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Abstract
The current paper aims at investigating Fractional Hamiltonian Equations for a class of
fractional optimal control problems with time delay. Furthermore, we introduce a
method to solve the resulting two boundary values problem (TBVP) by extending
Agrawal’s fractional variational method in (Nonlinear Dyn. 38:323-337, 2004) and
using Bernstein polynomials (BPs). In this paper we use the Caputo fractional
derivative of order α where 0 < α < 1. Some numerical examples are included to
demonstrate the validity of the present method.
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1 Introduction
Fractional calculus is a branch of mathematics that generalizes the derivative and the inte-
gral of a function to a noninteger order []. Fractional calculus has received considerable
attention in recent years and there is hardly a field in science and engineering that has re-
mained untouched by this field. It has been shown that materials with memory and hered-
itary effects and dynamical processes including gas diffusion and heat conduction can be
more adequately modeled by fractional differential equations (FDEs) than by integer-order
differential equations [, ].

In fractional calculus the Caputo and Riemann-Liouville are two main kinds of deriva-
tives where each presents some advantages and disadvantages (see, e.g., []). The Caputo
fractional derivative is commonly used in modeling physical phenomena but it is possible
to assign a physical interpretation meaning for the Riemann-Liouville fractional derivative
too. For instance, Heymans and Podlubny in [] have illustrated some fractional differen-
tial equations with Riemann-Liouville fractional derivatives in the field of viscoelasticity.

A fractional optimal control problem (FOCP) is an optimal control problem in which the
criterion and/or the differential equations governing the dynamics of the system contain
at least one fractional derivative operator []. Most FOCPs do not have exact solutions, so
in these cases approximation methods and numerical techniques must be used. Recently,
several approximation methods to solve FOCPs have been introduced. Agrawal in [] has
introduced a general formula by making the TBVPs for some kinds of FOCP’s. Tricaud
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and Chen have solved fractional order optimal control problems by means of rational ap-
proximation []. Moreover, the effectiveness of using Legendre and Bernstein polynomials
for approximating the solution of FOCPs has been demonstrated in [–]). Real life phe-
nomena have been described more precisely with delay differential equations, so the delay
fractional optimal control problem (DFOCP) has become the focus of many researchers in
the last decade. Baleanu et al. in [, ] analyzed the fractional variational principles for
some kinds of DFOCPs within the Riemann-Liouville and Caputo fractional derivatives,
respectively, and made their corresponding Euler-Lagrange equations.

In this paper, we extend the Agrawal method in [] and use Bernstein polynomials (BPs)
to solve linear DFOCPs with time-varying coefficients and quadratic objective function.
In fact we consider the following DFOCP:

min J
[
x(·), u(·)] =




∫ 



[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt, ()

subject to

c
Dα

t xi(t) = A(t)x(t) + B(t)u(t) + Ad(t)x(t – d), ()

x(t) = x, t ∈ [–d, ], ()

where x(t) = [x(t) · · · xr(t)]T and u(t) = [u(t) · · · us(t)]T . Also, Q(t) ≥  and R(t) >  are,
respectively, r×r and s×s time-varying matrices of the state and control coefficients in the
cost function with continuous functions as their entries. Furthermore, ai,j(t), (ad)i,j(t), and
bi,k(t) are continuous functions which are, respectively, the coefficients of xj(t), xj(t – d)
for ( ≤ j ≤ r) and uk(t) for ( ≤ k ≤ s) in the ith fractional differential equation (), and
d >  is the given constant time delay. The state-control pair p = (x(·), u(·)) that satisfies ()
and () is called the state-control admissible pair. The target is to find the admissible pair
p∗ = (x∗(·), u∗(·)) that minimizes the cost function J[x(·), u(·)] in ().

The fractional derivative is defined in the Caputo sense, i.e.,

c
Dα

t xi(t) =

{


�(–α)
∫ t

 (t – τ )–α ẋi(τ ) dτ ,  < α < ,
ẋi, α = .

