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A B S T R A C T

The present paper deals with the artificial neural network modeling (ANN) of heat transfer coefficient and
Nusselt number in TiO2/water nanofluid flow in a microchannel heat sink. The microchannel comprises of 40
channels; each channel has a length of 4 cm, a width of 500 μm, and a height of 800 μm. In the ANN modeling of
heat transfer coefficient and Nusselt number 23 and 72 datasets have been used, respectively. The experimental
Nusselt number has been calculated based on three different thermal conductivity models, four volume fractions
of 0, 0.5, 1, and 2%, two values of Reynolds number i.e. 400 and 1200 and three different heating rates including
50.6, 60.7, and 69.1 W. Therefore, the inputs that are introduced to the neural network are volume fraction of
nanoparticles, Reynolds number, heating rate, and model number while the output of network is the Nusselt
number. It is elucidated that an appropriately trained network can act as a good alternative for costly and time-
consuming experiments on the nanofluid flow in microchannels. The average relative errors in the prediction of
Nusselt number and heat transfer coefficients were 0.3% and 0.2%, respectively.

1. Introduction

Over the last decade, numerous studies both experimentally and
numerically have been performed to appraise the nanofluids properties
and their role in efficiency enhancement of energy systems (For ex-
ample, refer to Refs. [1–10]). One of the challenges for assessing the
nanofluid effect on the performance of thermal systems is difficulties in
nanofluid preparation and relatively high expenses of production. One
solution to save the time and reducing the expenses of experiments may
be the implementation of soft computing methods such as Artificial
Neural Network (ANN) to predict the efficiency of nanofluid-based
thermal systems. Here, a brief review of some previous studies on
modeling of nanofluid properties and applications using ANN is pre-
sented.

In 2009, Santra et al. [11] modeled natural convection of a non-
Newtonian nanofluid (Cu/water) in a cavity using both CFD and ANN.
A resilient-propagation (RPROP) algorithm was used for training the
neural network. It was concluded that ANN could be more helpful than

CFD from the time-saving viewpoint. Hojjat et al. [12] measured
thermal conductivity of three different non-Newtonian nanofluids
containing γ-Al2O3, TiO2 and CuO nanoparticles and used ANN for
modeling the experimental data. The inputs of ANN were temperature,
nanoparticle volume fraction, and thermal conductivity of nano-
particles.

Balcilar et al. [13] used three different ANN approaches including
multi-layer perceptron (MLP), generalized regression neural network
(GRNN) and radial basis function (RBF) to model the pool boiling of
TiO2/water nanofluids. They found that ANN methods are able to
predict the heat transfer coefficient with errors less than± 5%. Yousefi
et al. [14] estimated the relative viscosity of different nanosuspensions
composed of various nanoparticles (i.e. CuO, SiO2, Al2O3, TiO2) and
base liquids (i.e. water, ethanol, a mixture of propylene glycol and
water, and a mixture of ethylene glycol and water) by designing a
diffusional neural network. The modeling results were fitted with ex-
perimental data well. Esfe et al. [15] studied experimentally the
thermal conductivity of ethylene glycol based nanofluids containing
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MgO particles with four different sizes including 20, 40, 50, and 60 nm
where temperature changes between 25 and 55 °C, and concentration
varies between 0 and 5%. Next, a neural network was trained to model
the measured data of thermal conductivity by introducing volume
fraction, nanoparticle dimension, and temperature as inputs of the
network.

Bahiraei and Mashaei [16] first presented a three dimensional CFD
model for Al2O3/water nanofluid flow in a canal with discrete heat
sources and then using the simulation data they extended an artificial
neural network to predict the heat transfer coefficient and pressure
drop in the channel.

Esfe et al. [17] measured thermal conductivity of COOH-functio-
nalized MWCNTs/water nanosuspensions and then implemented MLP
technique to model the data. Temperature (between 25 and 55 °C) and
nanofluid concentration (up to 1%) were the inputs of trained network.
The results of modeling were in good agreement with experimental
data.

