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Abstract 
In this paper results of an experimental investigation on the bearing stiffness (Kf) of Ultra-High Performance Concrete 
(UHPC) under dowel bars are summarized. The effect of concrete strength, bar diameter, and location of the bar in con-
crete were investigated. By considering these parameters as input variables, several linear and nonlinear regressions and 
also Support Vector Regressions (SVRs) by incorporating different kernels are constructed, trained and tested to predict 
the Kf of UHPC. Comparing the results show that in the regression models, quadratic polynomial is more feasible in 
predicting the Kf of UHPC than other proposed functions and among the various kernels, SVR with radial basis function 
(RBF) kernel exhibits better results than other kernels. 
 

 
1. Introduction  

In a reinforced concrete member, especially in a beam, 
active mechanisms for shear transfer are as follows: 
1.The force produced in shear bars that is significant 
after a diagonal crack, 2. Shear capacity of concrete in a 
part of the compression zone of the concrete that is not 
cracked, 3. The force from the aggregates interlock at 
both sides of the crack, 4. dowel action of flexural bars 
that compress the concrete in the lower part of crack and 
prevent from crack displacement through crack surface. 
Dowel action can be defined as follows: ability of longi-
tudinal bars to transfer the force perpendicular to their 
axis. The distance between longitudinal axis of those 
parts on both sides of the crack that are not deformed is 
considered as dowel bar deformation (Fig. 1-a) (béton 
1996). In Fig. 1 (part b and c), examples of built-in in-
terfaces and stress-induced interfaces are shown. Due to 
concrete crushing, the stress under the bars can be as-
sumed to be roughly uniform close to critical sections at 
the ultimate condition (Fig. 1-d) (Dei Poli et al. 1992; 
Dulacska 1972; Soroushian et al. 1987). 

In reinforced concrete cracks, aggregate interlock 
generally tolerates the shear force more. As loading con-
tinues and the crack width increases, the contribution of 
this mechanism decreases. Therefore, it is not effective 
in crack widths more than 1 mm (Maitra et al. 2009). 
Also in prefabricated connections and joints, aggregate 
interlock mechanism is not involved at all and has no 
contribution to shear transfer. In fact, in such connec-
tions, the only shear transfer factor is longitudinal bars 
(dowel mechanism).  

In recent years, extensive experimental and analytical 
studies have been conducted on dowel mechanism. 
Maekawa and Qureshi (1997a) suggested a micro scale 
model for prediction of reinforcing bar behavior under 
the general condition of axial pullout and transverse 
displacement. The interaction of axial pullout and trans-
verse dowel action was considered in formulation estab-
lishing. Also, Maekawa and Qureshi (1996) illustrated 
that interaction of pullout and transverse shear of steel 
at a crack is important and cannot be ignored. Then, 
Maekawa and Qureshi (1997b) presented a unified 
model to simulate the behavior of interface transfer 
mechanism. Soltani and Maekawa (2008) extended the 
model proposed by Maekawa and Qureshi (1997a) to 
path-dependent cyclic loading case. 

 Almost all presented models introduced Beam on 
Elastic Foundation (BEF) theory as the most suitable 
method for simulation of dowel bars behavior. 
Timoshenko and Lessels (1925) proposed BEF for 
simulating the behavior of dowel bars embedded in con-
crete. Then, they used BEF for analyzing force transfer 
mechanism in reinforced concrete pavements and 
cracked surfaces. According to BEF, longitudinal bar 
plays the role of the beam and its confining concrete 
plays the role of the elastic foundation. In this model, 
concrete foundation is simulated using elastic springs. If 
the bearing stiffness (Kf) is known, load-carrying capac-
ity of longitudinal bars can be calculated easily (Moradi 
2013). 

During loading, Kf is the most important factor in 
dowel load-bearing. On the other hand, bearing stiffness 
is directly related to the concrete strength. Various re-
searchers have presented different values for bearing 
stiffness in elastic state (Dei Poli et al. 1992; Finney 
1956; Soltani and Maekawa 2008; Soroushian et al. 
1987; Soroushian et al. 1986; Walraven and Reinhardt 
1981). In linear state, bearing stiffness can be a constant 
number as in the traditional BEF models. However, in 
nonlinear behavior, Kf must be a function of the dis-
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placement or the shear value of dowel bar to model the 
damage due to the load increasing (Dei Poli et al. 1992; 
Moradi et al. 2012; Moradi et al. 2015). It should be 
mentioned that all previous Kf relationships were ob-
tained by tests on normal strength concrete.  

In recent years, prediction of mechanical properties of 
construction materials has attracted many researchers' 
attention. Using linear and nonlinear regression methods 
is one of the most popular techniques for predicting 
mechanical properties of concrete (Tsivilis and 
Parissakis 1995; Zain and Abd 2009). Many researches 
were conducted to predict different properties of con-
crete. Today, in addition to common regression tech-
niques, machine learning approaches are widely used to 
predict the mechanical properties of the materials, con-
crete compressive strength (CCS), detection of diseases 
and so on. One of this machine learning approach which 
has been used in literature for prediction of CCS is Sup-
port Vector Regression (SVR) (Smola and Schölkopf, 
2004). SVR is an extension of Support Vector Machines 
(SVMs), for solving nonlinear regression problems. The 
SVM which was first introduced by Vapnik (1999), is a 
powerful method in the category of statistical learning 
theory and its main application was in pattern recogni-
tion problems. Very promising results of SVM in vari-
ous classification problems such as detecting construc-
tion materials in digital images (Rashidi et al. 2016), 
The electrocardiogram (ECG) beat classification (Zadeh 
and Khazaee 2011; Ebrahimzadeh et al. 2014; Khazaee 
and Ebrahimzadeh 2010), detection of Alzheimer’s dis-
ease and mild cognitive impairment (Khazaee et al. 

