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Abstract In this paper, we analytically investigate the

effects of the two samples of mechanical deformations, i.e.,

uniaxial and torsional strains on the electronic band

structure and the density of states of the single-walled

carbon nanotubes (SWCNTs) using the nearest neighbor,

the third-nearest neighbor (3-NN-TB) and the fifth-nearest

neighbor tight-binding (5-NN-TB) approaches to compare

the estimated band gap and the density of states of the three

methods. To do this, we not only make use of the previous

works but also analytically develop a 5-NN-TB-based

model for the investigation of the mentioned types of

strains. The purpose of this paper is to employ this model

for the investigation of the two types of strain in order to

acquire an analytic formula for the band structure under

strain and get the advantage of analytic formula (e.g., speed

in band structure calculations under strain) in conjunction

with the high degrees of accuracy.

keywords Density of states � Single wall CNT � Tight

binding � Mechanical deformation � Band structure

1 Introduction

Semiconductors are the basic elements of today’s elec-

tronic devices which can transport the electronic carriers

in a controlled manner, detect light emissions, emit light

and so on. But nearly all of their electronic properties

depend on their electronic band structure, band gap and

the density of states (DOS). These characteristics of

semiconductors are in turn subject to the changes due to

dozens of phenomena, e.g., temperature, mechanical

strains. On the other hand, carbon nanotubes are the

rather new types of semiconductors. Their electronic

properties have been investigated since the time of their

exploration (Saito et al. 1992; Zang 2005; Wan-Sheng

2013; Bahari and Amiri 2012; Sivasathya and Thiru-

vadigal 2013; Souier et al. 2013). From here on, we

theoretically develop a fifth-nearest neighbor p-tight-
binding model for the investigation of the effects of the

two types of mechanical strains and then compare it with

the results of the nearest neighbor and the third-nearest

neighbor tight-binding approaches. The problem of the

effect of uniaxial and torsional strains on band gap is

originally claimed by Yang et al. (1999) who treated the

problem by the nearest neighbor tight-binding model,

which is first used by Saito et al. (1992) to treat SWCNTs

in non-strained mode. In 2002, the band structure of

SWCNTs (in the absence of strain) was treated with the

third-nearest neighbor tight model by Reich et al. (2002)

as more accurate and closer results to ab initio results.

However, this problem was once again treated using the

fifth-nearest neighbor tight-binding approximation by Han

et al. (2010). They also showed that their results are ten

times closer to the ab initio results than that of (Reich

et al. 2002), i.e., in this situation the maximal deviation of

the corresponding TB approximation from the first-prin-

ciple calculation is 0.025 eV while it is 0.25 eV for

MCKM (all k’s along high symmetry lines) in its 3-NN-

TB (third-nearest neighbor tight binding) counterpart. In

the following lines, we develop a perturbed 5-NN-TB in

order to estimate the response to the mentioned types of
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strains. Next, in Sect. 3, we compare the results with the

nearest and the third-nearest neighbor tight-binding

approximations.

2 Method

As is known theoretically, SWCNT can be considered as a

graphene sheet that is rolled over into a cylinder on a lattice

vector C so that the beginning and the end of C join

together. Illustrated in Fig. 1 is the graphene sheet with the

lattice vector C and the unit lattice vectors a~1 and a~2. The

nearest, the second-nearest, the third-nearest and the fifth-

nearest neighbors are also illustrated in this figure.

According to Fig. 1 ¼ n1a~1 þ n2a~2, where a ¼ a~1j j ¼
a~2j j ¼

ffiffiffi

3
p

aC�C, being aC–C carbon–carbon bonding distance in

the absence of strain, which is 0.142 nm and Cj j ¼
ach ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21 þ n22 þ n1n2
p

.Now, let theunit vectors ĉ ¼ C
Cj j and

t̂ ¼ T
Tj j, where T is the one-dimensional lattice vector (White

et al. 1993) which is perpendicular to vector C, we find that:

ĉ ¼ n1

ach
a~1 þ

n2

ach
a~2 ð1aÞ

t̂ ¼ n1 þ 2n2
ffiffiffi

3
p

ach
a~1 þ

2n1 þ n2
ffiffiffi

3
p

ach
a~2 ð1bÞ

solving for a~1 and a~2, we find that:

a~1 ¼
ffiffiffi

3
p

a

2d
n2 t̂þ

a

2d
ð2n1 þ n2Þĉ ð2aÞ

a~2 ¼ �
ffiffiffi

3
p

a

2d
n1 t̂þ

a

2d
ð2n2 þ n1Þĉ ð2bÞ

If being R~11, R~12 and R~13 are the position vectors for the

atoms 11, 12 and 13, respectively, then

r~1 ¼ R~11 � R~0 ¼
2a~1 � a~2

3
ð3aÞ

r~2 ¼ R~12 � R~0 ¼
2a~2 � a~1

3
ð3bÞ

r~3 ¼ R~13 � R~0 ¼ �ðr~1 þ r~2Þ ð3cÞ

Therefore,

r~1 ¼
a

2
ffiffiffi

3
p

ch
ðn1 þ 2n2Þt̂þ

a

2ch
n1ĉ ð4aÞ

r~2 ¼ � a

2
ffiffiffi

3
p

ch
ð2n1 þ n2Þt̂þ

a

2ch
n2ĉ ð4bÞ

From the continuum mechanics we know that if

r~i ¼ rit t̂þ ricĉ, then

rit ! ritð1þ etÞðtensileÞ ð5aÞ
ric ! ric þ rittan hð Þ torsionð Þ ð5bÞ

where et and h are the percentage of tensile and angle of

shear, respectively. Next, applying (5-a) and (5-b) on (4-a)

and (4-b), we get:

r~1 ¼
a

2
ffiffiffi

3
p

ch
ðn1 þ 2n2Þð1þ etÞt̂

þ a

2ch
n1 þ

ðn1 þ 2n2ÞtanðhÞ
ffiffiffi

3
p

� �

ĉ ð6aÞ

r~2 ¼ � a

2
ffiffiffi

3
p

ch
ð2n1 þ 2n2Þð1þ etÞt̂

þ a

2ch
n2 �

ð2n1 þ n2ÞtanðhÞ
ffiffiffi

3
p

� �

ĉ ð6bÞ

Since a~1 ¼ r~1 � r~3 and a~2 ¼ r~2 � r~3,

a~1 ¼
ffiffiffi

3
p

að1þ rtÞ
2d

n2 t̂þ
a

2d
ð2n1 þ n2Þ þ

ffiffiffi

3
p

tan(hÞn2
h i

ĉ

ð7aÞ

a~2 ¼ �
ffiffiffi

3
p

að1þ rtÞ
2d

n1 t̂þ
a

2d
ð2n2 þ n1Þ �

ffiffiffi

3
p

tan(hÞn1
h i

ĉ

ð7bÞ

Next, according to tight-binding model, we have:

u1ðkÞ ¼
1
ffiffiffiffi

N
p

X

N

n¼1

vðr� RAnÞeik�RAn ð8aÞ

u2ðkÞ ¼
1
ffiffiffiffi

N
p

X

N

n¼1

vðr� RBnÞeik�RBn ð8bÞ

w kð Þ ¼ c1u1ðkÞ þ c2u2ðkÞ ð8cÞ

where u1 and u2 are the basis functions, RA and RB are the

position vectors for lattice sites A and B, respectively, v(r-
RAn) and v(r-RBn) are wave function of the pz orbital at

n’th atom at lattice sites A and B, respectively, and w(k) is
the wave function of the electron at the crystal lattice.

Fig. 1 Graphene lattice with the unit vectors a~1 and a~2 is illustrated.

The nearest, second-, third-, fourth- and fifth-nearest neighboring

atoms are also illustrated in unstrained lattice
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Starting from the tight-binding Hamiltonian and the

overlap matrix (Reich et al. 2002):