()

This paper is organized as follows. In Section  some preliminaries and definitions in
the fractional calculus that used in this manuscript are reviewed. Section  gives a general
introduction to Bernstein polynomials and their properties. In Section  the TBVP for a
FOCP with time delay is analyzed and it is solved by using BPs. Section  contains some
numerical examples. Conclusions are presented in Section .

2 Some preliminaries in fractional calculus
This section consists of some basic definitions and properties in fractional calculus [,
]. In the sequel, � represents the Gamma function.

Definition . The space ACn([, ]) denotes the set of all functions f (t) which have the
continuous derivatives up to order (n – ) on [, ] and f (n–)(t) is absolutely continuous on
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[, ]; i.e. there exists (almost everywhere) a function g ∈ L([, ]) such that

f (n–)(t) = f (n–)() +
∫ t


g(τ ) dτ .

Definition . Let ϕ ∈ L([, ]). The integrals

Iα
t ϕ(t) =


�(α)

∫ t


(t – τ )α–ϕ(τ ) dτ ,  < t ≤ ,

tIα
 ϕ(t) =


�(α)

∫ 

t
(τ – t)α–ϕ(τ ) dτ ,  ≤ t < ,

()

where α > , are, respectively, called the left-sided and right-sided Riemann-Liouville frac-
tional integrals of order α. Also

I
t ϕ(t) =t I

 ϕ(t) = ϕ(t).

Definition . Let n –  ≤ α < n. The left-sided and right-sided Riemann-Liouville frac-
tional derivatives of order α of the function ϕ(t) ∈ ACn([, ]) are defined, respectively, as
follows:

Dα
t ϕ(t) =


�(n – α)

(
d
dt

)n ∫ t


(t – τ )n–α–ϕ(τ ) dτ ,

tDα
 ϕ(t) =


�(n – α)

(
–

d
dt

)n ∫ 

t
(τ – t)n–α–ϕ(τ ) dτ .

()

Definition . Let n –  ≤ α < n. The left-sided and right-sided Caputo fractional deriva-
tives of order α of the function ϕ(t) ∈ Cn([, ]) are defined, respectively, as follows:

c
Dα

t ϕ(t) =


�(n – α)

∫ t


(t – τ )n–α–

(
d
dt

)n

ϕ(τ ) dτ ,

c
t Dα

 ϕ(t) =


�(n – α)

∫ 

t
(τ – t)n–α–

(
–

d
dt

)n

ϕ(τ ) dτ .
()

The Riemann-Liouville fractional derivatives and the Caputo fractional derivatives are
connected by the following relations:

c
Dα

t ϕ(t) = Dα
t ϕ(t) –

n–∑

k=

ϕ(k)()
�(k – α + )

(t – )k–α , ()

c
t Dα

 ϕ(t) = tDα
 ϕ(t) –

n–∑

k=

(–)kϕ(k)()
�(k – α + )

( – t)k–α . ()

Moreover, the Caputo fractional derivative of a constant function is zero.

Definition . Let α > . Then Iα
t (Lp([, ])) denotes the space of all functions f (t), rep-

resented by Iα
t ϕ where ϕ ∈ Lp([, ]).
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Lemma . ([]) Let α > . The equality

Dα
t Iα

t ϕ(t) = ϕ(t)

is valid for any ϕ ∈ L([, ]) while

Iα
t Dα

t f (t) = f (t)

is satisfied for f ∈ It
α(L([, ])). Furthermore, if f ∈ L([, ]) and It

n–αf (t) ∈ ACn([, ]),

It
α

Dt
αf (t) = f (t) –

n–∑

i=

tα–i–

�(α – i)

(
d
dt

)n–i–(
It

n–αf (t)
)
,

where n = [α] +  and ACn([, ]) is defined in the sense of Definition ..

3 Bernstein polynomials (BPs) and their properties
The Bernstein polynomial of degree n over the interval [a, b] is defined as follows:

Bi,n

(
t – a
b – a

)
=

(
n
i

)(
t – a
b – a

)i( b – t
b – a

)n–i

, i = , , . . . , n.