2015a; Khazaee et al. 2015b; Khazaee et al. 2016), and 
so on, made it a popular methodology. Interestingly, 
SVR also showed excellent performance in various pre-
diction fields, such as failure prediction and reliability 
analysis (Behnia et al. 2016), backbreak prediction in 
blasting operation (Faradonbeh et al. 2016), and the 
likes. Recently, some authors used SVR to predict CCS 
(Gilan et al. 2012; Yuvaraj et al. 2013b; Chou and Tsai 
2012; Yuvaraj et al. 2013a). However, despite the great 
potential of SVR models, they have not received the 
attention they deserve in the CCS prediction literature as 
compared to other research fields. In addition, it has 
been pointed out that the performance of SVR is greatly 
affected by the values of model parameters and yet there 
is no general rule to find appropriate SVR parameters 
(Cherkassky and Ma 2004). The popular methods of 
model parameter setting are grid search and gradient 
descent, which have drawbacks such as vulnerability to 
a local optimum. Evolutionary algorithms such as ge-
netic algorithm (GA) and particle swarm intelligence 
(PSO) have been adopted to find a global optimum solu-
tion by proper setting of SVR model parameters. A new 
emergence global optimization algorithm is the artificial 
bee colony algorithm (ABC) (Karaboga and Akay 2009; 
Karaboga et al. 2014).  ABC has been found to be a 
useful tool in many of the real world optimization prob-
lems, due to the simplicity, few numbers of control pa-
rameters, and outstanding performance (Karaboga et al. 
2014). Some authors compared the performance of ABC 
with that of other optimization methods, such as the 
genetic algorithm, differential evolution, and PSO 

      

      
Fig. 1 Dowel action (a). Activation of dowel action due to relative displacement (béton 1996) (b). Built-in interfaces (c). 
Stress induced interfaces (d). Uniform stress distribution at ultimate condition (Dei Poli et al. 1992). 
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(Karaboga and Akay 2009; Kang et al. 2011). They 
showed that ABC is superior to the other methods in 
various problems such as signal processing, clustering, 
and geotechnical stability. Kang and Li (2015) used an 
intelligent response surface method for system probabil-
istic stability evaluation of soil slopes. They employed 
ABC to optimized SVR to establish the response surface 
to approximate the limit-state function. 

Relations presented for bearing stiffness in the past 
are obtained by testing normal strength concrete speci-
mens. In this study, 39 specimens of Ultra-High Per-
formance Concrete (UHPC) are prepared and the Kf 
value of any sample is calculated by doing tests. Then, 
the bearing stiffness of ultra-high performance concrete 
samples are predicted using linear and nonlinear regres-
sion and SVR method.  

 
2. Aim and methodology  

One of the main parameters for determining dowel 
strength is bearing stiffness. Various researchers tried to 
determine Kf by doing different tests. Experimental re-
searches conducted in the past were on normal strength 
concrete. The main aim of the present research is to 
achieve a suitable relation to predict the bearing stiff-
ness of UHPCs. For this purpose, bearing stiffness is 
calculated for 39 specimens made up of UHPC and 9 
different linear and nonlinear regressions functions are 
examined to predict Kf. The best function can be used 
for predicting Kf in UHPCs. Then the hybrid SVR-ABC 
(as a new method that proposed recently by researchers) 
with different kernels is used to evaluate ability of this 
algorithm in prediction of Kf , and the best kernel is in-
troduced. Finally, a comparison between the best SVR 
kernel results with the best regression function is per-
formed to evaluate that which one has worked more 
precisely. An overview of this study is shown in Fig. 2. 
 
3. Modeling approach 

3.1 Linear/nonlinear regression 
Linear regression is a kind of regression analysis in 
which the relationship between one or more independ-
ent variables and a dependent variable is modeled using 
a linear equation. While in nonlinear regression, the aim 
is to find a suitable nonlinear equation to express the 
relationship between independent and dependent vari-
ables. The general form of regression models is as fol-
lows:  

( )i iy f a x= +  (1) 

In this relation, y, f, ai and xi are dependent variable, 
linear or nonlinear function, constants and independent 
variables, respectively. The main aim is to find the most 
suitable function f with the constants ai. In the present 
research, 9 different linear and nonlinear functions are 
examined to predict Kf.  