HAAðkÞ � ESAAðkÞ HABðkÞ � ESABðkÞ
H�

ABðkÞ � ES�ABðkÞ HAAðkÞ � ESAAðkÞ

�

�

�

�

�

�

�

�

¼ 0: ð9Þ

with

HAA kð Þ ¼ u1jHju1 ¼
1

N

X

N

n¼1

X

N

n
0 ¼1

eik:ðRAn�RAn0 Þ

� hvðr� RAnÞjHjvðr� RAn
0 Þi

ð10aÞ

HAB kð Þ ¼ u1jHju2 ¼
1

N

X

N

n¼1

X

N

n
0¼1

eik:ðRAn�RBn0 Þ

� hvðr� RAnÞjHjvðr� RBn0 Þi
ð10bÞ

SAA kð Þ ¼ u1ju1

¼ 1

N

X

N

n¼1

X

N

n
0¼1

eik:ðRAn�RAn0Þhvðr� RAnÞjvðr� RAn0Þi

ð10cÞ

SAB kð Þ ¼ u1ju2

¼ 1

N

X

N

n¼1

X

N

n
0 ¼1

eik:ðRAn�RBn0Þhvðr� RAnÞjvðr� RBn0Þi

ð10dÞ

and

E ¼
�ð�2E0 þ E1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2E0 þ E1ð Þ2�4E2E4

q

2E3

ð10eÞ

considering

E0 ¼ HAASAA ð10fÞ
E1 ¼ SABH

�
AB þ HABS

�
AB ð10gÞ

E2 ¼ H2
AA � HABH

�
AB ð10hÞ

E3 ¼ S2AA � SABS
�
AB ð10iÞ

After solving (10a)–(10-d) regarding the fifth-nearest

neighbor atoms, we get the following hopping parameters:

e2p ¼ hvðr� R0ÞjHjvðr� R0Þi ð11aÞ

c1 ¼ hvðr� R1jÞjHjvðr� R0Þij ¼ 1; 2; 3 ð11bÞ

s1 ¼ hvðr� R1jÞjvðr� R0Þij ¼ 1; 2; 3 ð11cÞ

c2 ¼ hvðr� R2jÞjHjvðr� R0Þi j ¼ 1; 2; 3; 4; 5; 6 ð11dÞ

s2 ¼ hvðr� R2jÞjvðr� R0Þij ¼ 1; 2; 3; 4; 5; 6 ð11eÞ

c3 ¼ hvðr� R3jÞjHjvðr� R0Þji ¼ 1; 2; 3 ð11fÞ

s3 ¼ hvðr� R3jÞjvðr� R0Þij ¼ 1; 2; 3 ð11gÞ

c4 ¼ hvðr� R4jÞjHjvðr� R0Þij ¼ 1; 2; 3; 4; 5; 6 ð11hÞ

s4 ¼ hvðr� R4jÞjvðr� R0Þij ¼ 1; 2; 3; 4; 5; 6 ð11iÞ

c5 ¼ hvðr� R5jÞjHjvðr� R0Þij ¼ 1; 2; 3; 4; 5; 6 ð11jÞ

s5 ¼ hvðr� R5jÞjvðr� R0Þij ¼ 1; 2; 3; 4; 5; 6 ð11kÞ

where e2p, c1 to c5 and s1 to s5 can be found in Ref. (Han

et al. 2010). We know that in the presence of mechanical

strain, the hopping parameters change. So, because the

distances are not the same as the non-strained lattice, in

(11-b)–(11-k), we are faced with the parameters c1j, s1j
(j = 1, 2, 3), c2j, s2j (j = 1; . . .; 6), c3j, s3j (j = 1, 2, 3), c4j,
s4j (j = 1; . . .; 6) and c5j, s5j (j = 1, 2, 3). But, because the

distance between these atoms to the central atom (atom 0 in

Fig. 1) compared with the nearest neighbor atoms to the

central atom is far enough, we only consider the variations

of the nearest neighbor parameters and assume that the

variations of the remaining hopping parameters due to the

strain is negligible. Therefore,

E0 ¼ e2p þ c2u kð Þ þ c5u 2k1 � k2; k1 � 2k2ð Þ
� �

� 1þ s2u kð Þ þ s5u 2k1 � k2; k1 � 2k2ð Þ½ �
ð12aÞ

E1 ¼ fsc kð Þ þ 2s3c3f 2kð Þ
þ 2s4c4 6þ u kð Þ þ u 2kð Þ þ u 3kð Þ þ tðkÞ½ �
þ s3c4 þ s4c3ð Þ g kð Þ þ u 2k1 � k2; k1 � 2k2ð Þ þ tðkÞ½ �
þ s3gc kð Þ þ c3gs kð Þ þ s4 c11 þ c12 þ c13ð Þ u kð Þ½f
þ u 2kð Þ þ u 2k1 � k2; k1 � 2k2ð Þ�
� uc kð Þ þ uc 2kð Þ þ uc 2k1 � k2; k1 � 2k2ð Þ
� ��

