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A B S T R A C T

In order to avoid the costs of experimental evaluations, soft computing methods like artificial neural network
(ANN) and genetic algorithm have remarkably grabbed the attentions of investigators for predicting the hy-
drothermal characteristics of different types of nanofluids. In this paper, the implementation of ANN and genetic
algorithm for modeling and multi-criteria optimizing the hydrothermal behavior of SiO2/water nanofluid has
been investigated. Using the data obtained from the experimental analysis, an ANN model is developed to
estimate the pressure drop and Nusselt number as a function of volume concentration, Reynolds number, and
inlet temperature. Different network structures were assessed and it has been achieved that a network with 2
hidden layers and 6 neurons in every layer provides the most accurate prediction. It is revealed that the de-
veloped network is satisfactorily accurate to determine the Nusselt number and pressure drop of SiO2/water
nanofluid compared to the empirical correlations. To optimize the hydrothermal behavior of the nanofluid (i.e.
to find the optimal cases with highest Nusselt number and the relatively least pressure drop), the genetic al-
gorithm coupled with compromise programming approach has been implemented considering decision maker's
attitude.

1. Introduction

Nowadays, various techniques for heat transfer improvement are
developed to ameliorate efficiency of thermal systems. In particular, the
design of heat exchangers is one of the important areas which has
widely gained significant attention due to their usage in much various
industries. Feasibility of nanofluid application as a working fluid in-
stead of conventional fluids is one of the advances in this field, due to
their special privileges including less clogging in conduits, long-term
stability and greater thermal conductivity. In this regard, many in-
vestigations have been conducted to elaborate the applications of na-
nofluids in solar systems [1–3], heat transfer processes [4–10], mass
transfer intensification [11,12], and thermophysical properties en-
hancement [13–16].

Besides the above-mentioned areas, post-processing, modeling and
optimization of experimental data and their usage to design experi-
mental techniques for exploring the impacts of different factors on the
nanofluids characteristics and anticipating their various features are
among the recent approaches in the field of nanofluids. Recently, arti-
ficial neural networks (ANNs) and optimization algorithms are devices
which have been extensively employed to model and optimize the ex-
perimental data for finding the optimal thermophysical and hydro-
thermal features of nanofluids and achieving the enhanced performance
of the system. ANN is a powerful tool for solving complex issues in
various applications with a notable decline in time and cost due to its
simplicity, extensive capacity, and high speed simulations to find the
relationship between inputs/outputs. A group of the researchers that
conducted several investigations to design an ANN for prediction of
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thermal conductivity and viscosity of different types of nanofluids from
input experimental data are Hemmat Esfe et al. [17–26]. They eval-
uated the thermophysical properties of various nanofluids such as Fe/
water, Cu-TiO2/water-EG, Al2O3/water, Mg(OH)2/EG, Al2O3/water-EG
(40:60), MgO/water-EG (60:40), MWCNT/water, TiO2/water, ZnO/EG,
and MgO/EG in their studies separately. The comparison between the
performance of the ANN model and the results obtained from experi-
mental data disclosed that the neural network can more accurately
predict the thermophysical properties of studied nanofluids. Afrand
et al. [27–30] investigated thermophysical properties of water-based
Fe3O4, MgO, MWCNT, and MWCNTs-SiO2/AE40 over a wide range of
concentrations and temperatures and proposed the ANNs to precisely
predict the experimental results. Ahmadloo and Azizi [31] studied the
application of a 5-input ANN model to predict the 776 experimental
data points of thermal conductivity ratio of fifteen various nanofluids.
The input variables considered in this study were some appropriated
numbers for both base fluid and nanoparticle, temperature, thermal
conductivity, volume fraction, and average diameter of nanoparticles.
They developed a model with 1.26% and 1.44% mean absolute percent
errors for training and testing data sets, respectively. Many other stu-
dies are available in this field concerning the application of ANN
modeling for prediction of thermophysical properties of nanofluids such
as the oxide-based nanofluids dynamic viscosity [32], the thermal ra-
diative properties CNT nanofluids including extinction and transmit-
tance coefficients [33], the convective heat transfer and pressure drop
of nanofluids in a jacked reactor [34] or in a microchannel heat sink
[35].