 
3.2 Support Vector Regression (SVR) 
Support vector machine (SVM) is one of the most popu-
lar machine learning methods that has been widely ap-
plied to solve many learning tasks such as classification 
and regression (Vapnik 1999). Support vector regression 
(SVR) is a regression version of SVM which solves 
regression problems by use of an alternative loss func-
tion (Smola and Schölkopf 2004). In SVR, the original 
data x is mapped to a high dimensional feature space 
and then a linear regression problem is solved in this 
space. SVR formulation follows the principle of struc-
tural risk minimization instead of the principle of em-
pirical risk minimization. In other words, SVR tries to 
minimize an upper bound of the generalization error 
instead of minimizing the prediction error on the train-
ing set. Consider a data set [ ]( , ) | 1,...,i ix y i l= , where xi 
is a D-dimensional input vector, yi is a scalar output or 
target, and l is the number of points. The nonlinear rela-
tionship between the input and the output can be de-
scribed by a regression function as: 

( ) ( )Tf x w x bϕ= +  (2) 

where f(x) = forecasting values; ( )xϕ = nonlinear map-
ping function; and w and b = coefficients to be adjusted. 

The coefficients w and b are estimated by minimizing 
the regularized risk function 

[ ]2 2

1

1 1 1( ) R , ( )
2 2

l

emp i i
i

R C w C L y f x w
l ε

=

= + = +∑ (3) 

( ) ( )( , ( )) 0 ( )
i i i i

i i
i i

y f x y f xL y f x y f xε
ε ε

ε
⎧ − − − ≥= ⎨ − <⎩

 (4) 

Where R(C) and Remp = regression and empirical risks. 
In Eq. (3), the first item is the empirical error, which is 
estimated by the ε-insensitive loss function in Eq. (4). 
The second item is the regularization. The value C is the 
trade-off parameter between the first and second terms 
of the equation. The parameter ε can be viewed as a tube 

 
Fig. 2 Overview of the research. 
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size equivalent to the approximation accuracy of the 
training data.  

Two positive slack variables ξ and ξ* are introduced 
to represent the distance from the actual values to the 
corresponding boundary values of the ε-tube. Then 
minimization of Eq. (3) is converted into the following 
constrained form: 

2* *

1

1Minimize ( , , ) ( )
2

l

i i
i

R w w Cξ ξ ξ ξ
=

= + +∑  (5) 

*

( )
Subject to ( )

, 0

i i i

i i

i i

y w x b
w x b y

ϕ ε ξ
ϕ ε ξ

ξ ξ

⎧ − − ≤ +⎪ + − ≤ +⎨
⎪ ≥⎩

 (6) 

This optimization formulation can be transformed 
into the dual problem by introducing Lagrange multipli-
ers as: 

* * *

, 1

* *

1 1

1
Minimize ( , ) ( )( ) ( , )

2

( ) ( )

l

i i i i j j i j
i j

l l

i i i i i
i i

R K x x

y

α α α α α α

ε α α α α

=

= =

= − + +

− − + +

∑

∑ ∑
(7) 

* *

1
Subject to ( ) 0, 0 ,

l

i i i i
i

Cα α α α
=

+ = ≤ ≤∑  (8) 

where *
i iα α+  = Lagrange multipliers and 

( , ) ( ) ( )T
i j i jK x x x xϕ ϕ=  =kernel function. 

The most applicable kernel function is the radial basis 
function (RBF) kernel: 

( )2
( , ) expi j i jK x x x xγ= − −  (9) 

where γ = kernel parameter. 
The RBF kernel has only one parameter to be deter-

mined, and SVR with a RBF kernel exhibits excellent 
nonlinear forecasting performance (Su et al. 2014, 
2013). 

The coefficient of Equation (2) can be obtained by the 
Lagrange multipliers as: 

*

1
( ) ( )

l

i i i
i

w xα α ϕ
=

= +∑  (10) 

The regression function of SVR can be expressed as: 

*

1
( ) ( ) ( , )

l

i i i
i

f x K x x bα α
=

= + +∑  (11) 

Based on Karush-Kuhn-Tucker’s conditions for solv-
ing quadratic programming problems, only some of 

*( )i iα α−  in Eq. (11) are held as nonzero values. The 
corresponding data points of *( ) 0i iα α− ≠  are support 
vectors, which are employed in determining the decision 
function. There are three user-determined parameters, C, 
γ, and ε, the selection of which plays an important role 
in SVR performance. 

 

3.2.1 Artificial Bee Colony (ABC) 
Artificial bee colony (ABC) algorithm is one of the 
most recently introduced algorithms, inspired by the 
intelligent behavior of honey bees (Karaboga et al. 
2014). It is a simple algorithm like particle swarm opti-
mization (PSO) and does not have many parameters like 
genetic algorithms (GA). Its parameters are only com-
mon parameters like colony size and maximum cycle 
number. ABC provides a population-based search in 
which a colony of artificial forager bees search for arti-
ficial food sources with high nectar amount. To apply 
ABC, the considered optimization problem is first con-
verted to the problem of finding the best parameter vec-
tor which minimizes an objective function. Three essen-
tial components of ABC algorithm includes: employed 
and unemployed foraging bees, and food sources. The 
first two components, employed and unemployed forag-
ing bees, search for rich food sources, which is the third 
component, close to their hive. Employed bees are asso-
ciated with specific food sources. Unemployed bees 
include onlooker and scout bees. Onlookers choose a 
food source by watching the dance of employed bees 
within the hive. Scouts search for food sources ran-
domly. 