þ c4 s11 þ s12 þ s13ð Þ u kð Þ þ u 2kð Þ½f
þ u 2k1 � k2; k1 � 2k2ð Þ� � us kð Þ þ us 2kð Þ½
þ us 2k1 � k2; k1 � 2k2ð Þ�g ð12bÞ

E2 ¼ e2p þ c2u kð Þ þ c5u 2k1 � k2; k1 � 2k2ð Þ
� �2

� fc kð Þ þ c3gc kð Þ þ c4 c11 þ c12 þ c13ð Þ u kð Þð½
	

þ u 2kð Þ þ u 2k1 � k2; k1 � 2k2ð ÞÞ
� uc kð Þ þ uc 2kð Þ þ uc 2k1 � k2; k1 � 2k2ð Þ

 ��

þ c23f 2kð Þ þ c3c4 g kð Þ þ u 2k1 � k2; k1 � 2k2ð Þ þ tðkÞ½ �
þ c24 6þ u kð Þ þ u 2kð Þ þ u 3kð Þ þ tðkÞ½ �

�

ð12cÞ

E3 ¼ 1þ s2u kð Þ þ s5u 2k1 � k2;k1 � 2k2ð Þ½ �2

� fs kð Þ þ s3gs kð Þ þ s4 s11 þ s12 þ s13ð Þ u kð Þ þ u 2kð Þð½f
þ u 2k1 � k2;k1 � 2k2ð ÞÞ � us kð Þ þ us 2kð Þð
þ us 2k1 � k2;k1 � 2k2ð ÞÞ� þ s23f 2kð Þ
þ s3s4 g kð Þ þ u 2k1 � k2;k1 � 2k2ð Þ þ tðkÞ½ �
þ s24 6þ u kð Þ þ u 2kð Þ þ u 3kð Þ þ tðkÞ½ �

�

ð12dÞ

The above axillary functions (u(k), f(k), fsc(k), fc(k),

fs(k), gc(k), gs(k), g(k), t(k)) are defined in Appendix. If

¼ kt t̂þ kcĉ, then in case of uniaxial strain, the limits of kt
are given by � p

Tj j � kt � p
Tj j, where T is the 1D lattice
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vector length. The number of atoms in the 1D unit cell does

not change in the presence of uniaxial strain and so the

range of m does not change from the undeformed case

(m = 0; 1; 2; . . .;N where N is the number of hexagons in

the 1D unit cell). In the case of torsion, the number of

atoms in the 1D unit cell and T can be large. The corre-

sponding span of kt ¼ k � t̂ is then small compared to the

undeformed tube and the range of m is commensurate with

the number of atoms in the 1D unit cell (Yang et al. 1999).

As can be seen in (12-a)–(12-d), the third harmonic of k

is now in our equation in addition to the first and the second

ones, while the nearest neighbor approximation only regard

the first harmonic, and the third-nearest neighbor approx-

imation regard the first and the second harmonics of the

wave vector k. In Eqs. (12-a)–(12-d) c1j is given by (Har-

rison 1989):
c1j
c1
¼ aC�C

r1j

� 
2

where r1j ¼ r1j � R0

�

�

�

�, and r1j

being the position vector of atom 1j. Now, s1j can be

acquired by means of the following:

c1j
c1

¼
v r� R0ð ÞjHjv r� R1j


 �

with strain

v r� R0ð ÞjHjv r� R1j


 �

without strain

¼
v r� R0ð Þjv r� R1j


 �

with strain

v r� R0ð Þjv r� R1j


 �

without strain
¼ s1j

s1
ð13Þ

for small percentage of strain. Now that we worked out E0,

E1, E2, E3, in order to use (10-e) for SWCNTs it must be

considered with Born–von Karman boundary condition:

k � C ¼ 2pm ð14Þ

where m is a natural number. In order to calculate the DOS,

we have to use the following equation:

n Eð Þ ¼ 2

l

X

m

r d k � kq

 � oE

ok

�

�

�

�

�

�

�

�

�1

dk ð15Þ

where n(E) is
oNðEÞ
oE

(N(E) is the total number of states per

unit cell below a given energy E) and l is the length of the

one-dimensional Brillouin zone that is equal to the total

area of the first Brillouin zone divided by the interline

spacing; we can write the DOS per carbon atom q(E) as
(Mintmire and White 1998):

q Eð Þ ¼ nðEÞ
2

¼ 4

l

X

all k0 sonall subbandshaving the enegyE

oE

okjj

�

�

�

�

�

�

�

�

�1

ð16Þ

where k| are the wave vectors which meet condition (14).