So, within the interval [, ] we have

Bi,n(t) =
(

n
i

)
ti( – t)n–i.

Define �m(t) = [B,m(t) B,m(t) · · · Bm,m(t)]T . To consider the vector �m(t – d) (d is the
given delay) in terms of �m(t), we state the following lemmas.

Lemma . ([, , ]) We can write �m(t) = �Tm(t), where � = (ϒi,j)m+
i,j= is an upper

triangular (m + ) × (m + ) matrix, and

ϒi+,j+ =

{
(–)j–i(m

i
)(m–i

j–i
)
, i ≤ j,

, i > j,

for i, j = , , . . . , m and Tm(t) = [ t · · · tm]T .

Lemma . ([]) Let L[, ] be a Hilbert space with inner product 〈f , g〉 =
∫ 

 f (t)g(t) dt.
If y ∈ L[, ], then y has a unique best approximation of order m as follows:

m∑

i=

ciBi,m(t) = CT�m(t), t ∈ [, ], ()

where the unique vector C is defined as C = [c c · · · cm]T .

In (), C = Q–〈y,�m〉 where

〈y,�m〉 =
∫ 


y(t)�m(t) dt =

[〈y, B,m〉 〈y, B,m〉 · · · 〈y, Bm,m〉]T ,



Safaie and Farahi Advances in Difference Equations  (2016) 2016:298 Page 5 of 16

and the entry of the matrix Q = (Qi+,j+)m
i,j= is defined as follows:

Qi+,j+ =
∫ 


Bi,m(t)Bj,m(t) dt =

(m
i
)(m

j
)

(m + )
(m

i+j
) . ()

Note that a polynomial of degree m can be expanded in terms of a linear combination
of Bi,m(t), (i = , , . . . , m) as follows:

P(t) =
m∑

i=

ciBi,m(t),

we recall that the set {B,m(t), B,m(t), . . . , Bm,m(t)} is a complete basis in Hilbert space
L[, ].

Lemma . ([]) Derivatives of Pn(f ) =
∑n

j= f ( j
n )Bj,n(t) of any order converge to the cor-

responding derivatives of f . If f ∈ Ck[, ], k ≥ , then

lim
n→∞

(
Pn(f )

)(k) = f (k),

uniformly on [, ].

Lemma . ([]) For each given constant delay d > , �m(t – d) = 	�m(t), where 	 is an
(m + ) × (m + ) matrix in terms of d.

It was shown in [] that 	 = �
�–, where


 =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢
⎣

   · · · 
–d   · · · 
d –d  · · · 
...

...
. . .

...
(–d)m ( m

m–
)
(–d)m– · · · 

⎤

⎥
⎥⎥
⎥⎥⎥
⎥
⎦

,

and � is the matrix presented in Lemma ..

4 Fractional optimal control problems with state delay
In this section, first we state some lemmas to investigate the variational method for
DFOCP ()-() and make the corresponding TBVP, then two operational matrices to ap-
proximate the left-sided and right-sided Caputo fractional derivatives of �m(t) are intro-
duced to numerically solve the TBVP.

Lemma . ([]) Let α > , p, q ≥  and 
p + 

q ≤  + α (p 
=  and q 
=  in the case where

p + 

q =  + α). If ψ ∈ Lq([, ]) and ϕ ∈ Lp([, ]), then

∫ 


ϕ(t)

(
Iα

t ψ
)
(t) dt =

∫ 


ψ(t)

(
tI

α
 ϕ

)
(t) dt, ()

is valid and it is usually called the formula for fractional integration by parts.
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Lemma . ([]) Let α > , p, q ≥ , r ∈ (, ), and 
p + 

q ≤  + α (p 
=  and q 
=  in the
case where 

p + 
q =  + α). If ψ ∈ Lq([, ]) and ϕ ∈ Lp([, ]), then

∫ 

r
ϕ(t)

(
Iα

t ψ
)
(t) dt =

∫ 

r
ψ(t)

(
tI

α
 ϕ

)
(t) dt

+


�(α)

∫ r



(
Iα

t ψ
)
(t)

[∫ 

r
ϕ(s)(s – t)α– ds

]
dt.