However, investigations on the optimization of experimental data
are still scarce and more researches are need to be conducted. Using the
modified non-dominated sorting genetic algorithm (NSGA-II), Hemmat
Esfe et al. [36,37] optimized the ND-Co3O4 aqueous nanofluid and
Al2O3/water-EG (40:60) nanofluids in order to minimize the viscosity
and maximize the thermal conductivity of nanofluids. Accordingly, they
provided the Pareto Front and the corresponding optimum points. Their
results revealed that the most optimal conditions can be achieved at the
highest temperature. Another group of researchers investigated the
application of particle swarm optimization (PSO) to mathematically
model and optimize the thermophysical properties of Al2O3 nanofluid
for a biomass plant [38]. They employed the modified PSO with multi
leaders instead of the conventional PSO for evolution process. The

results showed that about 56.6% reduction in the annual cost can be
achieved in an optimum configuration containing 2% nanoparticles.
Amani et al. [13] evaluated the application of ANN, empirical corre-
lations and genetic algorithm for modeling and multi-criteria optimi-
zation of the thermophysical properties of clove-treated MWCNTs na-
nofluid which has been synthesized through a facile and eco-friendly
procedure. The revealed that the optimal ANN model is a more precise
and accurate way to predict the thermal conductivity and viscosity of
ecofriendly nanofluids compared to empirical correlations obtained
from nonlinear regression method. Moreover, the final optimal solu-
tions opted from several distinguished procedures of decision-making
including the Bellman-Zadeh, TOPSIS and LINMAP approaches.

In spite of extensive applications of water-based SiO2 nanofluid,
there is no available ANN modeling for prediction and optimization of
the hydrothermal properties of these nanofluids. In this regard, this
study aims to employ the multilayer perceptron neural network to
model the Nusselt number and pressure drop of SiO2/water nanofluid at
different temperatures, concentrations and Reynolds numbers. The ex-
perimental data used in this article are presented by Jumpholkul et al.
[39]. Different numbers of neuron and hidden layer have been ex-
amined to obtain the optimal network structure. The models obtained
from the ANN are employed as the objectives in the optimization
method. This research reports the optimum values of effective para-
meters to obtain the highest heat transfer and the relatively least
pressure drop. In this regard, different viewpoints of the decision maker
are also considered in the optimization by implementing a compro-
mised programming approach with capability of decision-making.

2. Experimental setup and procedure

An important step in employing nanoparticles to improve the heat
transfer performance of a system is preparation process of the nano-
fluid. The SiO2 nanoparticles used in this research were purchased from
Degussa with 7 nm mean diameter (Aerosil 380) [39]. 0.5, 1 and 2%
nanoparticle concentrations were prepared by dispersing the desired
amount of nanoparticles measured by the electronic mass balance into
the DI-water without any surfactant. Moreover, ultrasonication was
conducted for 2 h before using the nanofluids samples to guarantee
stable dispersion of the nanoparticles.

The schematic of the apparatus is depicted in Fig. 1 [39]. The

Fig. 1. Schematic diagram of the experi-
mental apparatus [Jumpholkul et al. [39],
with permission from Elsevier].
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length, inner and outer diameters of the test tube (made of SS 304) were
200, 0.7 and 0.95 cm, respectively. A uniform heat flux was im-
plemented on the pipe using a DC power supply with a voltmeter to
control the voltage. The experimental data of wall temperatures were
attained by using 9T-type thermocouples (with the precision of±
0.1 °C) which were equally placed from each other along the test
section. In addition, the bulk temperatures of nanofluids at the inlet and
outlet of the test section were measured using 2 further T-type ther-
mocouples placed inside the nanofluid flow at these positions. A rubber
insulation and fiberglass cloth were used to insulate the test section for
preventing heat loss in a radial direction. In order to measure the
pressure drop, a differential pressure transmitter is employed between
the inlet and outlet of the test section. After reaching the steady state
condition, a data logger was used to record the experimental data of
temperatures every 10 min.

3. Artificial neural network

To model the Nusselt number and pressure drop of the SiO2/water
nanofluid flowing in a tube in turbulent regime in terms of Reynolds
number, nanoparticle fraction and inlet temperature, a multilayer
perceptron ANN is defined as depicted in Fig. 2.

