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Abstract This paper addresses the state estimation problem of linear discrete-time
time-varying stochastic systems with unknown inputs (UIs). It is shown that the glob-
ally optimal unbiasedminimum-variance filtersmay not satisfy theminimum-variance
property, and hence they cannot eliminate noises appropriately. If this is the case, the
well-known Kalman filter may give a better solution, which however may also not
be the best one due to that the imbedded unknown input model may not be practical.
To remedy the filtering degradation problem, a robust filter named as the KFLMS,
which has good noise rejection property for such systems, is developed in this paper,
where the UI estimates are obtained by using least mean square algorithm and the state
estimation is achieved via the previous proposed two-stage Kalman filtering approach.
Numerical examples are provided to show the effectiveness of the proposed results.
Specifically, simulation results illustrate the goodness of the new method in the sense
of lower root mean square error and better noise rejection property.
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1 Introduction

It is well-known that if a known state space model (SSM) of a linear stochastic time-
varying system is available, the Kalman filter (KF) gives the optimal solution to the
state estimation of the system [9]. On the other hand, adaptive filtering, e.g., the least
mean square (LMS) algorithm [10], or the weighted least-squares (WLS) [7,8] do
not need to know the SSM in order to achieve the optimal state estimation, where
the unmodeled state estimates are mainly obtained from the outputs. Note that, the
LMS algorithm is an instantaneous gradient-based optimization technique, which can
achieve aminimization of a certain cost function. As shown in [19], the LMS algorithm
serves as an optimal solution to the unmodeled state estimation problem under the H∞
criterion.

In many applications, e.g., fault detection and isolation [1], a model with some
uncertainties may exist. These uncertainties often arise from linearization errors,
parameter uncertainties, faults, and unmeasurable disturbances [11]. To remedy these
uncertainties, many methods have been used such as recursive least squares, stochas-
tic gradient algorithm, iterative algorithm and variational Bayes methods [2,3,21]. As
mentioned in [18], the model uncertainties can be considered as an unknown input
which affects known model of the system; in such cases, the KF usually gives a
biased state estimation. In order to fix this biased estimation, unknown input filter-
ing (UIF) techniques are often used to obtain unbiased minimum-variance (UMV)
state estimates, and the obtained filters are named as the UMV estimators (UMVEs)
[1,4,5,7,8,11,12,18], which makes a great evolution in incomplete model-based state
estimation problems due to achieving globally optimal state estimation for uncertain
SSMs with UIs [14]. However, the UMVE is restricted to have some assumptions on
known matrices of the SSM to satisfy the unbiasedness condition, which although are
completely determined [15] but are sometimes too restrictive to be applied. This is
mainly due to the fact that the UMVE is in one of its degeneration forms, which are
formed either by that the filter’s unbiasedness condition not being satisfied [4,6,20]
or the gain matrix is not fully connected to the Kalman gain [17]. A possible approach
to alleviate the above-mentioned first degenerated case is by applying time-delayed
state estimators [6,20]. Nevertheless, few literature results are focused on the second
degenerated case. In [17], a hybridminimum-variance filter named parameterized aug-
mented robust two-stage Kalman filters (PARTSKF), which compromises between the
unbiasedness and theminimum-variance estimation, has been proposed to remedy this
filtering degradation problem. Although the PARTSKF has a promising improvement
on the filtering performance, it may also fail to yield a satisfactory estimation due to
that the assumed UI model may not work well.

In this paper, a new and innovative filtering structure is proposed to alleviate the
deterioration problem of the UMVE and to relax the heuristic UI model in the PART-
SKF. The obtained filter will be named as the Kalman filter reinforced by least mean
square (KFLMS), which signifies that the main difference between this new filter and
the Kalman Filter is that the UI is estimated by the LMS algorithm in the former.
Note that, there are other adaptive filters which are also applicable to this new filtering
structure, e.g., the recursive least-square (RLS) algorithm. However, for the sake of
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simplicity, computational complexity, and numerical stability [10], in this paper we
only consider the LMS algorithm.

The rest of the paper is organized as follows. In Sect. 2, the statement of the problem
is addressed. Section 3 recalls some preliminaries concerning the derivation of the
KFLMS. Then, the proposed KFLMS is derived in Sect. 4. Two compact versions of
the KFLMS are also presented to reduce the filters computational complexity. Some
illustrative examples are given in Sect. 5 to show the effectiveness of the proposed
methods. Finally, Sect. 6 has the conclusion.