In ABC, position of food sources represents possible 
solution of the problem while the amount of nectar of 
food source represents the quality or fitness of that solu-
tion. Employed and onlooker bees fly around in a multi-
dimensional search space and choose food sources de-
pending on the experience of themselves and their nest 
mates, and adjust their positions. Scout bees fly and 
choose the food sources randomly without using experi-
ence. If the nectar amount of a new source is higher than 
that of the previous one in their memory, they memorize 
the new position and forget the previous one. Thus, 
ABC system combines local search methods, carried out 
by employed and onlooker bees, with global search 
methods, managed by onlookers and scouts, attempting 
to balance exploration and exploitation process.  The 
ABC algorithm can be split into four different phases, 
namely: initialization phase, employed bees phase, 
onlooker bees phase and scout bees phase.  At the ini-
tialization phase a population of NS solutions is initial-
ized randomly and control parameters are set. The value 
of NS=NP/2, number of food sources, is equal to the 
number of employed bees and NP is the population size. 
Each solution ui (i=1, 2… NS) holds n variables uij (j=1, 
2, …, n) which are to be optimized so as to minimize 
the objective function. The artificial bees (employed 
bees, onlooker bees and scout bees) thus perform a cy-
clic search until a maximum cycle number according to 
some specific rules. At the employed bees phase, each 
employed bees search for new candidate food source 
position (vi) on the neighborhood of the previously se-
lected food source (ui) to update feasible solutions. The 
quality (fitness) of the candidate solution is compared to 
the old one. If the fitness of the new solution is equal to 
or higher than the previous solution, the old one is re-



A. Khazaee and M. Ghalehnovi / Journal of Advanced Concrete Technology Vol. 16, 145-158, 2018 149 

 

placed by the candidate one (greedy selection).  A 
neighbor solution can be determined from the old one 
using the following formula: 

( )ij ij ij ij kjv u u uφ= + −  (12) 

Where k and j are randomly chosen indexes in range 
[1 NS] and [1 n], respectively (k≠i) and ijφ  is a uni-
formly distributed random number within the range of 
[−1,1].  

In the onlooker bees’ phase, employed bees share the 
information on the food sources they have found with 
the onlooker bees returning to their hive. Then each 
onlooker bee probabilistically selects one food source 
depending on this information. The probability value pi 
of a food source with, which is chosen by an onlooker 
bee can be calculated as: 

1

i
i NS

jj

fit
p

fit
=

=
∑

 (13) 

where ifit  is the fitness value of food source I and is 
calculated from the objective function of food source as 
(in minimization problems): 

1 0
1
1 0

i
i i

i i

f
fit f

f f

⎧ ≥⎪= +⎨
⎪ + <⎩

 (14) 

By increasing the fitness value of a food source the 
probability of selection increases. After a food source ui 
is selected by an onlooker bee, a new food source Vi in 
the neighborhood of selected onlooker bee is deter-
mined. The new food source can be calculated by using 
Eq. (12). Then its fitness value is computed and solu-
tions ui and vi are compared by a greedy selection. 
Therefore, more onlooker bees are recruited to richer 
food sources and consequently positive feedback behav-
ior appears. If the position of an employed bees cannot 
be improved further through a limited number of cycles, 
in the scout bees phase, then that solution are abandoned 
and becomes a scout bee. Scouts are unemployed bees 
that choose their food sources randomly. The maximum 
abandonment limit is specified by the user. A new food 
source is determined by the scout bees for abandoned 
source as follows: 

( )ij jmin jmax jminu u rand u u= + × −  (15) 

where jminu  and jmaxu  are lower and upper bounds of iju , 
respectively, and rand  is a random number between 0 
and 1 drawn from a uniform distribution. The flowchart 
of ABC algorithm is shown in Fig. 3. 
 
4. Modeling performance criterions 

The MAPE (Mean Absolute Percent Error) measures the 
size of the error in percentage terms. It is calculated as 
the average of the unsigned percentage error, as shown 

in the below: 

1

1MAPE 100n

i

y y
n y=

−
= ×∑  (16) 

where y is the actual value, y  is the predicted value and 
n is the total number of values. 

Root mean squared error (RMSE) is a frequently used 
measure of the differences between values predicted by 
a model and the values actually observed, and is calcu-
lated by the following equation: 

2( )j jy y
RMSE

n
−

= ∑  (17) 

R squared, is a number that indicates the proportion 
of the variance in the dependent variable that is predict-
able from the independent variable 

2

2
2

( )
1

j j
j

j
j

j

y y
R

y
y

n

⎛ ⎞
⎜ ⎟−
⎜ ⎟

= − ⎜ ⎟
⎛ ⎞⎜ ⎟

−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑∑
 (18) 

 
5. Properties of materials, mixing process 
and sample preparation  

5. 1 Properties of materials  
Materials of ultra-high performance concrete include 
Portland cement, silica fume, quartz powder, silica sand, 
super-plasticizer and water. One of the most important 
materials in the mixture of ultra-high performance con-
crete is quartz powder. The mean diameter of its parti-
cles is 0.01 mm. Quartz powder is a hard material that 
improves the properties of matrix in the concrete. Size 
of silica sand particles used ranges from 0.15 to 0.8 mm. 
Some of the advantages of silica sand include high 
hardness and widely available. Cement Type II is used 
for preparing the specimens.  
 