Lemma . Let  < α < , p, q ≥  and 
p + 

q ≤  + α (p 
=  and q 
=  in the case where

p + 

q =  + α). If f , g ∈ C([, ]) and f () =  and g() = , then

(a)
∫ 


g(t)

(c
Dα

t f
)
(t) dt =

∫ 


f (t)

(c
t Dα

 g
)
(t) dt ()

and

(b)
∫ 

r
g(t)

(c
Dα

t f
)
(t) dt =

∫ 

r
f (t)

(c
t Dα

 g
)
(t) dt

–


�(α)

∫ r


f (t)c

t Dα
r

〈∫ 

r

(c
t Dα

 g
)
(s)(s – t)α– ds

〉
dt. ()

Proof Equations () and () are proved in [] when the fractional derivatives assumed
to be Riemann-Liouville. Now, by assuming ϕ = c

t Dα
 g and ψ = c

Dα
t f and applying Lemmas

. and ., considering f () =  and g() = , finding the results is straightforward. �

Remark Consider the DFOCP ()-() for α ∈ (, ). Define the following corresponding
unconstrained problem:

min J̄
[
x(·), u(·)] =

∫ 



{



xT (t)Q(t)x(t) +



uT (t)R(t)u(t)

+
[
A(t)x(t) + B(t)u(t) + Ad(t)x(t – d) –c

 Dα
t x(t)

]T
λ(t)

}
dt, ()

with the initial condition

x(t) = x, t ∈ [–d, ]. ()

The problem ()-() and the unconstraint problem ()-() have the same optimal solu-
tion [].

Theorem . The necessary conditions for J̄[x(·), u(·)] to possess the extremum is that the
triple (x(t), u(t),λ(t)) fulfills the following TBVP:

R(t)u(t) + BT (t)λ(t) = ,  ≤ t ≤ , ()
c
Dα

t x(t) = A(t)x(t) + B(t)u(t) + Ad(t)x(t – d),  ≤ t ≤ , ()

Q(t)x(t) + λ(t)A(t) + λ(t + d)A(t + d) –
(c

t Dα
–dλ

)
(t)

+


�(α)
c
t Dα

–η

〈∫ 

–d

(c
t Dα

 λ
)
(s)(s – t)α– ds

〉
= ,  ≤ t ≤  – η, ()
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Q(t)x(t) + λ(t)A(t) –
(c

t Dα
 �

)
(t) = ,  – η ≤ t ≤ , ()

x() = x, λ() = . ()

Proof Let the triple (u∗(t), x∗(t),λ∗(t)) be the optimal solution of ()-(). To find the op-
timal control, we follow the traditional approach by making variations in the optimal so-
lution of the problem ()-(). Assume δx, δu, and δλ are, respectively, the variations of
x∗(t), u∗(t), and λ∗(t), then a variation of the optimal control can be defined as follows:

x(t) = x∗(t) + δx, u(t) = u∗(t) + δu, λ(t) = λ∗(t) + δλ.

Now it is possible to make these changes on J̄ , so we have

J̄
[(

x(·), u(·))] = J̄
[(

x∗(·), u∗(·))] + δJ̄ .

Since J̄ reaches its minimum at (x∗(·), u∗(·)), it can be concluded that δJ̄ = . Moreover,

δJ̄ =
∫ 



{
δxT Q(t)x∗(t) + δuT R(t)u∗(t) +

[
A(t)x∗(t) + B(t)u∗(t) + Ad(t)x∗(t – d)

–c
 Dα

t x∗(t)
]T

δλ +
[
A(t)δx + B(t)δu + Ad(t)δx(t – d) – δ

(c
Dα

t x∗)(t)
]T

λ∗(t)
}

dt,

or

δJ̄ =
∫ –d



{
δxT(

Q(t)x∗(t) + AT (t)λ∗(t) + AT
d (t + d)λ∗(t + d)