2 Problem Formulation

Consider the following linear discrete-time time-varying stochastic system:

xk+1 = Akxk+Bkuk+Gkdk+ωk (1)

yk = Ckxk+Hkdk+υk (2)

where xk∈Rn is the state vector, uk∈Rl is the known input vector, dk∈Rp is an
unknown input vector, and yk∈Rm is the measurement vector. The process noise ωk

and the measurement noise υk are assumed to be mutually uncorrelated, zero-mean,
white random signals with known covariance matrices, Qk ≥ 0 and Rk > 0, respec-
tively. The matrices Ak , Bk , Gk , Ck and Hk are known and it is assumed that (Ak,Ck)

is observable and that x0 is independent of υk and ωk for all k. Moreover, an unbiased
estimate x̆0 of the initial state x0 is available with covariance matrix Px

0 . The prob-
lem of interest is to design an optimal linear estimator of xk without any information
concerning the UI vector (dk) given the measurements up to time k.
One of the UMVE that solves the addressed problem is given by the refined optimal
unbiased minimum-variance filter (ROUMVF) [15], which is slightly rewritten as
follows:

x̂k = xk + Lk (yk−Ckxk) (3)

Pk = (I − LkCk) Pk(I − LkCk)
T + Lk Rk Lk

T (4)

Lk = Ḡk + (Kk − Ḡk)Wk (5)

x̄k+1 = Ak x̂k + Bkuk + Gkd̂k (6)

P̄k+1 = Ak Pk Ak
T + Ak P

xd
k Gk

T + Gk(Ak P
xd
k )

T + Gk Pd
k Gk

T + Qk (7)

where Ḡk , Kk , and Wk are named as the unbiasedness gain, the Kalman gain, and the
gain weighting matrix, respectively, which are given as follows:

Ḡk = [ 0 Ūk−1 ]Sk+, Ūk = Gk(I − Hk
+Hk) (8)

Kk = P̄kCk
T R̃−1

k , R̃k = Ck P̄kCk
T + Rk (9)

Wk = R̃k T̄
T
k

(
T̄k R̃k T̄

T
k

)−1
T̄k, T̄k = αk

(
I − Sk Sk

+)
(10)
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in which Sk = [Hk CkŪk−1], A+
k denotes any generalized inverse of matrix A, and

the matrix parameter αk must be chosen so that T̄k is of full-row rank. Here, d̂k , Pd
k

and Pxd
k are the UI estimates and their corresponding covariances:

d̂k = Mk

(
Sk

T R̃−1
k Sk

)+
Sk

T R̃−1
k (yk − Ck x̄k) (11)

Pd
k = Mk(S

T
k R̃

−1
k Sk)

+MT
k (12)

Pxd
k = ([0 Ūk − 1] − KkSk)(S

T
k R̃

−1
k Sk)

+MT
k (13)

where Mk = [H+
k Hk 0]. Note that the gain matrix Lk by (5) can also be expressed

as follows:

Lk = Ḡk(I − Wk) + KkWk

which clearly illustrates that the gain matrix of the ROUMVF is determined through a
compromise between the unbiasedness gain and the Kalman gain, via a suitable gain
weighting matrix. It should be stressed that the unbiasedness gain will promise that
the obtained state estimates are unbiased, i.e., satisfying the unbiasedness condition
Ḡk Sk = [0 Ūk−1], and theKalmangainwill promise that the obtained error covariance
of the state estimate at each time instant is a minimum-variance one, which can be
verified by checking the optimality condition:Wk R̃kWT

k K
T
k = WkCk P̄k . In the special

case that UIs do not enter into the system, i.e., Wk = I , the gain Lk will be reduced
to the Kalman gain Kk .

Based on the above argument, a special case illustrating the deterioration of the
UMVE, i.e., T̄k = 0, was first observed in the previous study [13]. Recently, more
general cases are highlighted by reducing the gain matrix Lk to the following form
[17]:

Lk = Ḡk + (I − Ḡk Ḡ
+
k )Φk (14)

where Φk is the only matrix in Lk that could contain the information of Qk and Rk .
Thus, using (3) and (14), one has:

Ḡ+
k x̂k = Ḡ+

k x̄k + Ḡ+
k Ḡk(yk − Ck x̄k) (15)

Then, if there exists amatrix Yk satisfying the following condition: YkḠ
+
k = diag{I, 0}

then left-multiplying (15) by Yk yields:

diag{I, 0}x̂k = diag{I, 0}(x̄k + Ḡk(yk − Ck x̄k))

which indicates that part of the state estimates will be completely irrelevant to the
assumed noise covariances, and hence the obtained state estimates could not reject
noises appropriately and may even just return the related measurements [17].