5.2 Mixing process  
All the dry constituents are mixed together until they are 
homogeneously mixed. Then, part of water and half of 
the super-plasticizer were added to the mixture and the 
mixing process continued until the materials were 
mixed completely. Then, the remaining water and super-
plasticizer were added. The mix design of the concrete 
is obtained from Rahdar and Ghalehnovi (2016) and is 
given in Table 1. 
 
5.3 Sample preparation    
The purpose of the test is to calculate the bearing stiff-
ness under longitudinal bars. Specimens were cast from 
ultra-high performance concrete, a ribbed bar was em-
bedded to half its diameter on the top surface and de-
signed as dowel bars bearing against the concrete core 
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as shown in Fig. 4. For specimen design, sample model 
presented by Soroushian et al. (1987) is used. The only 
difference is that ultra-high performance concrete is 
used in these tests. Longitudinal bars were partially em-
bedded into the concrete (Fig. 4.a). Thirty nine samples 
were tested to study the effect of different parameters on 
the bearing stiffness. The parameters include: 1. Bar 
diameter, 2. Concrete strength 3. Concrete block width 
(side cover of bar), 4. Concrete block depth. It should be 
mentioned that actual stress distribution in concrete is 
not uniform under longitudinal bars along it. However, 
Due to concrete crushing (Fig. 1-d), the stress under the 

bars can be assumed to be roughly uniform close to 
critical sections at the ultimate condition (such as near 
the beam-column interface in prefabricated structures 
(Fig. 1-b)). 

After removing the samples from the mold, they were 
cured in water for 28 days. The cylindrical compressive 
strengths of the samples fc during the test are presented 
in Table 2 together with other properties.  

The value of Kf  is strongly related to the quality of 
the concrete immediately under the bar. So, even when 
the same concrete composition is used, a scatter is ob-
tained, depending on the position of the bar during cast-

 
Fig. 3 The whole procedure of the SVR-ABC method. 

Table 1 Mix design of the consumed concrete per cubic meter(Rahdar and Ghalehnovi 2016). 

 Portland  cement type II 
(kg) 

Silica fume 
(kg) 

Quartz powder 
(kg) 

Silica sand 
(kg) 

Super-plasticizer  
(kg) Water (lit) 

Mix design 1 670 200 285 1020 16.75 178 
Mix design 2 670 200 215 1000 30 154 
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ing. When the direction of the bar is parallel to the di-
rection of casting a greater value of Kf can be expected 
than in the case of a bar perpendicular to this direction, 
since during the vibration a local segregation of water 
under the bar can be expected, resulting in a lower con-
crete quality. So, in sample preparing, the direction of 
casting was placed parallel to the direction of casting. 

 
5.4 Test method  
The test set-up and sample loading are shown in Fig. 5. 
Loading was static and force control in all tests. The 
force is distributed uniformly by a rigid steel plate along 
the bar. The displacement of dowel bar under load is 
measured by two electric LVDTs with high precision 
and values are recorded against the applied load. It is 
worthy to note that the concrete sample is on a rigid 
beam during loading.  
 

6. Experimental test results  

The stress-displacement curve was plotted for all sam-
ples. The samples' behavior was elastic until failure. 
Failure of samples occurred suddenly and was accom-
panied by crack development under the bar into the 
concrete sample. In most cases, the crack splits the con-
crete block into two almost symmetrical parts (Fig. 6a). 
Of course, asymmetrical failure occurred in a few sam-
ples (Fig. 6b). To calculate the bearing stiffness, the 
load applied to the sample is divided by the effective 
cross-sectional area of the bar ( [ ]b

b

Pf l d= × ) and 
then, its curve is plotted against displacement. After-
wards, a line is fitted to the points of the curve and its 
slope is considered as the bearing stiffness. For brevity, 
one curve from each series is selected and shown in Fig. 
7. In this figure, the curves S11, S14, S28 and S34 
represents series II (rebar diameter), III (concrete 

Table 2 Properties of the test specimens and the test results. 

Code Series b(mm) d(mm) l(mm) w(mm) db(mm) fc(MPa) Kf(MPa/mm) Failure mode*
S1 150 230 150 75 25 96.7 106.74 SYM 
S2 150 230 150 75 25 106.8 129.65 SYM 
S3 150 230 150 75 25 105.5 95.91 SYM 
S4 

I 

150 230 150 75 25 105.5 167.96 SYM 
S5 150 230 150 75 32 105.3 185.3 SYM 
S6 150 230 150 75 32 105.3 131.6 SYM 
S7 150 230 150 75 32 91.5 114.93 ASYM 
S8 150 230 150 75 20 101 282.3 SYM 
S9 150 230 150 75 20 101 249.16 SYM 
S10 150 230 150 75 20 91.5 199.42 SYM 
S11 150 230 150 75 12 108.1 344.95 SYM 
S12 150 230 150 75 12 108.1 371.3 ASYM 
S13 