The MLP-ANN is consisting of several neurons in multiple layers.
Weight coefficients have the connecting role between neurons. Biases
and weights have to be updated to determine the connection between
outputs and inputs. Furthermore, in order to generate the neuron
output, an activation function is established on the summation of bias
and weighted inputs of neurons in each layer.

A standard approach in nonlinear optimization for training purpose
called Levenberg-Marquardt (LM). In this method, the Hessian matrix is
expressed as:

=H J JT (1)

where J represents the Jacobian matrix. And the gradient is calculated
by:

=g J eT (2)

in which e represents the network errors. A standard backpropagation
technique can be used to solve the Jacobian matrix, which provides less
complicated calculation. In LM approach, the following estimation for
Hessian matrix is employed:

= − ++
−x x J J μI J e[ ]k k

T T
1

1 (3)

where xk denotes is a vector of biases and weights.
Accordingly, μ is considered as a large value which results in

conversion of the estimation into gradient descent with a minor step
size. Note that if μ = 0, it would be Newton's approach, which is highly
desirable due to its minimum errors and high speed. Thus, μ is better to
increased only when the performance function is needed to be in-
creased.

On the other hand, overfitting has to be considered in such pro-
blems. It occurs when notable errors are obtained in verifying the
performance of network by test data, although the network satisfacto-
rily predicts the training data. To address this issue, a generalized
network learning algorithm has to be employed. In this regard, a reg-
ularization is implemented which enhances the network generalization.

The mean sum of squares of the errors (MSE) is used for examining
the training performance of the network. The MSE can be expressed as:

∑=
=n

eMSE 1 ( )
i

n

i
1

2

(4)

where ei denotes the difference between the experimental and predicted
values. Moreover, mean sum of squares of the network weights (MSW)
is defined so as to elevate network generalization by producing smaller
biases and weights.

= + −γ γMSE MSE (1 )MSWnew (5)

where γ is the performance ratio, and

∑=
=n

wMSW 1 ( )
j

n

j
1

2

(6)

in which wj denotes the weights of the network.
In regularization, the accuracy of trained data prediction would be

decreased when the optimum performance ratio is very small. On the
other hand, very large ratio would result in overfitting. The Bayesian
framework is a procedure which can be employed to train the network
for determining the optimum regularization parameters. In this fra-
mework, specified distribution is considered for the random variables
assigned for the weights and biases.

The problem under study is solved using the Bayesian regulariza-
tion-based Levenberg-Marquardt training (LM-BR) method. Thus, the
network is trained by the LM approach and its generalization is im-
proved by implementation of the Bayesian regularization.

For the network training, the objective function is defined as:

= × + ×F α λMSW MSE (7)

where α and λ are regularization parameters. The network responses
would be smoother if α≫ λ, while the training algorithm errors would
be smaller if α≪ λ. Further description on the Bayesian regularization
is presented in Refs [40,41].

For evaluation of ANNs accuracy, mean relative error (MRE) and
coefficient of determination (R2) are calculated, according to Eq. (8)
and Eq. (9), as follows.
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4. Multi-objective optimization

A genetic algorithm is used to obtain the optimum states and the
relative objective functions were the models obtained from the ANN.
The optimization procedure was conducted to maximize the heat
transfer as well as achieving the least pressure drop. It should be noted
that in a multi-objective optimization, there is more than one optimum
point and in fact, a series of optimal states are commonly achieved
which have no preference over each other. Regarding to consider the
decision maker's attitude, in this research, a compromise decisionFig. 2. Configuration of the ANN.
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making method is employed along with genetic algorithm for facil-
itating the selection process among various optimal cases. Accordingly,
the problem changes into a single-criteria optimization by combination
of the objective functions.

In this approach, Eq. (10) must be minimized. In Eq. (10), the ob-
jective functions are reflected in Z and W which have to be maximized
and minimized, respectively.
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In Eq. (10), superscript “−” and “*” represent the worst and the best
values for the relative objective functions. The relative importance of
each objective function compared to the other one is reflected in
coefficients α. In fact, based on the decision maker's attitude, the re-
lative importance of objective functions can be adjusted via changing
these coefficients before conducting the optimization. Moreover, in this
research, the distance coefficient (b) was considered equal to 1 (it can
be ranged from 1 to ∞).