To the best of the authors knowledge, there is no feasible approach in the literature
to solve the above-mentioned performance degradation problem of theUMVE.Hence,
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the main focus of this paper is to propose a new robust filtering framework in order to
alleviate the filtering performance degradation problem.

3 Preliminaries

3.1 The Augmented State Kalman Filter

If the UI dynamics can be represented by a random walk process as below:

dk+1 = dk + ωd
k (16)

where ωd
k is a zero-mean white Gaussian random process with covariance Qd

k and
is independent of both the process noise ωk and the measurement noise νk , then the
augmented state Kalman filter (ASKF) is the optimal solution for the joint state and
UI estimation. The ASKF runs two KFs on system (1), (2), and (16) simultaneously,
where the first KF (UI filter) estimates the UI and the second one (state filter) estimates
the states. The two filters are given, respectively, as follows:

(1) UI filter:

d̂k = d̂k−1 + Kd
k (yk − Ck x̂

−
k − Hkd̂k−1) (17)

Pd−
k = Pd

k−1 + Qd
k (18)

Pxd−
k = Ak−1P

xd
k−1 + Gk−1P

d
k−1 (19)

Kd
k = ((Ck P

xd−
k )T + Pd−

k HT
k )R̃−1

k (20)

Pd
k = (I − Kd

k Hk)P
d−
k − Kd

k Ck P
xd−
k (21)

where

R̃k = Ck P
x−
k CT

k + Hk(Ck P
xd−
k )T + Ck P

xd−
k HT

k + Hk P
d−
k HT

k + Rk (22)

(2) State filter:

x̂−
k = Ak−1 x̂k−1 + Bk−1uk−1 + Gk−1d̂k−1 (23)

x̂k = x̂−
k + K x

k (yk + Ck x̂
−
k − Hkd̂k−1) (24)

Px−
k = Ak−1P

x
k−1A

T
k−1 + Gk−1P

d
k−1G

T
k−1 + Qk−1

+ Ak−1P
xd
k−1G

T
k−1 + Gk−1(Ak−1P

xd
k−1)

T (25)

K x
k = (Px−

k CT
k + Pxd−

k HT
k )R̃−1

k (26)

Px
k = (I − K x

k Ck)P
x−
k − K x

k Hk(P
xd−
k )T (27)

Pxd
k = (I − K x

k Ck)P
xd−
k − K x

k Hk P
d−
k (28)
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Fig. 1 Flowchart for augmented
state Kalman filter (ASKF)

So, the ASKF run two Kalman filters on system (1–2) and (16) simultaneously,
the first Kalman filter estimate the unknown input, and the second one is for state
estimation. So, we can draw ASKF flowchart as Fig. 1:

3.2 The Optimal Two-Stage Kalman Filter

It is known that the ASKF may not be feasible to be applied in practical applications
due to that its computational cost increases with the UI vector dimension. If this is the
case, the optimal two-stage Kalman filter (OTSKF) [16] can be used alternatively to
maintain the computational complexity at a lower level while the filtering performance
still be preserved. The OTSKF comprises two quasi-parallel filters, which are named
as themodified bias-free filter and the bias filter, and are listed, respectively, as follows:

(1) Modified bias-free filter:

x̄−
k = Ak−1 x̂k−1 + Bk−1uk−1 + ūk−1 (29)

x̄k = x̄−
k + K̄ x

k (yk + Ck x̄
−
k ) (30)

P̄ x−
k = Ak−1 P̄

x
k AT

k−1 + Qk−1 + Qū
k−1 (31)

K̄ x
k = P̄ x−

k CT
k (Ck P̄

x−
k CT

k + Rk)
−1 (32)

P̄ x
k (I − K̄ x

k Ck)P̄
x−
k (33)

where

ūk = (Gk −Uk+1)d̂k (34)

Qū
k = (Gk −Uk+1)P̄

d
k Ū

T
k+1 + (Ūk+1 − Gk)P̄

d
k G

T
k (35)

in which

Uk = Ūk(I − Qd
k−1(P̄

d−
k )−1) (36)

Ūk = Ak−1Vk−1 + Gk−1 (37)
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(2) Bias filter:

d̂k = d̂k−1 + K̄ d
k (yk − Ck x̄

−
k − Skd̂k−1) (38)