II 
Bar diameter 

150 230 150 75 12 91.5 294.65 SYM 
S14 150 230 150 75 25 95.9 119.08 ASYM 
S15 150 230 150 75 25 95.9 136.35 ASYM 
S16 150 230 150 75 25 103.3 168.57 SYM 
S17 150 230 150 75 25 103.3 236.07 SYM 
S18 150 230 150 75 25 106.7 145.55 SYM 
S19 150 230 150 75 25 106.7 139.41 SYM 
S20 150 230 150 75 25 108.9 164.4 SYM 
S21 150 230 150 75 25 108.9 116.23 SYM 
S22 150 230 150 75 25 108.9 135.68 SYM 
S23 150 230 150 75 25 73.5 110.4 SYM 
S24 150 230 150 75 25 70.4 100.34 SYM 
S25 

III 
Concrete 
strength 

150 230 150 75 25 75.4 98.4 SYM 
S26 75 230 150 37.5 25 110.4 71.21 SYM 
S27 75 230 150 37.5 25 108.1 55.74 SYM 
S28 75 230 150 37.5 25 91.6 91.5 SYM 
S29 75 230 150 37.5 25 91.6 101.34 SYM 
S30 230 230 150 115 25 110.4 195.11 SYM 
S31 230 230 150 115 25 109.6 182.07 SYM 
S32 230 230 150 115 25 91.6 154.87 SYM 
S33 

IV 
Block width 

230 230 150 115 25 91.6 150.48 SYM 
S34 150 150 150 75 25 111.3 131.45 SYM 
S35 150 150 150 75 25 105.5 118.29 SYM 
S36 150 150 150 75 25 105.5 144.93 SYM 
S37 150 300 150 75 25 106.7 145.44 SYM 
S38 150 300 150 75 25 101.6 95.56 SYM 
S39 

V 
Block depth 

150 300 150 75 25 101.6 114.72 SYM 
* Symmetrical failure: SYM, Asymmetrical failure: ASYM. 
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strength), IV (block width) and V (block depth) respec-
tively. The bearing stiffness of the test samples range 
from 55.74 MPa/mm to 371.30 MPa/mm. fK  values 
of different samples are presented in the last column of 
Table 2.  
 

7. Results and discussion  

7.1 Empirical test results  
The results in Table 2 are obtained according to the 
tests performed on the concrete samples with no trans-
verse bars. Test samples have different dimensions and 
compressive strengths (70-111 MPa) and are affected by 

 
Fig. 5 General view of test set-up. 

      
                                                                   (a)                                                                                        (b) 
Fig. 4 Dimensional and loading details: (a) overall dimensions of test specimen with partially embedded ribbed bar, and 
(b) sample loading using force distribution plate. 

       
                                                               (a)                                                                   (b) 

Fig. 6 Failure of samples. (a) Symmetrical failure (occurred in most samples), (b) Asymmetrical failure. 
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a longitudinal bar with different dimensions. The results 
of the experimental test show that the bearing stiffness 
increases as the longitudinal bar diameter decreases and 
the concrete strength increases. In addition, the increase 
in the side cover of the longitudinal bar results in the 
increase in the bearing stiffness. However, the bearing 
stiffness was not sensitive to variations in specimen 
depth. In this study, sample model presented by 
(Soroushian et al. 1987) is used, but since the concrete 
materials are changed and due to the high compressive 
strength of the test samples, the previous empirical rela-
tions are not accurate enough to predict Kf of UHPC and 
new relations must be introduced. The precision of So-
roushian empirical relation for Kf, which is obtained by 
testing on normal strength concrete, is compared in Ta-
ble 8 with the results of the best models in this research. 
 
7.2 Linear/nonlinear regression  
Generally, two classes of functions are used to perform 
the regression. In the first class, bar diameter db and 
concrete compressive strength fc are used as the inde-
pendent input variables, because in previous empirical 
relations (Dei Poli et al. 1992; Soltani and Maekawa 
2008; Soroushian et al. 1987), two parameters of bd  
and cf  are used to determine the bearing stiffness. In 
the second class, the equations 6 to 9, the parameters 
including concrete block depth (d) and the side cover of 
the bar (w) are also introduced as independent variables 
in addition to the parameters bd  and cf . Functions 
used for regression include first and second degree 
polynomial functions, fractional functions, polynomial 

fractional and power fractional functions. To train the 
proposed models and test them, the test results are clas-
sified into two groups including 23 training sets and 16 
testing sets (Table 3). In Table 4, characteristics of the 
functions used for regression are presented. Functions 
are analyzed by Minitab Software. To calculate the con-
stants, Levenberg-Marquardt algorithm is used. The 
evaluated coefficients of the proposed models are pre-
sented in Table 5. It should be mentioned that the con-
stants are obtained based on the results of 23 samples of 
the training set. To test the proposed relations, the re-
sults of the remaining 16 samples are used (Table 3). 
MAPE, RMSE and 2R are measured based on the Eqs. 
(16), (17) and (18), respectively and are presented in 
Table 6. To examine the precision of the proposed rela-
tions better, the results of the proposed models and 
those from the experiment are compared in the curves in 
Fig. 8. In this curve, the horizontal axis shows the sam-
ples' numbers and the vertical axis shows the bearing 
stiffness values. 

