.62g 2753.68 ± 956.54b 0.99 ± 0.00b 0.99 ± 0.00b

Traingda 2.22 ± 0.82f 1137.91 ± 1921.34a 0.99 ± 0.00a 0.99 ± 0.00a

Traingd 15.53 ± 1.65h 49301.02 ± 10256.70c 0.92 ± 0.01c 0.96 ± 0.01a

Trainbfg 0.83 ± 0.04ab 140.20 ± 16.24a 0.99 ± 0.00a 0.99 ± 0.00a

Traincgb 0.94 ± 0.07bc 182.01 ± 27.69a 0.99 ± 0.00a 0.99 ± 0.00a

Traincgf 1.00 ± 0.06bcd 203.41 ± 26.20a 0.99 ± 0.00a 0.99 ± 0.00a

Traincgp 1.02 ± 0.05bcd 213.56 ± 24.60a 0.99 ± 0.00a 0.99 ± 0.00a

Trainoss 1.01 ± 0.04bcd 209.55 ± 19.99a 0.99 ± 0.00a 0.99 ± 0.00a

Means with the same letters are not significantly different.
The item with italics shows the best training algorithm.

Table 5
The RBF network performance for estimating the engine torque.

Train phase Test phase Total

Actual Predicted p-value Actual Predicted p-value Actual Predicted p-value

Average 86.23 86.23 0.99 98.33 98.33 0.99 90.15 90.15 0.99

Variance 3301.88 3300.81 0.99 2931.61 2930.07 0.99 3309.93 3309.06 0.99

Kurtosis 1.84 1.84 0.99 2.28 2.29 0.99 1.89 1.89 0.99
Skewness 0.17 0.17 0.35 0.35 0.15 0.15

RMSE 0.59 0.58 0.58
TSSE 56.39 13.22 69.70
EF 0.99 0.99 0.99
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(R2 > 0.993) [72].

3.1. Adaptive neuro fuzzy inference system (ANFIS) model

As mentioned, the ANFIS model was used as an alternative tool to
estimate the engine torque. Based on the sensitivity analysis results of
the RBF model, and to reduce the computations of the fuzzy model, the
independent variables including PES, FCMF, EGT and IES were used as
the ANFIS model inputs. The ANFIS model can extract the relationships
between the inputs and torque (the output) based on fuzzy rules, which
dominate the problem. As previously mentioned, the GP, SC and FCM
methods were used to construct the FIS structure. To evaluate each
method, individual parameters and their different combinations were

examined and results are shown in Tables 7–9. Various membership
functions (MFs) were evaluated for the GP method and the results
showed that Gaussian was the best one. Using various MF numbers
showed that the MF number of all the three methods provided the best
result for each input. It should be mentioned that increasing the MF
number did not considerably improve the ANFIS performance and only
increased the training time of the model. Between linear and constant
functions as the output MF, the latter provided a better result. The best
condition was obtained from ANFIS-GP4.

The optimum values of the SC model parameters including the in-
fluence radius, squash factor and MF number of the input and output
were obtained through trial and error. In all the cases, the values of the
accepted ratio and rejected ratio parameters were considered 0.5 and

Fig. 6. Scatter plot of the actual and predicted data sets in the (a) training phase and (b) test phase.

Fig. 7. The actual and predicted values of the torque in the (a) training phase and (b) test phase using the RBF.
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0.15, respectively. In addition, the MF types of the input and output in
all the cases were selected Gaussian and linear, respectively. The best
prediction performance of the ANFIS-SC model with nine MFs for each
input was obtained by the values of 0.15 and 1.5 for the influence ra-
dius and squash factor, respectively (Table 8). The results of this model
also showed that the prediction performance of the model was im-
proved by increasing the MF number. The optimum MF number of each
input and output was nine and any further increase did not con-
siderably improve the performance of the ANFIS-SC model.

The other method for constructing the FIS was the FCM. This
method determines the MFs number of inputs and output. In this
method, Gaussian and linear were also used as the input and output MF,
respectively. As can be seen (Table 9), the number of rules and inputs
and output MF were the same as the clusters number. The results
showed that the prediction performance of the model was improved by
increase in the clusters number. The clusters number of nine was se-
lected as the optimum number. With increase in this number, compu-
tations of the model increased and the prediction performance was not
considerably improved.

3.2. Comparison of radial basis function (RBF) and adaptive neuro fuzzy
inference system (ANFIS)

The results of the RBF neural network and ANFIS performance with
the three methods of GP, SC and FCM in the training, test and total
phases are shown in Table 10. In these models, four independent
variables including PES, FCMF, EGT and IES were considered as model
inputs. A detailed profile of estimation errors between the actual and
predicted values [55] of the engine output torque for the models on the
training and test datasets is shown in Fig. 8. It is evident that the RBF
model exhibited better approximation accuracy, especially during the
test phase. As the results show, the average efficiency (EF) of all the

Table 6
The sensitivity analysis results of the RBF model.