5. Results and discussion

Affecting parameters on the Nusselt number and pressure drop of
water-based SiO2 nanofluids were inlet temperature, concentration and
Reynolds number for the turbulent flow regime in a circular tube [39].
It was observed that the heat transfer as well as pressure drop were
increased when the nanofluid concentration and Reynolds number were
augmented. Therefore, it can be understood that maximizing the con-
vective heat transfer along with minimization of the pressure drop
would be a critical finding. In this regard, ANN has been employed for
the developments of the objective functions (Nu and ΔP) based on input
effective variables including inlet temperature, concentration and
Reynolds number.

Generation of the data required to train the ANN is the most sub-
stantial step of ANN modeling, which is highly important to develop the
model for proper prediction of the problem under study. The experi-
mental data which has been previously published by Jumpholkul et al.
[39] has been adopted for the ANN modeling and accordingly, three
inlet temperatures (Tin = 25, 30, and 35 °C) and four concentrations
(φ = 0, 0.5, 1, and 2 vol%) at ten Reynolds numbers
(Re = 3800–12,000) have been considered for conducting the experi-
mental analysis. 90 data points out of 120 were employed to train the
ANN and the rest of data were allocated to validate the model. To en-
hance the predictive capacity of the ANN, all the data were scaled in the
range of [0 1]. Also, the linear activation function and sigmoid acti-
vation function are employed on the output and hidden layers respec-
tively.

In order to find the network with the highest prediction ability,
different configurations were assessed and it has been achieved that a
network with 2 hidden layers and 6 neurons in every layer provides the
most accurate prediction. Table 1 presented the performance of ANNs
with various structures based on the test data, indicating the achieve-
ment of minimum errors in the network with above-mentioned struc-
ture which has been bolded.

For the test data, the optimum structure (2 hidden layers and 6
neurons in every layer) predicted the Nusselt number with R2 and MRE
values of 0.9992 and 0.017, respectively. Moreover, the values of R2

and MRE associated with the pressure drop were 0.9996 and 0.009,
respectively. For better illustration, Figs. 3 and 4 exhibits the compar-
ison of experimental data and those obtained from the ANN modeling
based on the training and test data. As can be seen the ANN modeling is
highly reliable due to the consistency of the results.

New correlations in a form of dimensionless variables have been
proposed by Jumpholkul et al. [39] to predict the Nusselt number and
friction factor as follows:

= + ⎛
⎝

⎞
⎠

−
−

Nu φ T0.001142Re Pr (1 )
25nf nf nf

in1.26 0.19 14.45
0.4

(11)

= +−f φ0.527Re (1 )nf nf
0.3 4.892

(12)

The scope of Eqs. (11) and (12) is in temperature range of 25–35 °C
and volume concentration between 0 and 2% at Reynolds numbers
between 3800 and 12,000. The MRE and R2 coefficients for the Nusselt
number correlation are 0.0692 and 0.9941 and the corresponding

Table 1
Performance of the ANN with different structures.

Number of hidden
layers

Number of neurons in
each layer

R2 MRE

Nu ΔP Nu ΔP

1 2 0.9970 0.9975 0.044 0.026
1 4 0.9968 0.9972 0.046 0.018
1 6 0.9985 0.9990 0.029 0.013
1 8 0.9955 0.9959 0.081 0.034
1 10 0.9978 0.9982 0.042 0.010
1 12 0.9962 0.9967 0.052 0.008
2 2 0.9959 0.9965 0.066 0.022
2 4 0.9965 0.9970 0.048 0.009
2 6 0.9992 0.9996 0.017 0.009
2 8 0.9947 0.9955 0.155 0.047
2 10 0.9974 0.9979 0.043 0.017
2 12 0.9981 0.9987 0.035 0.021

The bold line presents the optimum structure of ANN, corresponding the most accurate
prediction.

Fig. 3. Correlation between experimental work of Jumpholkul et al. [39] and those ob-
tained from ANN model; a) Nusselt number, b) pressure drop.
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values for the friction factor correlation are 0.0569, and 0.9949 re-
spectively. The comparison between the error values of the proposed
correlations and the optimal ANN model revealed that the ANN is much
powerful tool for determination of the hydrothermal properties in the
problem under study.