)
+ δuT(

R(t)u∗(t)

+ B(t)Tλ∗(t)
)

+
[
A(t)x∗(t) + B(t)u∗(t) + Ad(t)x∗(t – d) –c

 Dα
t x∗(t)

]T
δλ

– δ
(c

Dα
t x∗)T (t)λ∗(t)

}
dt +

∫ 

–d

{
δxT(

Q(t)x∗(t) + AT (t)λ∗(t)
)

+ δuT(
R(t)u∗(t)

+ BT (t)λ∗(t)
)

+
[
A(t)x∗(t) + B(t)u∗(t) + Ad(t)x∗(t – d) –c

 Dα
t x∗(t)

]T
δλ

– δ
(c

Dα
t x∗)T (t)λ∗(t)

}
dt.

Since δ(c
Dα

t x) = c
Dα

t δx (this can be proved easily by applying the definition of first varia-
tion) and δx() = , by applying Lemma .(a) and (b) one can obtain the following equiv-
alent equation:

δJ̄ =
∫ –d



{
δxT(

Q(t)x∗(t) + AT (t)λ∗(t) + AT
d (t + d)λ∗(t + d)

)
+ δuT(

R(t)u∗(t)

+ BT (t)λ∗(t)
)

+
[
A(t)x∗(t) + B(t)u∗(t) + Ad(t)x∗(t – d) –c

 Dα
t x∗(t)

]T
δλ

– δxT(c
t Dα

–dλ
∗)(t)

}
dt +

∫ 

–d

{
δxT(

Q(t)x∗(t) + A(t)Tλ∗(t)
)

+ δuT(
R(t)u∗(t)

+ BT (t)λ∗(t)
)

+
[
A(t)x∗(t) + B(t)u∗(t) + Ad(t)x∗(t – d) –c

 Dα
t x∗(t)

]T
δλ

– δxT(c
t Dα

 λ∗)(t)
}

dt

+


�(α)

∫ –d



{c

t
Dα

–d

[∫ 

–d
δxT(c

t Dα
 λ∗)(s)(s – t)α– ds

]}
dt. ()
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Note that the assumption λ() =  is necessary for applying the aforementioned lemmas.
Now since δJ̄ = , the proof will be completed by equalizing the coefficients of δx, δu, and
δλ in () with zero. �

According to Theorem . the necessary conditions for (x∗(·), u∗(·)) being the optimal
solution of ()-() are to satisfy in ()-(). These conditions are also sufficient because
of the convexity of the quadratic form of the objective function. To solve the system of
equations ()-(), first from equation () one can conclude that u(t) = –R–(t)BT (t)λ(t)
(this is true since R(t) > ), then using the characteristic functions χ[,–η](t) and χ[–η,](t)
we incorporate equations () and () and apply the Agrawal method in []. In this
work we use Bernstein polynomials to approximate the solution of ()-() in which u(t)
is substituted by –R–(t)BT (t)λ(t). Furthermore, to simplify the relations, in the sequel,
we assume the matrix functions A(t), B(t), Ad(t), Q(t) and R(t) to be constant functions.
Of course, when these functions are not constant the relations can be extended easily by
approximating A(t), B(t), Ad(t), Q(t) and R(t) in terms of BPs.

By Lemma ., we have �m(t) = �Tm(t), so

c
Dα

t �m(t) = �c
Dα

t Tm(t) = �
[c

Dα
t  c

Dα
t t · · · c

Dα
t tm]T . ()

Furthermore, for any  < l ≤  there exists a (m + ) × (m + ) lower triangular matrix L
where Tm(l – t) = LTm(t). So we also have

�m(t) = �L–Tm(l – t),

and as a result

c
t Dα

l �m(t) = �L–c
t Dα

l Tm(l – t) = �L–[c
t Dα

l  c
t Dα

l (l – t) · · · c
t Dα

l (l – t)m]T . ()

As a property of the left-sided and right-sided Caputo fractional derivative for α ∈ (, )
we have

c
Dα

t tj =
�(j + )

�(j +  – α)
tj–α , j = , . . . , m,  < t < ,

and for any  < l ≤ 

c
t Dα

l (l – t)j =
�(j + )

�(j +  – α)
(l – t)j–α , j = , . . . , m,  < t < l.