Model Input set Train phase Test phase Total

RMSE TSSE EF RMSE TSSE EF RMSE TSSE EF

All All 0.59 56.39 0.99 0.58 13.32 0.99 0.58 69.70 0.99

Sensitivity analysis All exclude PES 0.69 77.55 0.99 0.68 19.02 0.99 0.69 96.57 0.99
All exclude MAEO 0.58 55.94 0.99 0.57 13.61 0.99 0.58 69.55 0.99
All exclude FCMF 0.72 85.79 0.99 0.72 21.22 0.99 0.72 107.01 0.99
All exclude EGT 0.86 121.41 0.99 0.85 30.25 0.99 0.86 151.66 0.99
All exclude MEEO 0.59 57.28 0.99 0.58 14.22 0.99 0.59 71.53 0.99
All exclude IES 0.74 90.51 0.99 0.74 22.78 0.99 0.74 113.29 0.99

Proper selected input set PES, FCMF, EGT, IES 0.50 40.90 0.99 0.51 10.60 0.99 0.50 51.49 0.99

Table 7
The performance and some characteristics of the ANFIS-GP model.

Model name Number of input MF Type of input MF Type of output MF Number of output MF Number of rule Epochs RMSE TSSE EF

GP1 [2 2 3 3] gaussMF Constant [24] 24 90 0.94 179.96 0.99
GP2 [2 3 3 2] gaussMF Constant [24] 24 190 1.42 408.24 0.99
GP3 [3 3 2 2] gaussMF Constant [24] 24 180 1.17 277.73 0.99
GP4 [3 3 3 3] gaussMF Constant [81] 81 2000 0.70 99 0.99

Table 8
The performance and some characteristics of the ANFIS-SC model.

Model name Influence Radius Squash Factor Number of input MF Number of output MF Number of rule Epochs RMSE TSSE EF

SC1 0.13 1.5 [3 3 3 3] [3] 3 1800 1.23 303 0.99
SC2 0.15 1.5 [5 5 5 5] [5] 5 4500 0.97 188 0.99
SC3 0.12 1.2 [7 7 7 7] [7] 7 1100 0.83 138 0.99
SC4 0.15 1.5 [9 9 9 9] [9] 9 2500 0.61 76.04 0.99

Table 9
The performance and some characteristics of the ANFIS-FCM model.

Model name Number of cluster Number of input MF Number of output MF Number of rule Epochs RMSE TSSE EF

FCM1 3 [3 3 3 3] [3] 3 500 1.17 276 0.99
FCM2 5 [5 5 5 5] [5] 5 350 0.84 143 0.99
FCM3 7 [7 7 7 7] [7] 7 550 0.74 108 0.99
FCM4 9 [9 9 9 9] [9] 9 450 0.60 73 0.99

Table 10
Comparison of the RBF and various ANFIS models.

Model Train phase Test phase Total

RMSE TSSE EF RMSE TSSE EF RMSE TSSE EF

RBF 0.50 40.90 0.99 0.51 10.60 0.99 0.50 51.49 0.99
ANFIS_GP4 0.56 50.33 0.99 1.10 48.73 0.99 0.70 99 0.99
ANFIS-SC4 0.45 33.17 0.99 1.04 42.87 0.99 0.61 76.04 0.99
ANFIS-FCM4 0.46 34.71 0.99 0.98 38.30 0.99 0.60 73 0.99
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models in all the phases was 0.99. However, considering the RMSE and
TSSE, they can be ranked in a descending order as: ANFIS-GP4, ANFIS-
SC4, ANFIS-FCM4 and RBF. It should be noted that although the RMSE
and TSSE of the ANFIS-SC4 and ANFIS-FCM4 models were greater than
the RBF model, the reverse result was obtained in the training phase.
This means that although the ANFIS model had better learning cap-
ability than the RBF model, over-fitting occurred because the RMSE and
TSSE of the ANFIS models in the test phase were greater than the RBF.
Moreover, the RMSE of the RBF model in both the training and test
phases was approximately equal to 0.5.

4. Conclusion

With the aim of engine torque estimation, some models were de-
veloped based on ANNs and the ANFIS, using some easy to measure
working characteristics of ITM285 tractor including PES, IES, FCMF,
EGT, MEEO and MAEO. According to the outcome of this research, the
engine torque can be estimated using some low-cost sensors instead of
expensive devices and equipment (e.g., dynamometer). Sensitivity
analysis demonstrated that two independent inputs of the MAEO and
MEEO can be eliminated from the engine torque estimation procedure
and better prediction performance can be gained by use of the four
inputs of PES, FCMF, EGT and IES.

Moreover, the proposed model had high accuracy and simplicity in
predicting the engine output torque. Hence, it can be used as a soft
surrogate sensor. At the end of the training phase, the optimum weights
of the RBF were obtained, which can be used as a final model in a micro
switch for torque estimation. It should be noted that the micro switch
receives data via the aforementioned sensors. This data was used as
inputs for the model, while the output of the model was the engine
torque applied for control systems.

The results of this research also revealed that models based on soft
computations are able to estimate the torque of the ITM285 tractor's
engine using data obtained from inexpensive and accessible sensors.
Hence, the proposed models can be substituted with the conventional,
highly expensive methods that use dynamometers.
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