In the following, the optimization on the hydrothermal character-
istics of SiO2/water nanofluid is conducted using genetic algorithm
connected with the ANN modeling to find the optimal points with the
highest heat transfer and the relatively least pressure drop.
Accordingly, the problem would be a two-objective optimization with a
maximizing objective of Nu number and a minimizing objective of ΔP.
As previously mentioned, several optimal conditions can be achieved in
a multi-objective optimization while they have no particular preference
over each other and selecting the best condition depends on the deci-
sion maker. In this regard, selection among the optimum cases has been
facilitated by using genetic algorithm coupled with a compromise
programming technique. Therefore, the multi-criteria optimization
would be converted to a single-criteria optimization, according to the
following equation:

= ⎡
⎣

−
−

⎤
⎦

+ ⎡
⎣

∆ − ∆
∆ − ∆

⎤
⎦

∗

∗ −

∗

− ∗D α Nu Nu
Nu Nu

α P P
P P1

2

2

2

(13)

where coefficients α represent relative importance of the objective
functions. Based on Eq. (13), the problem can be solved for various
combinations of α1 and α2 and consequently, the new objective

function D have to be minimized. It has to be mentioned that the sum of
α1 and α2 which are the relative importance of the objective functions
related to the Nusselt number and pressure drop, should be equal to 1.

Different combinations of coefficients α, which corresponds the
various situations of the decision maker's attitude, have been con-
sidered to solve the problem. The optimal parameters including Re, φ
and Tin are provided in Table 2. The observations indicated that the
maximum Nusselt number along with minimum pressure drop can be
obtained at the elevated inlet temperature (Tin = 35 °C). Moreover, it
was revealed that in the case of assigning all the significance to the
pressure drop, nanoparticles content and Reynolds number would have
their least values (see the first row of Table 2). It is due to the fact that
when nanoparticles content and Reynolds number are increased, the
pressure drop is incremented. On the other hand, in the case of as-
signing all the significance to the heat transfer, inverse conditions for
nanoparticles content and Reynolds number would occur (i.e., nano-
fluid concentration and Reynolds number have their highest values - see
the last row of Table 2). It can be referred to the direct relationship
between the heat transfer of nanofluid and the Reynolds number as well
as concentration of nanofluid.

From Table 2, one can observe that when the relative importance of
the heat transfer increases, among the other parameters, the Reynolds
number and concentration quickly increment towards their highest
values (i.e., by moving from the top to down of the table). Therefore, it
can be concluded that the Reynolds number and content of nano-
particles highly affect the heat transfer and the significance of its in-
fluence on heat transfer is much greater compared to that on the
pressure drop. Moreover, it can be seen that the inlet temperature
moderately stable at its maximum amount (35 °C), by increasing the
relative importance of the heat transfer. It indicates that the inlet
temperature is a parameter which almost equally affects the both ob-
jectives.

6. Conclusion

A model for estimation of the Nusselt number and the nanofluid
pressure drop in terms of Reynolds number, volume concentration, and
inlet temperature has been developed via ANN using the data obtained
from the experimental analysis. It is obtained that a network with 2
hidden layers and 6 neurons in every layer provides the best predicting
performance. The comparison between the error values of the proposed
correlations and the optimal ANN model revealed that the neural net-
work is much powerful tool for determination of the hydrothermal
characteristics in the problem under study. This model estimated the
outputs accurately, and it was utilized in the optimization process as
objective function. In order to consider the decision maker's attitude in
optimizing the problem, genetic algorithm was coupled with compro-
mise programming decision making method to obtain the optimal cases.
The optimum values, which present the highest heat transfer along with
the relatively least pressure drop, were eventually obtained for several
levels of relative importance of the objective functions.

Fig. 4. Comparison between experimental work of Jumpholkul et al. [39] and those
obtained from ANN model; a) Nusselt number, b) pressure drop.

Table 2
Optimal conditions obtained in this analysis.

No. α1 α2 Re φ (vol%) Tin (°C)

1 0 1 3830 0 35.0
2 0.1 0.9 4700 0.18 34.2
3 0.2 0.8 5574 0.39 34.8
4 0.3 0.7 6431 0.60 35.0
5 0.4 0.6 7352 0.85 34.2
6 0.5 0.5 8185 1.03 33.8
7 0.6 0.4 9048 1.17 35.0
8 0.7 0.3 9934 1.35 35.0
9 0.8 0.2 10,787 1.66 34.7
10 0.9 0.1 11,671 1.87 35.0
11 1 0 12,570 2.0 35.0
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