3 Applications and Results

In this section, we use our method to estimate the band gap

and the density of states for a number of chiral vectors.

Then, we compare our results with the previous models of

tight-binding approximation. We also examine the density

of states under applied strains.

Illustrated in Fig. 2 is the band gap of a number of chiral

vectors under a small percentage of uniaxial strain. As can

be seen in the figure, in nonzero strain the band gap values

change for all three tight-binding approximations. For most

of the cases, the band gap varies along a straight line which

agrees with that of (Yang et al. 1999) and (Pakkhesal and

Ghayour 2010). The sign of the slope of such lines is

determined by (n1–n2) mod3 rule for uniaxial strain, and its

magnitude depends on the chiral angle as is given in (Yang

et al. 1999). Nonetheless, in some chiral vectors (like

(8,6)), there is a gradual reversal in the slope of band gap

variations which is because of the displacement of sub-

bands at the band edge which is well discussed in

(Pakkhesal and Ghayour 2010). Also, in this figure it can

be seen that the values which are calculated using 3-NN-

TB are in better agreement with that of 5-NN-TB

approximation.

Illustrated in Fig. 3 are the values of band gap variations

due to the shear strain. As can be seen, in most of the cases

there is better agreement between the 3-NN-TB and the

5-NN-TB values. Besides, in a small number of chiral

vectors, as the percentage of torsional strain increases, the

5-NN-TB shows an indirect band gap, e.g., (5,5) at 5% of

strain.

As is shown in Fig. 3, in some of the cases, the three

methods agree in linear relationship between the angle of

shearing strain and the band gap variations for small

percentage of strain like (5,5), (8,0), but in some other

ones like (7,0) and (7,6) there are some deviations from

the linear behavior of band gap versus shear, which is

well emphasized by 5-NN-TB approximation. In a small

number of cases like those of (8,6) and (5,4) there are

approximately no linear relationships, which implies

nonlinear displacements of the sub-bands of the band

edges.

In linear cases, for chiral tubes, |dEg/d(degrees of shear

strain)| decreases with increase in chiral angle and the slope

of dEg/d(degrees of shear strain) follows (n1–n2) mod3 rule

which agrees with that of (Yang et al. 1999).

Illustrated in Figs. 4 and 5 are the variations of the DOS

vs. uniaxial strain and vs. degrees of shear, respectively.

These figures are plotted for the chiral vectors (7,0) and

(8,0). In this, figures (a), (b) are calculated with the nearest

neighbor tight binding, (c), (d) with 3-NN-TB and (e),

(f) with 5-NN-TB. It is worth mentioning that the point of

discontinuities happened due to the value of infinity from

our calculating software. As is illustrated in Fig. 4, the

three methods agree that as a result of the application of

uniaxial strain, DOS increases at band edges with

increasing percentage of strain for (7,0) and decreases with

increasing strain at band edges for (8,0). The points of
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singularities correspond to the van Hove singularities

which occur near the corners of hexagonal Brillouin zone

of the graphene lattice.

Also, Fig. 5 depicts the DOS vs. degrees of shear using

the three tight-binding methods. Figure 5a, b shows that, in

spite of the gap values, the DOS at band edges decreases

Fig. 2 Band gap variations of a

number of SWCNTs with

different chiral vectors for zero

to 5% of tensile strain are

depicted. The values are

calculated according to the

nearest neighbor (circles), third-

nearest neighbor (squares) and

fifth-nearest neighbor

(triangles) tight-binding

approximations

Fig. 3 Band gap variations of a

number of SWCNTs with

different chiral vectors, for zero

to 5 degrees of shear strain, are

depicted. The values are

calculated according to the

nearest neighbor (circles), third-

nearest neighbor (squares) and

fifth-nearest neighbor

(triangles) tight-binding

approximations
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with increasing strain according to the nearest neighbor

tight-binding model.