Afrand et al. [18] used 48 experimental data obtained for viscosity
of MWCNTs-SiO2/AE40 nanolubricants to develop a correlation. Next,
they designed an optimal ANN based on the derived correlation. The
comparisons between outputs of the correlation and the optimized ANN
revealed that the deviation margin of ANN results from experimental
data is just 1.5% while the deviation margin reaches 4% in the case of
correlation. Abdollahi and Shams [19] studied the nanofluid flow in a
channel equipped to vortex generator numerically. They utilized neural
network along with multi-objective genetic algorithm and CFD mod-
eling to obtain the optimal nanofluid concentration, and position and
shape of vortex generator in the channel. Ziaei-Rad et al. [20] solved
numerically the nanofluid flow over a horizontal permeable stretching
sheet under magnetohydrodynamic(MHD) flow by converting gov-
erning equations from partial differential to ordinary differential form.
Effects of different parameters including suction/injection, nanofluid
concentration, viscous dissipation and MHD parameter on the values of
skin friction factor and Nusselt number have been evaluated. Next,
using a multilayer neural network approach a model with excellent
accuracy was presented to predict the Nusselt number and friction
factor where the average difference between results of numerical so-
lution and neural network model was less than 0.4%. Kalani et al. [21]
used adaptive neuro fuzzy inference system (ANFIS) model and two
different neural networks including RBF and MLP to predict the outlet
temperature and electrical efficiency of a photovoltaic thermal (PVT)
system using Zinc Oxide/water nanofluid. Particle Swarm Optimization
(PSO) procedure was implemented to optimize the structure of the
three models. It was found that ANFIS and RBF can estimate the desired

outputs with a higher accuracy. To save the space, other related papers
on modeling of nanofluid flow using the neural network are not re-
viewed here; as other instances, interested readers can refer to Refs.
[22–28].

The above literature review reveals that most of the studies on
neural network modeling of nanofluids have been conducted on ther-
mophysical properties and not enough attention has been paid to use
ANN for modeling of nanofluid flow in industrial thermal systems such
as microchannel heat sinks. There is a conference paper released in
2008 that reports the application of ANN for modeling of Cu/water
nanofluid flow in a microchannel heat sink. However, the modeling was
done based on the results of an analytical analysis and not experimental
data [29].

Based on the best knowledge of the authors, there is no study on
neural network modeling of nanofluid flow in microchannel heat sinks
using measured data, despite the high importance of microchannels in
cooling of electronic devices. The present paper aims to extend a neural
network to predict the Nusselt number and heat transfer coefficients
due to nanofluid flow in a microchannel heat sink. The experimental
data used in the present modeling have been extracted from our pre-
vious experimental work on the flow of TiO2/water nanofluid in a
microchannel heat sink composed of 40 channels [30]. It should be
mentioned that the experiments on the microchannel heat sink were
performed under real conditions in which domestic computers operate.

2. Experiments

A complete description of experimental set- up and procedure has
been given in Ref. [30], but here a summary of the experimental study
is represented. Fig. 1 depicts a schematic of the experimental set-up.
The test section comprises of a microchannel heat sink with 40 channels
and a heater in the bottom. Each channel has a length of 4 cm, a width
of 500 μm, and a height of 800 μm. The heat was applied to the mi-
crochannel heat sink at three different rates including 50.6, 60.7, and
69.1 W. Water-based nanofluids containing TiO2 nanoparticles at con-
centrations of 0.5, 1, and 2% have been prepared, and the results were
compared with water. Experiments were performed under laminar re-
gime of nanofluid flow. Nusselt number and heat transfer coefficients
were estimated based on measured temperatures and heating rate.
Nusselt number is related to heat transfer coefficients through thermal
conductivity. For estimation of Nusselt number, three different thermal
conductivity models have been used as follows:

Model 1: Maxwell equation is used to calculate thermal

Fig. 1. Schematic of the experimental set-up [From Nitiapiruk et al. [30], with permission from Elsevier].
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conductivity in model 1, it reads [31]:
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Model 2: Yu and Choi model is utilized to estimate the thermal
conductivity in model 2 [32]:
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where β=0.1.