P̄d−
k = P̄d

k−1 + Qd
k−1 (39)

K̄ d
k = P̄d−

k STk (Sk P̄
d−
k STk + R̄k)

−1 (40)

P̄d
k = (I − K̄ d

k Sk)P̄
d−
k (41)

where

Sk = CkUk + Hk (42)

Then, based on the above two filters, the state estimate x̂k in (24) can be recon-
structed as follows:

(3) State filter:

x̂k = x̄k + Vkd̂k, Px
k = P̄ x

k + Vk P̄
d
k V

T
k (43)

where

Vk = Uk − K̄ x
k Sk (44)

Comparing the OTSKFwith the ASKF, it is clear that the former is more compact
than the latter because the coupling terms Pxd−

k and Pxd
k in the latter are not

used. Moreover, this compactness may help to derive a robust version of the KF,
in which the dedicated UI model is not needed. An illustrative case showing this
will be given in Sect. 3.

Remark 1 The above modified bias-free filter and bias filter can be viewed as standard
KFs for the following respective subsystems:

(1) Bias-free subsystem:

xk+1 = Akxk + Bkuk + udk + ωk

yk = Ckxk + νk

where udk is viewed as a known external signal, independent of xk and uk , with
the following statistics:

E[udk ] = (AkVk + Gk −Uk+1)d̂k

cov(udk ) = AkVk P̄
d
k (AkVk)

T + Qū
k

(2) UI subsystem

dk+1 = dk + ωd
k
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ỹk = Skdk + ν̃k

where ỹk = yk − x−
k and cov(ν̃k) = R̄k .

3.3 The Least Mean Square Algorithm

Because the random walk assumption in (16) may not hold in practical applications,
and hence the ASKF/OTSKF may not work well. In this subsection, we highlight the
idea how to identify the UI estimates without resorting to the randomwalk assumption
by applying the adaptive LMS algorithm, which is inspired by [19] as below.

First, we assume that measurement equation (2) can be expressed as follows:

Dk = XT
k Wk + Ek (45)

where Dk ∈ Rm is the desired output vector, Xk ∈ Rp×m is the input matrix, Ek ∈ Rm

is the error vector, and Wk ∈ Rp is the weight vector to be determined to minimize
the following cost function:

minWk εk = (||Wk − W̄k ||2Πk−1
+ ||Dk − XT

k Wk ||22)

where W̄k is the initial guess ofWk , ||X ||Π = √
XTΠ−1X ,Πk−1 = ∞I , and ||X ||2 =

||X ||I .
Second, assuming that εk , Dk and Xk are statistically stationary and [Xk XT

k ] �= 0,
the optimal solution to identify the vector Wk from (45) is given as the following
recursive least-squares (RLS) solution:

W ∗
k = W̄k + (Xk X

T
k )−1Xk(Dk − XT

k W̄k). (46)

More practically, i.e., to further reduce the computational complexity of the RLS
solution, we have the following more compact LMS solution:

Ŵ (i)
k = Ŵ (i−1)

k + μk X
i
k(D

i
k − Xi

k
T
Ŵ (i−1)

k ) (47)

where Ŵ 0
k = W̄k , 1 ≤ i ≤ m, μk is a proper step-size parameter, which will be

determined later, and matrices Dk , Xk and Ek are denoted, respectively, as follows:

Dk =

⎡
⎢⎢⎢⎢⎣

D1
k

D2
k
...

Dm
k

⎤
⎥⎥⎥⎥⎦

. Xk =

⎡
⎢⎢⎢⎢⎢⎣

X1
k
T

X2
k
T

...

Xm
k
T

⎤
⎥⎥⎥⎥⎥⎦

T

. Ek =

⎡
⎢⎢⎢⎢⎣

E1
k

E2
k
...

Em
k

⎤
⎥⎥⎥⎥⎦

Based on the recursiveweight update (47), we have theweight estimate as Ŵk = Ŵ (m)
k .
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Third, we note that, although the LMS solution is not a minimizer of the usual H2

norm it builds itself as an optimal solution under the following H∞ criterion:

∑m
i=1 a

i−1
k |Xi

k
T
Wk − Xi

k
T
Ŵ (i−1)

k |2
μ−1
k ||Wk − W̄k ||22 + ∑m

i=1 a
i−1
k |Xi

k |2
≤ 1 (48)

where ak ∈ (0, 1) is a weighting factor. To see this, we intend to verify the following
inequality:

μ−1
k ||Wk − Ŵ (i−1)

k ||22 − akμ
−1
k ||Wk − Ŵ (i)

k ||22 + |Ei
k |2

≥ ||Xi
k ||22.||Wk − Ŵ (i−1)

k ||22 (49)

Applying the LMS solution, we have

||Wk − Ŵ (i)
k ||22 ≤ ||Wk − Ŵ (i−1)

k ||22 + ||Ŵ (i)
k − Ŵ (i−1)

k ||22 ≤ ζ (50)

where

ζ = ||Wk − Ŵ (i−1)
k ||22 + μ2

k ||Xi
k ||22.|Ei

k |2 + μ2
k ||Xi

k ||42||Wk − Ŵ (i−1)
k ||22

Using (50) in (49) yields

((1 − ak)μ
−1
k − akμk ||Xi

k ||22) × ||Wk − Ŵ (i−1)
k ||22 + (1 − akμk ||Xi

k ||22)|Ei
k |2 ≥ 0

(51)

It is clear from (51) that if μk is chosen to satisfy the inequality:

0 ≤ μk ≤ min

(
−1 + √

1 + 4ak(1 − ak)

2aklik
,

1

aklik

)
= −1 + √

1 + 4ak(1 − ak)

2aklik
(52)

where 1 ≤ i ≤ m and lik = (Xi
k)

TXi
k , inequality (49) will hold, which also promises

the inequality:

μ−1
k ||Wk − Ŵ (i−1)

k ||22 − akμ
−1
k ||Wk − Ŵ (i)

k ||22 + |Ei
k |2

≥ |(Xi
k)

TWk − (Xi
k)

TŴ (i−1)
k |2 (53)

Thus, summing (53) over i , eliminating the terms of akμ
−1
k ||Wk − Ŵ (i)

k ||22, and using
Ŵ (0)

k = W̄k , we obtain the claim in (48). Note that, the inequality in (52) will facilitate
the determination of the step-size parameter. This is addressed in Sect. 5.

Finally, we conclude from the above results that the robust behavior of the LMS
algorithm is shown by guaranteeing that the energy of the weighted prediction error is

Author's personal copy



4964 Circuits Syst Signal Process (2018) 37:4955–4972

Fig. 2 Flowchart for KFLMS

always bounded by the energy of the initial uncertainty and the weighted disturbances,
i.e., (48).

4 KFLMS Filters Design

4.1 Derivation of the KFLMS

The basic ideas to derive theKFLMS are )1) to develop a robust version of themodified
bias-free filter of the OTSKF, which intends to be robust against the UI model, (2)
to develop a modified bias filter of the OTSKF, which intends to compensate for the
robust bias-free filter in order to obtain a robust state estimator, and (3) to replace the
UI filter of the ASKF with the LMS algorithm, which intends to relax the imbedded
random walk assumption in the UI subsystem. We can draw a flowchart for KFLMS
by using the flowchart of ASKF (Fig. 1) as Fig. 2.

First, we modify Eqs. (29) and (31) as follows [12]:

x̄−
k = Ak−1 x̂k−1 + Bk−1uk−1 (54)

P̄ x−
k = Ak−1 P̄

x
k−1A

T
k−1 + Qk−1 (55)

which is achieved by choosing the following blending matrix:

Uk+1 = Gk (56)

and ignoring the covariance of UI, i.e., Qd
k = 0.

Second, using (54)–(56), the state filter of the OTSKF is given as follows:

x̂k = x̄k + Vkďk, Px
k = P̄ x

k + Vk P̌
d
k V

T
K (57)

where x̄k and P̄ x
k are given by (30) and (33), respectively, ďk is the modified bias filter,

given as follows:
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ďk = ďk−1 + K̂ d
k (yk − Ck x̄

−
k − Fkd̂k−1) (58)

P̌d
k = (I − K̂ d

k Fk)P
d
k−1 (59)

Fk = CkGk−1 + Hk (60)

K̂ d
k = Pd

k−1F
T
k (Fk P

d
k−1F

T
k + R̄k)

−1 (61)

In which d̂k−1 is the previous estimate of UI and Pd
k−1 its error covariance, both of

them are to be determined later, and the blending matrix Vk is given as follows:

Vk = Gk−1 − K̄ x
k Fk (62)

Note that the state filter in (57) can be viewed as a special implementation of that of
the ASKF, as shown in the following theorem.

Theorem 1 If the following setting is used:

Pxd
k = 0, Qd

k−1 = 0 (63)

the state subfilter of the ASKF is equivalent to that of the KFLMS, i.e., (57)–(62).