One may define

c
Dα

t Tm(t) = �̃T̃, ()
c
t Dα

l Tm(l – t) = �̃T̃, ()

where �̃ is an (m + ) × (m + ) matrix and T̃ and T̃ are (m + ) ×  matrices, each one
defined as follows:

�̃ = (�̃i+,j+), �̃i+,j+ =

{
�(j+)

�(j+–α) , i, j = , . . . , m, and i = j,
, i = j = ,
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and

T̃ = (T̃,k+), T̃,k+ =

{
tk–α , k = , . . . , m,
, k = ,

and

T̃ = (T̃,k+), T̃,k+ =

{
(l – t)k–α , k = , . . . , m,
, k = .

Since tk–α and (l – t)k–α for k = , . . . , m are continuous functions on [, ], one can apply
the method in [] to find approximated vectors P,k and P,k such that

tk–α ≈ PT
,k�m(t), k = , . . . , m,  < t < , ()

and

(l – t)k–α ≈ PT
,k�m(t), k = , . . . , m,  < t < l, ()

where P,k = Q–〈tk–α ,�m(t)〉 and P,k = Q–〈(l – l × t)k–α ,�m(t)〉 for k = , . . . , m while Q is
defined in (). Now if P and P be (m + ) × (m + ) matrices with zero vector in their first
column and have P,i and P,i, respectively, as their (i + )th column for i = , . . . , m, then

c
Dα

t �m(t) ≈ Dα�m(t) ()

and

c
t Dα

l �m(t) ≈ αD�m(t), ()

where Dα = ��̃PT
 and αD = �L–�̃PT

 , are called the operational matrices of c
Dα

t �m(t)
and c

t Dα
d�m(t), respectively.

Now assume that

xi(t) ≈ XT
i �m(t),

λi(t) ≈ �T
i �m(t),

()

where the entries of Xi = [Xi() · · · Xi(m)]T and �i = [�i() · · · �i(m)]T are, respectively,
the Bernstein coefficients in the approximation of xi(t) and λi(t) for i = , . . . , r and  ≤
t ≤ . Therefore,

c
Dα

t xi(t) ≈ XT
i

c
Dα

t �m(t) ≈ XT
i Dα�m(t) ()

and

c
t Dα

l λi(t) ≈ �T
i

c
t Dα

l �m(t) ≈ �T
i αD�m(t). ()

As a result, the TBVP ()-() can be approximated as follows:

[
XT

i Dα –
(
AXT

i – BR–BT�T
i + AdXT

i 	
)]

�m(t) = , ()
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[
QXT

i + AT�T
i + AT

d �T
i 	 – �T

i αD

+


�(α)
�T

i αD ∗ HT
α

D
]
�m(t) = ,  ≤ t ≤  – d, ()

[
QXT

i + AT�T
i – �T

i αD = 
]
�m(t) = ,  – d ≤ t ≤ . ()

In the above equations H = [H H · · · Hm] is an (m+)× (m+) matrix where Hi (its (i+
)th column of H) is the coefficients vector in approximating function h(t) =

∫
–d Bi,m(s)(s–

t)α– ds with BPs. Indeed αD and αD can be computed by substituting  – d and  in
equation () instead of l (note that to achieve αD a suitable change of variable is needed
to transform the time interval [ – d, ] to [, ] before approximation). Also 	, 	 can be
calculated by applying Lemma . to �m(t – η) and �m(t + η), respectively.

Also, we need to recall that the initial conditions xi() = xi, and λi() =  in () can be
written in term of the Bernstein basis as follows:

xi, =
[
Xi() · · · Xi(m)

]
�m() =

[
Xi() · · · Xi(m)

]

⎡

⎢⎢
⎢⎢
⎣



...