Model 3: in this model, experimental data of Duangthongsuk and
Wongwises [33] have been used:
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k
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where a, b, c, d and e are functions of temperature.
Fig. 2 has been presented as an instance of experimental results for

heat transfer coefficient in the microchannel heat sink. In this case,
there are 23 data at volume fractions 0 to 2%, Reynolds numbers less
than 1700 (laminar regime), and heating rate of 69.1 W. As shown, at a
given nanofluid concentration, the heat transfer coefficient is an as-
cending function of Reynolds number. In addition, by loading of TiO2

nanoparticles the heat transfer coefficient ameliorates. For example, at
low Reynolds numbers (about 400), the heat transfer coefficient

Fig. 2. Experimental heat transfer coefficient versus Reynolds number for heating rate of
69.1 W [30].

Fig. 3. The architecture of MLP network.

Fig. 4. Average of the correlation coefficients for the train data sets after 10 runs of each
network structure to predict the heat transfer coefficients.

Fig. 5. Average of the correlation coefficients for the test data sets after 10 runs of each
network structure to predict the heat transfer coefficients.
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enhances almost 5% with increasing the volume fraction from 1 to 2%.
Brownian motion of nanoparticles and thermophoresis phenomenon
may be the reasons behind the heat transfer enhancement in the mi-
crochannel.

3. Artificial neural network modeling

The inspiration behind the ANN is the brain. The human brain

Fig. 6. Average of the relative errors for the test data sets after 10 runs of each network
structure to predict the heat transfer coefficients.

Fig. 7. The experimental results versus the network outputs for the train data set to
predict the heat transfer coefficients.

Fig. 8. The experimental results versus the network outputs for the test data set to predict
the heat transfer coefficients.

Table 1
Comparison between the heat transfer coefficients predicted by ANN against the values
obtained from experiments for the test data.

Experiment No. Input 1
(Re)

Input 2
(Volume
fraction
(%))

Experimental
Result
(Heat transfer
coefficient
(W/m2K))

Network
Outputs
(Heat
transfer
coefficient
(W/m2K))

Relative
Error
(%)

1 1594.87 0 4232.88 4222.59 0.1
2 649.304 0.5 3890.41 3897.14 0.3
3 554.485 1 4315.07 4314.60 0.04
4 440.395 2 4410.96 4440.20 0.3

Average
0.2

Fig. 9. Average of the correlation coefficients for the train data sets after 10 runs of each
network structure to predict the Nusselt number.

Fig. 10. Average of the correlation coefficients for the test data sets after 10 runs of each
network structure to predict the Nusselt number.

Fig. 11. Average of the relative errors for the test data sets after 10 runs of each network
structure to predict the Nusselt number.
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consists of a huge number of processing units connected just like a
network. These units are named as “Brain Cells” or “Neurons”. An ANN
is trained to find a relationship between the inputs and outputs of a
system. These networks are composed of some structural blocks called
neurons just like the biological brain cells. These blocks are very simple
computational units constructing the layers in which the relation be-
tween them determines the performance of the network. Neurons are
arranged in such a structure that the output of every neuron in each

layer is weighted and then acts as the input of the next layer. The
number of hidden layers and also the number of neurons in each hidden
layer can be determined after some trials and errors [34], but the
number of inputs and outputs are imposed by the problem at hand.
Each neuron in the hidden or output layers has an activation function
also known as a transfer function. Neurons in output layer usually have
a linear function like Eq. (4), but in hidden layers, some other functions
are used like the hyperbolic tangent sigmoid transfer function which
has been shown in Eq. (5). Using these activation functions, the outputs
of the neurons are computed.

=f x x( ) (4)

=
+

−
−

f x
e

( ) 2
1

1x (5)

3.1. Error backpropagation learning (EBP) method

In the present study, a multi-layer perceptron (MLP) neural network
has been implemented to model the relationships between the output
and input variables. A simple representation of MLP network archi-
tecture has been shown in Fig. 3. In the learning phase, the output of
the network is compared with the target value (results of experiments)
and the computed error of the network is back-propagated to the
hidden layers. Then, the weights will be adjusted by using these pro-
pagated errors. This learning method is called the error back-propa-
gation (EBP) presented by Rumelhart and Mcclelland [35].