Proof Using (63), we obtain that Eqs. (25)–(27) of the state subfilter of the ASKF are
rewritten, respectively, as follows:

Px−
k = Ak−1P

x
k−1A

T
k−1 + Gk−1P

d
k−1G

T
k−1 + Qk−1 (64)

K x
k = (Px−

k CT
k + Gk−1P

d
k−1H

T
k )R̃−1

k (65)

Px
k = (I − K x

k Ck)P
x−
k − K x

k Hk(P
xd−
k )T (66)

where

R̃k = Ck P
x−
k CT

k + Hk(CkGk−1P
d
k−1)

T + CkGk−1P
d
k−1H

T
k + Hk P

d
k−1H

T
k + Rk

(67)

Using (32), (60)–(62), (65), and the following relationship:

Px−
k = P̄ x−

k + Gk−1P
d
k−1G

T
k−1 (68)

we have

R̃k = R̄k + Fk P
d
k−1F

T
k

K x
k = P̄ x−

k CT
k R̃

−1
k + Gk−1 K̂

d
k = K̄ x

k − K̄ x
k Fk K̂

d
k + Gk−1 K̂

d
k = K̄ x

k + Vk K̂
d
k

(69)
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Using (24), (30), (58), (60), (62), (69), and the following relationship:

x̂−
k = x̄−

k + Gk−1d̂k−1 (70)

we have the state estimates as:

x̂k = x̄k + Vkd̂k−1 + Vk K̂
d
k (yk − Ck x̄

−
k − Fkd̂k−1) = x̄k + Vkďk (71)

Using (59) and (61), we have

K̂ d
k R̄k = (I − K̂ d

k Fk)P
d
k−1F

T
k = P̌d

k F
T
k

by which and using (32)–(33), (59)–(62), (66), and (68)–(69), we have the state esti-
mation error covariance as:

Px
k = P̄ x

k + Vk P̌
d
k G

T
k−1 − Vk K̂

d
k R̄k(K̄

x
k )T = P̄ x

k + Vk P̌
d
k V

T
k (72)

From (71) and (72), the theorem is proved.
Third, it remains to determine the UI estimates. Rewrite the innovation of the

modified bias-free filter as follows:

Dk = yk − Ck x̄
−
k = Fkdk + Ek (73)

where

Ek = Ck(Ak−1 x̃k−1 + Gk−1εk−1 + ωk−1) + νk (74)

in which εk−1 = dk−1 − dk . Using the following substitutions in the LMS algorithm:

FT
k → Xk, dk → Wk

we can obtain the UI estimates as follows:
⎧⎨
⎩
d̂(i)
k = d̂(i−1)

k + μk
(
Fi
k

)T
(yik − Ci

k x̄
−
k − Fi

k d̂
(i−1)
k )

d̂k = d̂(m)
k . d̂(0)

k = d̂k−1

(75)

where μk is determined by (52). From (58) and (59), we have the following heuristic
estimation error covariance of d̂k :

Pd
k =

m∏
i=1

(I − μk(F
i
k )

TFi
k )P

d
k−1 (76)

Finally, the KFLMS is given as follows:

(1) UI filter: (75)–(76).
(2) State filter: (30), (32)–(33), and (54)–(62). 
�
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Remark 2 From Theorem 1, the state filter of the KFLMS can also be expressed as
follows:

x̂k = x̂−
k + K x

k (yk − Ck x̄
−
k − Fkd̂k−1) (77)

K x
k = (P̄ x−

k CT
k + Gk−1P

d
k−1F

T
k ) × (Ck P̄

x−
k CT

k + Fk P
d
k−1F

T
k + Rk)

−1 (78)

Px
k = Px−

k − K x
k (Ck P̄

x−
k + Fk P

d
k−1G

T
k−1) (79)

where x−
k , x̂

−
k , P̄

x−
k , and Px−

k are given by (54), (70), (55), and (68), respectively.

Remark 3 Comparing (75)–(79) with (17)–(28), it is clear that the proposed KFLMS
is in fact a special implementation of the ASKF that is obtained by using the specific
setting in (63) and relaxing the randomwalkUImodel via the adaptive LMS algorithm.

Remark 4 TheUI filter (75)–(76) can be implementedmore compactly if the following
conditions hold:

Fi
k (F

i−1
k )T = 0, 2 ≤ i ≤ m

Then, the simplified filter is given as follows:

d̂k = d̂k−1 + μk F
T
k (yk − Ck x̄

−
k − Fkd̂k−1)

Pd
k = (I − μk F

T
k Fk)P

d
k−1.