⎤

⎥⎥
⎥⎥
⎦

and

 =
[
�i() · · · �i(m)

]
�m() =

[
�i() · · · �i(m)

]

⎡

⎢⎢
⎢⎢
⎣



...


⎤

⎥⎥
⎥⎥
⎦

,

or

Xi() = xi,,  ≤ i ≤ r, ()

and

�i(m) = ,  ≤ i ≤ r. ()

In order to solve the approximated system of equations ()-() we apply the Agrawal
method in []. First, using the characteristic functions χ[,–d](t) and χ[–d,](t) to incor-
porate equations () and (),

χ[,–d](t)
[

QXT
i + AT�T

i + AT
d �T

i 	 – �T
i αD +


�(α)

�T
i αD ∗ HT

α
D

]
�m(t)

+ χ[–d,](t)
[
QXT

i + AT�T
i – �T

i αD = 
]
�m(t) = , i = , . . . , r.

Then, by defining arbitrary virtual variations in the state and costate variables δx ≈
(�x)T�m(t) and δλ ≈ (�λ)T�m(t) and setting the coefficients of �x and �λ to zero one
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can obtain the following algebraic system with (m + ) linear equations and (m + ) un-
knowns:

∫ 



{
XT

i Dα –
(
AXT

i – BR–BT�T
i + AdXT

i 	
)}

�m(t)Bj,m(t) dt + μBj,m() = , ()

∫ –η



{
QXT

i + AT�T
i + AT

d �T
i – �T

i αD +


�(α)
�T

i αD ∗ HT
α

D
}
�m(t)Bj,m(t) dt

+
∫ 

–η

{
QXT

i + AT�T
i – �T

i αD}�m(t)Bj,m(t) dt + νBj,m() = , ()

for every j = , , . . . , m and i = , . . . , r with two boundary conditions X() = x and
�(m) = .

5 Numerical examples
In this section we give some numerical examples and apply the method presented in Sec-
tion  for solving them. Our examples are solved using Matlaba on an Intel Core
i-M processor with  GB of DDR Memory. These test problems demonstrate the
validity and efficiency of this technique.

Example  Consider the following two-dimensional FDOCP in which  < α ≤  (see []):

min



∫ 



[(
x(t) + x(t)

) + u(t)
]

dt,

s.t.

c
Dα

t x(t) = x(t) + x

(
t –




)
,  ≤ t ≤ ,

c
Dα

t x(t) = –x

(
t –




)
+ x(t) – x

(
t –




)
+ u(t),

x(t) = , –



≤ t ≤ ,

x(t) = , –



≤ t ≤ .

This problem for α =  has been studied in [], where the obtained approximate cost
function is I = .. Using the presented method for α =  and m = , gives the approx-
imate cost function as J∗ = .. So we achieved satisfactory numerical results in com-
parison with what have been obtained in [] for α = . In the case α =  the approximate
trajectories and control functions for t ∈ [, ] are

x(t) � –.t + .t – .t + .t – .t + .t + ,

x(t) � .t – .t + .t – .t + .t – .t + ,

u(t) � –(t – )
(
.t – .t – .t + .t + .t + .

)
.

Also by varying the value of α the obtained trajectories and control functions are shown,
respectively, in Figure  and Figure . Moreover, the optimal objective value and the end
points of the optimal trajectories for these values of α are shown in Table .
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Figure 1 Approximate solution of x1(·) and x2(·)
for α = 1, 0.9, 0.8 in Example 1.

Figure 2 Approximate solution of u(·) for α = 1,
0.9, 0.8 in Example 1.

Table 1 The objective value and the end point of trajectory for α = 1, 0.9, 0.8 in Example 1

α Objective value End points

1 1.9493 2.632, – 7.3009
0.9 3.1472 2.4246, – 8.7117
0.8 5.8783 1.8422, – 10.5162

Example  Consider the following FDOCP in which  < α ≤  (see []):

min



∫ 



[
x(t) + u(t)

]
dt,

s.t.
c
Dα

t x(t) = x(t – ) + u(t),  ≤ t ≤ ,

x(t) = , – ≤ t ≤ .