To explain how the EBP applied, for simplicity and without loss of
generality, it has been assumed that the network has only one hidden
layer. Each input is multiplied by weights of the hidden layer neurons
(wih) and is added to a bias value, bh, to form the activation ah, this
statement can be written in vector form as:

= +a W I BT (6)

where I is the input vector, W is the weight matrix between inputs and
hidden layer, B is the vector containing biases of hidden layer neurons,
and a is a vector of each neuron activation.

After computing activations of all hidden neurons, outputs of all of
them are estimated using the transfer function as:

=
+

−
−

o 2
1 e

1h ah (7)

where oh is the output of hidden neuron number h. These latter cal-
culated values will be weighted and summed to biases again to con-
stitute the activations of the output layer, ao. The linear transfer func-
tion is implemented and output, O, is computed. Then, the error is
calculated as the difference between the computed outputs and their
corresponding experimental results known as the target data. This
procedure constructs the forward step of the backpropagation method
and the estimated errors are back propagated through the network to
adjust weights. Weights are adjusted using generalized delta rule as

= −w w ηEOnew old (8)

Fig. 12. The experimental results versus the network outputs for the train data set to
predict the Nusselt number.

Fig. 13. The experimental results versus the network outputs for the test data set to
predict the Nusselt number.

Table 2
Comparison between the Nusselt number predicted by ANN against the values obtained from experiments for the test data.

Experiment No. Input 1
(Volume fraction(%))

Input 2
(Model number)

Input 3
(Heating rate(W))

Input 4
(Re)

Experimental Result
(Nu)

Network Outputs
(Nu)

Relative Error (%)

1 1 1 50.6 400 4.1694 4.1334 0.9
2 0.5 1 50.6 1200 4.3566 4.3618 0.1
3 2 3 50.6 1200 4.6221 4.6206 0.03
4 0 2 60.7 1200 4.1239 4.1256 0.04
5 1 2 60.7 400 4.2697 4.2959 0.6
6 0.5 1 69.1 400 3.8192 3.8297 0.3
7 2 3 69.1 400 4.3769 4.3829 0.1
8 0.5 3 69.1 1200 4.4303 4.4280 0.05

Average 0.3
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where wnew is the adjusted weight, wold is the weight before ad-
justment, η is the learning rate, usually chosen in the range [0 1], and E
is the estimated error. Weight adjustment will be made for all con-
nections. Errors for all train data are accumulated, and the algorithm
will be run until the error falls below a predetermined value.

4. Modeling of heat transfer coefficients using ANN

The data given in Fig. 2 have been selected for ANN modeling. In
the following, the details of ANN modeling have been presented.

4.1. Structure selection for ANN

To construct the neural network, a homemade MATLAB code is
used. A well-trained MLP network was used to forecast the heat transfer
coefficients under the condition that the inputs of the network were
Reynolds number and volume fraction. The Levenberg–Marquardt al-
gorithm was used as the training method.

Hyperbolic tangent sigmoid (tansig) and linear functions were re-
spectively selected as the activation functions of hidden and output
layers' neurons. The total number of data was 23 which 4 of them were
picked out to test the network capability in predicting the heat transfer
coefficients. Before train and test, the inputs and their experimental
results (targets for the network) were normalized in the range of −1
and 1. So, the outputs of the network should be transferred back to their
actual range to compare with the target values.

A crucial step in the neural network modeling is to select the
number of hidden layers and also the number of their corresponding
neurons. Here, a strategy based on the relative errors and the correla-
tion coefficients (R2) of the test and train data sets has been im-
plemented to decide on the number of hidden layer and their corre-
sponding neurons. ANNs with various structures were examined. Each
network with a certain structure was run ten times.

After each run, the test data were presented to the trained network
and the average of relative error per each datum and the correlation
coefficients (R2) for the test and train data sets were respectively
computed. The relative error for each test datum (which were finally
summed and divided by the number of test data to get the average
relative error of test data in one network run) together with the R2s (per
one network run) can be evaluated as:
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where, T, O, ntr, and nte are the target value, the network output value,
the number of train data, and the number of test data, respectively.