Besides, it shows that as the strain increases the sin-

gularities at the band edges vanish. However, the 3-NN-

TB as in Fig. 5b, c and 5-NN-TB as in Fig. 5e, f does

not show a serious variation of the DOS with shearing

strain.

4 Conclusion

In this article, we investigated the response of three tight-

binding models to two types of mechanical deformation,

i.e., uniaxial and torsional strains. Initially, we developed a

perturbed fifth-nearest neighbor tight-binding model using

the original unperturbed fifth-nearest neighbor model.

Fig. 4 Variations of the DOS (per carbon atom) vs. uniaxial strain for

(7,0), calculated using the nearest neighbor tight binding (a), 3-NN-
TB (c) and 5-NN-TB (e) and for (8,0) calculated using the nearest

neighbor tight binding (b), 3-NN-TB (d) and 5-NN-TB (f). Also in

this figure, blue curved lines show 0%, green 1%, red 2% and cyan

3% of tensile
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Next, we applied our 5-NN-TB model to investigate the

band gap and DOS variations of a number of SWCNT and

compared the values with the nearest and the third-nearest

neighbor tight-binding approximations.

Comparison of the three methods shows that while the

3-NN-TB and 5-NN-TB values are in better agreement,

there are differences in the acquired values of the three

methods and because the 5-NN-TB model considers the

fourth and the fifth-nearest neighbors in addition to the

first, second and third ones, it yields more exact values than

its nearest and the third-nearest counterparts as is shown in

(Han et al. 2010). The results of this paper enable us to

analytically investigate the effects of the mentioned types

of strain on the band gap and the DOS of SWCNTs while

maintaining the acceptable levels of accuracy.

Appendix

uðk~Þ ¼ 2cos k~ � a~1

� 


þ 2cos k~ � a~2

� 


þ 2cos k~ � a~2 � a~1ð Þ
h i

ðA1Þ

f ðk~Þ ¼ 3þ uðk~Þ ðA2Þ

fsc k~
� 


¼ 2 s11c11 þ s12c12 þ s13c13ð Þ þ 2 s11c13 þ s13c11ð Þcos(k~ � a~1Þ

þ 2 s12c13 þ s13c12ð Þcos(k~ � a~2Þ þ 2ðs11c02 þ s12c11Þcos[k~:ða~2 � a~1Þ�

ðA3Þ

fccðk~Þ ¼ c211 þ c212 þ c213 þ 2c11c13cos(k~ � a~1Þ
þ 2c12c13cos(k~ � a~2Þ þ 2c11c12cos[k~ � ða~2 � a~1Þ�

ðA4Þ

Fig. 5 Variations of the DOS

(per carbon atom) vs. degrees of

shearing strain for (7,0),

calculated using the nearest

neighbor tight binding (a),
3-NN-TB (c) and 5-NN-TB

(e) and for (8,0) calculated

using the nearest neighbor tight

binding (b), 3-NN-TB (d) and
5-NN-TB (f). Also in this figure,
blue curved lines show 0

degrees, green 1 degree, red 2

degrees and cyan 3 degrees of

tensile
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fss k~
� 


¼ s211 þ s212 þ s213 þ 2s11s13cos k~ � a~1

� 


þ 2s12s13cos k~ � a~2

� 


þ 2s11s12cos k~ � a~2 � a~1ð Þ
h i

ðA5Þ

uc k~
� 


¼ 2c12cos(k~ � a~1Þ þ 2c11cos(k~ � a~2Þ

þ 2c13cos½k~ � ða~2 � a~1Þ�
ðA6Þ

usðk~Þ ¼ 2s12cos(k~ � a~1Þ þ 2s11cos(k~ � a~2Þ
þ 2s13cos[k~ � ða~2 � a~1Þ�

ðA7Þ

gc k~
� 


¼ 2uc k~
� 


þ uc k1 � 2k2; 2k1 � k2ð Þ ðA8Þ

gs k~
� 


¼ 2us k~
� 


þ us k1 � 2k2; 2k1 � k2ð Þ ðA9Þ

t kð Þ ¼ u 3k1 � k2; k1 þ 2k2ð Þ þ u 3k2 � k1; 2k1 þ k2ð Þ
ðA10Þ
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