4.2 Compact Versions of the KFLMS

As shown in Sect. 4.1, the KFLMS is composed of three subfilters: the modified
bias-free filter x̄k , the modified bias filter ďk and the UI filter d̂k ; all of which can
be integrated in a certain way to yield the simultaneous input and state estimates.
Although the modified bias filter and the UI filter have similar estimator structures,
the design methods embedded in them are different: the gain matrix of the former is
derived by assuming a heuristic UI model, i.e., the random walk process (16), while
that of the latter is obtained by using no UI model. In the conventional filter design
for systems with unknown inputs, UI estimates are usually obtained by the modified
bias filter instead of the UI filter; however, in this paper we intend to achieve the UI
estimation by the latter.

Based on the above arguments, there are two ways to simplify the computational
complexity of the KFLMS: one is to replace the modified bias filter by the UI filter,
denoted by CKFLMS1, and the other is to replace the UI filter by the modified bias
filter, denoted by CKFLMS2. The filtering performance of the above CKFLMSs is
illustrated in Sect. 5.

5 Illustrative Examples

To illustrate the effectiveness of the proposed KFLMS filters, in this section we con-
sider two numerical examples, where the first one satisfies the degenerated case (14)
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with Φk �= 0 and the other satisfies the specific condition T̄k = 0, i.e., the degen-
erated case (14) with Φk = 0. In the simulations, the ASKF (17)–(28), the OTSKF
(29)–(44), the KFLMS (75)–(79), the CKFLMS1/KFLMS (d̂k → ďk , Pd

k → P̌d
k ),

the CKFLMS2/KFLMS (ďk → d̂k , P̌d
k → Pd

k ), and the ROUMVF (3)–(13) were
considered. The simulation time is 1000 time steps with a Monte Carlo simulation of
50 runs. Note that in setting μk we use the upper bound in (52) by choosing a proper
ak that is determined via a tradeoff between the small upper bound and the rapid
convergent rate. Moreover, the covariance Qd

k used in the filter designs is given as
Qd

k = diag{0.025, 0.016} and all the filters are initialized with x̂0 = 0 and P0 = I3×3.
The first case For the first system, the numerical example given by [1] was consid-

ered, which satisfies the condition in Eq. (14). The parameters of system (1)–(2) are
given as follows:

Ak =
⎡
⎣
0.9944 − 0.1203 − 0.4302
0.0017 0.9902 − 0.0747

0 0.8187 0

⎤
⎦ , Bk =

⎡
⎣

0.4252
− 0.0082
0.1813

⎤
⎦ , Gk =

[
1 0 0
0 1 0

]
,

C = I3×3, Hk = 03×2

The covariance matrices are given as Qk = diag{0.12, 0.12, 0.012} and Rk = I(3×3).
In simulation, we set uk = 10 , x0 = [1 1 1]T, P0 = 0.12 I(3×3), ak = 0.98 which
yield μk = 0.02 and

dk =
[

�a11 �a12 �a13
�a21 �a22 �a23

]
xk +

[
�b1
�b2

]
uk

where �ai j = −0.5ai j and �b j = 0.5b j . ai j and b j are elements of matrix Ak and
vector Bk , respectively.

The obtained rmses of the considered filters are given in Table 1, by which we have
the following observations: (1) the ROUMVF has the worst filtering performance,
which illustrates the possible shortcoming of theUMVE, (2) theASKF and theOTSKF
have the same filtering performance; both of them are superior to the ROUMVF, (3) the
KFLMS has the best filtering performance, (4) the CKFLMS1 has comparable filtering
performance with the KFLMS, (5) the CKFLMS2 is slightly worse than the ASKF.

Table 1 Performance of the ASKF, OTSKF, KFLMS, CKFLMS, and ROUMVF in the first case

Filter rmse(x1k ) rmse(x2k ) rmse(x3k ) rmse(d1k ) rmse(d2k )

ASKF 0.6356 0.4680 0.3212 0.5778 0.1385

OTSKF 0.6356 0.4680 0.3212 0.5778 0.1385

KFLMS 0.5986 0.3076 0.2323 0.6756 0.0794

CKFLMS1 0.6793 0.2929 0.2310 0.6477 0.0797

CKFLMS2 0.7567 0.7100 0.4096 0.7112 0.4789

ROUMVF 0.9959 0.9998 0.6358 3.5210 0.1799
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Fig. 3 UI (d1k ) estimation errors of the ASKF and the KFLMS in the first case

Fig. 4 UI (d2k ) estimation errors of the ASKF and the KFLMS in the first case

The above observations illustrate the usefulness of the proposed results. Moreover,
from the observations (3) and (4), it is shown that the UI filter is more effective than
the modified bias filter in obtaining the UI estimates. Note that, in this simulation case
the ROUMVF cannot yield the UI estimates due to Hk = 0.