All aforementioned parameters were averaged for ten runs of the
network. Figs. 4 and 5 demonstrate the correlation coefficients for the
train and test data, respectively. It should be mentioned that notation
“[m]” indicates that the network structure consists of one hidden layer
including “m” neurons and “[n p]” implies that the network structure
consists of two hidden layers including “n” neurons in the first and “p”
neurons in the second hidden layer.

The average relative error calculated for 10 times run of each con-
stituted network has been introduced in Fig. 6.

The above investigation on the structure of the neural network
(Figs. 3-5) clarifies that a network with two hidden layers and three

neurons in hidden layer 1 and two neurons in hidden layer 2 gives the
best predictions of heat transfer coefficients.

4.2. Results of the selected ANN

After determination of the best structure for the neural network, the
network is utilized to predict the heat transfer coefficients. Figs. 7 and 8
present the values obtained from the experiments against the predicted
heat transfer coefficients values of selected network for the train and
test data, respectively. Furthermore, the correlation coefficients be-
tween the target values (acquired from the experiments) and network
outputs for the train and test data (Rtrain

2 and Rtest
2) are 0.9987 and

0.9997, respectively. This implies that the designed network can predict
the experimental data well.

Also, for the test dataset, the relative error between the experi-
mental results and the network outputs per each set datum has been
introduced in Table 1. As seen, despite the limited available data for
heat transfer coefficient; however, the average relative error is just
0.2% which reveals the high ability of trained network.

5. Nusselt number prediction using ANN

In the previous section, ANN modeling of heat transfer coefficient
was performed just for heating rate of 69.1 W, in this section the
modeling of Nusselt number is conducted for three values of heating
rate.

5.1. Structure selection for ANN

An MLP network was trained to predict the Nusselt number while
the inputs of the network were volume fraction, model number, heating
rate, and Reynolds number. All the network settings except the number
of hidden layers and their neurons are similar to which one used for
predicting the heat transfer coefficients. Here, the total number of ex-
perimental data was 72. Among measured data, 8 data are used to test
the network performance after the training procedure.

Figs. 9 and 10 reveal the correlation coefficients for the train and
test data, respectively. The correlation coefficients between the target
values and network outputs for the train and test datasets (Rtrain

2 and
Rtest

2) are respectively 0.9970 and 0.9914.
Also, the average relative error evaluated for 10 times run of each

constituted network has been presented in Fig. 11. From Figs. 9–11, it
concludes that a network with two hidden layers and three neurons in
each hidden layer gives the best predictions of heat transfer coefficient.

5.2. Results of the selected ANN

Figs. 12 and 13 represent the Nusselt number obtained from the
experiments versus the constructed network outputs for the train and
test data, respectively. In addition, Table 2 shows the results of the
network against experimental results.

Figs. 12 and 13 along with Table 2 elucidate that the trained net-
work can predict the values of Nusselt number with an average relative
error of 0.3%. Such a low average relative error highlights the ability of
neural network as a powerful tool to save the time and reducing the
costs of study on nanofluid flow in microchannel heat sink.

6. Conclusion

Microchannel heat sinks are essential devices for cooling of elec-
tronic devices. Therefore, it makes sense for modeling and prediction of
their performance, especially when an advanced working fluid like a
nanofluid is used. The present study dealt with modeling of TiO2/water
nanofluid flow in a microchannel heat sink using experimental data
[30]. Two different multi-layer perceptron neural networks were
trained for prediction of Nusselt number and heat transfer coefficients.
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For the former, the number of data was 72 while for the later the
number of available data was just 23. For prediction of Nusselt number
a network with two hidden layers was designed where three neurons
were in each layer. The trained network for Nusselt number could
predict the experimental data with an average relative error of 0.3%. To
estimate the heat transfer coefficients a network with two hidden layers
selected with three neurons in hidden layer 1 and two neurons in
hidden layer 2. Despite the limited number of experimental data, the
average relative error in prediction of heat transfer coefficients was just
0.2%. The study unveils that a well-trained neural network could be an
affordable way to design of thermal systems where an experimental
study may need high investment and being time-consuming.
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