The results of Table 6 and also Fig. 8 show that 
among the two-variable models, model-2 with the sec-
ond order polynomial function has the best response, 
while in this group model-1 with the first order polyno-
mial function has the least accuracy in determining the 
responses. Among models with four input variables, 
model-7 with the second order polynomial function has 
the best response, whereas in this group model-6 with 
the first order polynomial function has the least preci-
sion in determining the responses. In other words, ac-
cording to the results, it can be concluded that the rela-

      

      
Fig. 7 Bearing stress versus displacement of the bar (the slope of the curve shows the bearing stiffness). 

Table 3 Data division to training set and testing set. 

Training set S1, S4, S5, S7, S8, S10, S12, S13, S15, S17, S19, S21, S22, S23, S25, S27, S29, S31,S32, S35, 
S36, S37, S38 

Testing set S2, S3, S6, S9, S11, S14, S16, S18, S20, S24, S26, S28, S30, S33, S34, S39 
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tionship between bearing stiffness and input variables 
cannot be a linear relationship, since the models with 
first order polynomial function has the least accuracy in 
both groups. The Model-7 has the maximum 2R  and 
the minimum MAPE and RMSE among all proposed 
models. The curves in the Fig. 8 show that the results of 
Model-7 are more consistent with the empirical results 
compared to other models. To analyze the Model-7 
more, the curve in the Fig. 9 was plotted. In this figure, 
which is hereafter called as X–Y plot, the horizontal 
axis shows the predicted Kf  values based on the Model-
7 and the vertical axis shows the results of empirical test. 
In an X-Y curve, the closer the points to the diagonal 
line, the better prediction could be judged for the model. 
As it can be observed in this figure, the proposed model 
has low precision for determining the answer in some 
cases. It is due to the low number of data for extracting 

the nonlinear function coefficient. 
 

7.3 SVR-ABC 
In Fig. 3, ABC algorithm flowchart is presented. Also, 
the structure of the input–output of the modeler systems 
is schematically shown in Fig. 10. In this figure, the 
input parameters are (i) concrete compressive strength 
(fc), (ii) bar diameter (db), (iii) side cover of the bar (w) 
and (iv) block depth (d), and Kf is the output parameter. 

Since in linear and nonlinear regressions, functions 
with four independent variables gave better answers, 
SVR-ABC algorithm is trained only with four input 
variables in this section.  

23 samples are used for training and 16 samples are 
used for testing as in Table 3. In Table 7, R2, MAPE 
and RMSE values are presented for different kernels. In 
addition to this table, the curve in Fig. 11 shows that the 

Table 5 Evaluated coefficients of regression models. 
Model a0 a1 a2 a3 a4 a5 a6 a7 a8 

Model-1 78.102 0.840 1.000 - - - - - - 
Model-2 312.297 1.304 -11.696 - - - - - - 
Model-3 356.775 7.228 -43.628 -0.032 0.753 - - - - 
Model-4 -28.262 43.344  - - - - - - 
Model-5 31.631 20.142 1.981 - - - - - - 
Model-6 239.753 1.125 -11.708 1.268 -0.036 - - - - 
Model-7 -483.888 4.620 -36.368 11.813 2.938 -0.023 0.596 -0.054 -0.007 
Model-8 -36.157 28.714 27.331 -1.844 - - - - - 
Model-9 -865.177 3.449 2.050 864.199 0.088 02.5E-12 10.546 - - 

 

Table 4 Proposed Linear/nonlinear regression models to predict Kf. 
Independent Variables Model Linear/nonlinear regression model* 

Model1 0 1 2c ba a f a d+ +  

Model2 2 2
0 1 2 3 4c b c ba a f a d a f a d+ + + +  

Model3 0 1( / )c ba a f d+  

Model4 2
0 1 2( / ) ( / )c b c ba a f d a f d+ +  

fc , db 

Model5 1 2
0 ( / )a a

c ba f d  

Model6 0 1 2 3 4b ca a w a d a f a d+ + + +  

Model7 2 2 2 2
0 1 2 3 4 5 6 7 8b c b ca a w a d a f a d a w a d a f a d+ + + + + + + +  

Model8 0 1 2 3( / ) ( / ) ( / )c b b ba a f d a w d a d d+ + +  
fc , db , w , d 

Model9 62 4
0 1 3 5( / ) ( / ) ( / )aa a

c b b ba a f d a w d a d d+ + +  
* fc: concrete compressive strength, db: bar diameter, w: side cover of the bar, d: block depth 

Table 6 Evaluation of regression models for training and testing tries. 
Model Training Test 

 R2 MAPE% RMSE R2 MAPE% RMSE Variables 

Model-1 0.554 30.071 48.545 0.586 29.439 40.377 
Model-2 0.686 23.610 40.734 0.706 23.788 34.418 
Model-3 0.645 26.411 43.329 0.642 26.402 37.642 
Model-4 0.649 25.289 43.041 0.648 25.661 37.676 
Model-5 0.633 27.426 44.052 0.654 27.141 38.583 

fc,db 

Model-6 0.617 25.769 44.999 0.740 23.140 33.458 
Model-7 0.796 18.583 32.826 0.843 15.907 25.936 
Model-8 0.713 21.231 38.978 0.812 18.505 28.426 
Model-9 0.734 21.064 37.499 0.816 18.969 28.101 

w, fc,db,d 
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results of RBF kernel are more consistent with Kf values 
from the experiment. For this reason, Kf values from 
RBF kernel are plotted in X-Y curve (Fig. 12) to com-
pare them better with the empirical results.  