Since our method is described for t ∈ [, ], first, the interval [, ] must be mapped into
[, ] by using the transformation function θ = t

 . So by letting

x(t) = x(θ ) = y(θ ), u(t) = u(θ ) = v(θ ),

and using

x(t – ) = x(θ – ) = x
〈

(

θ –



)〉
= y

(
θ –




)
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and

c
Dα

t x(t) =


�( – α)

∫ t



dx
dt (τ )

(t – τ )α
dτ

=


�( – α)

∫ θ






dy
dθ

( τ
 )

(θ – τ )α
dτ

=


�( – α)

∫ θ






dy
dθ

(ρ)
(θ – ρ)α

( dρ)

=


�( – α)
–α

∫ θ



dy
dθ

(ρ)
(θ – ρ)α

(dρ)

= –α × c
Dα

θ y(θ ),

the above problem changes thus:

min



∫ 



[
y(θ ) + v(θ )

]
dθ ,

s.t.

c
Dα

θ y(θ ) = αy
(

θ –



)
+ αv(θ ),  ≤ θ ≤ ,

y(θ ) = , –



≤ θ ≤ .

Note that in this example

Q(t) = R(t) = , A(t) = , Ad(t) = B(t) = α .

For α = , this problem has been numerically solved by applying Bezier curves in []
and the objective value I = . has been achieved. In the presented method the solution
has the objective value J∗ = . for α = . Thus, our results with m =  are in good
agreement with the results demonstrated in [] for α = . In addition by varying the value
of α we can obtain the optimal trajectory x(·) and the control function u(·) which are
shown, respectively, for some values of α in Figure  and Figure . Moreover, the optimal
objective value and the end point of the optimal trajectory for these values of α are shown
in Table .

Figure 3 Approximate solution of x(·) for α = 1,
0.9, 0.8 in Example 2.
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Figure 4 Approximate solution of u(·) for α = 1,
0.9, 0.8 in Example 2.

Table 2 The objective value and the end point of trajectory for α = 1, 0.9, 0.8 in Example 2

α Objective value End point

1 1.0447 1.0772
0.9 1.0574 1.1032
0.8 1.0864 1.1240

Figure 5 Approximate solution of x(·) for α = 1,
0.9, 0.8 in Example 3.

Example  Consider the following time-varying FDOCP in which  < α ≤  (see [, ]):

min
∫ 



[
x(t) + u(t)

]
dt,

s.t.

c
Dα

t x(t) = tx(t) + x(t – ) + u(t),  ≤ t ≤ ,

x(t) = , – ≤ t ≤ .

This problem for α =  has been studied in [] and [] where the obtained approximate
cost functions are, respectively, I = . and I = .. Using the presented method for
α =  and m = , we find the approximate cost function as J∗ = .. Also by varying
the value of α the obtained trajectories and control functions are shown, respectively, in
Figure  and Figure . Moreover, the optimal objective value and the end points of the
optimal trajectories for these values of α are shown in Table .
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Figure 6 Approximate solution of u(·) for α = 1,
0.9, 0.8 in Example 3.

Table 3 The objective value and the end point of trajectory for α = 1, 0.9, 0.8 in Example 3

α Objective value End point

1 2.7384 0.7261
0.9 2.7504 0.6985
0.8 2.8108 0.5908

6 Conclusion
In this paper, we introduce the TBVP for the fractional optimal control problem with con-
stant delay on trajectory. In order to solve the TBVP we have extended the method used in
[], then using Bernstein polynomials to approximate the solution. Since we use polyno-
mials to approximate state and control, the approximating results are smooth and there-
fore no fitting curves are needed. We need to mention that in the case that the objective
function is convex, the Hamiltonian condition would be necessary and sufficient. Thus
by increasing the degree of Bernstein polynomials, the convergence should occur. Finally,
some test problems are included to show the efficiency of this method.
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