To further show why the KFLMS is superior to the ASKF, we illustrate the estima-
tion errors of the UI estimates of the ASKF and the KFLMS in Figs. 3 and 4. From
the figures, it is clear that the UI estimates obtained by the adaptive LMS algorithm
are more accurate than those obtained by using the random walk model.

The second case In this subsection, we consider the numerical system that satisfies
T̄k = 0 and the unknown inputs affect both the state and the measurement equations.
The parameters of system (1)–(2) are as follows:

Ak =
[−0.09 −0.05
0.017 0.06

]
. Bk = 02×1. Gk =

[
0.95 2
−1 3

]
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Table 2 Performance of the
ASKF, OTSKF, KFLMS,
CKFLMS, and ROUMVF in the
second case

Filter rmse(x1k ) rmse(x2k ) rmse(d1k ) rmse(d2k )

ASKF 0.1937 0.4061 0.1819 0.0974

OTSKF 0.1937 0.4061 0.1819 0.0974

KFLMS 0.1546 0.3930 0.1177 0.0550

CKFLMS1 0.1329 0.3794 0.1176 0.0550

CKFLMS2 0.3343 0.5229 0.3559 0.1531

ROUMVF 3.6336 3.6466 2.4870 1.7476

Ck =
[
1 0
1 1

]
. Hk =

[
1 0.7
0 0

]
. Qk =

[
0.0036 0.0342
0.0342 0.3249

]
. Rk =

[
0.51 0
0 0.26

]

In the simulation, we set x0 = [1 1]T and ak = 0.85 which yield μk = 0.0054. The
unknown input is considered as follows:

dk =
[

0.5Us
k−200 − 0.5Us

k−500−0.4Us
k−500 + 0.4Us

k−700

]

where Us
k is the unit-step function.

The obtained rmses of the considered filters are given in Table 2, by which it is
clear that, same as case1, the ROUMVF has the worst performance owing to that its
gain matrix Lk is in the degeneration form, i.e., Wk = 0, because the matrix Sk is of
full-row rank, which yields T̄k = 0. Also, it is shown that the filtering performance
of the ASKF is satisfactory, which indicates that the assumed UI model (16) works
well for this simulation example. Nevertheless, it is also noticed that the performance
of the proposed KFLMS is comparable and slightly better than that of the ASKF. The
rationale behind this fact is due to that the UI estimates of the former are more accurate
than those of the latter, which can also be justified by the simulation results that the
CKFLMS1 is slightly better than the KFLMS and the CKFLMS2 is slightly worse
than the ASKF. The simulation results show that the unknown system identification
character of theKFLMS, a robust property inherited from the adaptive LMS algorithm,
may be superior to those solely obtained from model-based filtering approaches, e.g.,
the conventionalKalmanfiltering approach,when state estimation is applied to systems
with arbitrary UIs in the system dynamics. Furthermore, the estimation errors of the
UI estimates of the ASKF and the KFLMS are depicted in Figs. 5 and 6, by which it
once again shows that the UI estimates obtained by the adaptive LMS algorithm are
more accurate than those obtained by using the random walk model.

6 Conclusion

This paper highlights some disadvantages of using unbiased minimum-variance fil-
tering for systems with UIs, and further proposes a Kalman filter reinforced by least
mean square method to remedy the problem. This is achieved by using the adaptive
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Fig. 5 UI (d1k ) estimation errors of the ASKF and the KFLMS in the second case

Fig. 6 UI (d2k ) estimation errors of the ASKF and the KFLMS in the second case

LMS algorithm to estimate the UIs. In the sequel, a new filter named KFLMS is pro-
posed to simultaneously estimate the state and UIs. It is shown by numerical examples
that this new obtained robust filter is superior to the well-known Kalman filter. This
research also shows that the UI estimates obtained by the adaptive LMS algorithm
may be more accurate than those obtained by the conventionally used random walk
model. To reduce computational complexity, a useful compact version of the KFLMS
named CKFLMS is also proposed. It is shown by simulation results that this compact
version is comparable with the KFLMS.
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