As it is evident from the Fig. 12, the predicted values 
of some samples in the training set are significantly dif-
ferent from those values of empirical results. It is due to 
the low number of data for training SVR model. Since 

the total number of data used for training is low, a few 
numbers of unacceptable predicted values resulted in 
worse 2R  and RMSE values for the training set than 
the testing set. Moreover, division of the data into train-
ing and testing sets becomes very important and some-
times the movement of some data among these groups 
highly affects the level of error in any group.  

 

      
                                                              (a)                                                                          (b) 

Fig. 9 Model-7 predictions vs. experimental results of Kf: (a) training set and (b) testing set. 

      
                                                                    (a)                                                                                 (b) 

Fig. 8 Comparison of regression models with experimental results: (a) training set and (b) testing set. 

Table 7 Evaluation of SVR kernels for training and testing tries. 
Training Testing Model R2 MAPE% RMSE R2 MAPE% RMSE Input variables

rbf kernel 0.803 9.362 32.238 0.888 15.925 24.435 
sigmoid kernel 0.569 21.934 47.743 0.750 20.110 32.791 
poly1 kernel 0.585 22.126 46.838 0.770 18.633 31.437 
poly2 kernel 0.662 20.111 42.256 0.807 18.049 28.838 
poly3 kernel 0.296 22.529 61.008 0.438 19.744 49.151 

w,fc,db,d 
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7.4 Comparison of regression with SVR 
The results of the best regression function (Model-7) 
and the best kernel in SVR models (RBF kernel) are 
compared with the test results of Kf in Table 8. For 
more comparison, the results of Soroushian empirical 
relation for Kf are compared in Table 8 with the results 
of this test. According to this table, it can be concluded Fig. 10 Schematic structure of modeler system. 

      
                                                                    (a)                                                                                      (b) 

Fig. 11 Comparison of SVR kernels with experimental results: (a) training set, and (b) testing set. 

Table 8 Comparing of Model7 and RBF kernel for testing records. 

Training Testing Model R2 MAPE% RMSE R2 MAPE% RMSE 
rbf kernel 0.803 9.362 32.238 0.888 15.925 24.435 
Model7 0.796 18.583 32.826 0.843 15.907 25.936 

Soroushian et al., 1987* 0.478 29.303 52.492 0.503 45.536 28.401 

*

0.5

2
3

127 c
f

b

f
K

d
=

 

      
                                                                    (a)                                                                                  (b) 

Fig. 12 RBF kernel predictions vs. experimental results of Kf: (a) training set,and (b) testing set. 
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that Soroushian’s empirical relation for Kf based on 
normal strength concrete, has not enough precision for 
predicting Kf in ultra-high performance concretes. 

According to Table 8, RBF kernel almost in all cases 
provided better answers than the nonlinear regression 
model, i.e. Model-7. The reason for this finding might 
be of the insufficient amount of data required for 
developing a regression model, while the SVR-ABC 
algorithm could recognize the relationships with lower 
data for their distributed and parallel computing nature.  

In the hybrid SVR-ABC approach an ABC employed 
to optimize SVR model. Only a few studies use ABC 
for finding the best regression model (Kang and Li 
2015; Khazaee and Khazaee 2017). ABC is a recently 
proposed optimization method that has many advan-
tages compared to the other evolutionary algorithms. It 
has a strong global search optimum ability and, at the 
same time, is fast, easy to implement and few parame-
ters to tune compared to the other optimization algo-
rithms such as genetic algorithms and ant colony. Thus, 
the proposed SVR-ABC approach is faster than the 
other approaches while it is easy to implement as men-
tioned by Khazaee and Khazaee (2017). 

 
8. Conclusions  

In this paper results of an experimental investigation on 
the bearing stiffness (Kf) of Ultra-High Performance 
Concrete (UHPC) under dowel bars are summarized. 
The empirical results show that as the longitudinal bar 
diameter decreases and the concrete strength increases, 
the bearing stiffness increases. In addition, the increase 
in the side cover (block width) of the longitudinal bar 
results in an increase in the bearing stiffness. However, 
the increase in the sample depth does not affect it.  

Since previous empirical equations for calculating 
bearing stiffness are obtained by testing on normal 
strength concrete, in this paper different empirical rela-
tions are presented to predict the bearing stiffness by 
performing linear and nonlinear regressions on the em-
pirical results of UHPC. Among the relations presented, 
second degree polynomial function with four input vari-
ables, Model-7, gave better results than other proposed 
models.  

To examine the capability of machine learning 
method, the results were examined using SVR-ABC 
algorithm. Among all kernels employed, RBF kernel 
gave much better results. Comparing the results from 
the Model-7 and SVR with RBF kernel, it is observed 
that SVR with RBF kernel answers have lower errors in 
Kf prediction than Model-7. 
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