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A B S T R A C T

Prompt gamma neutron activation analysis (PGNAA) is frequently used in on–line analysis of raw materials in
cement and coal industries which normally incorporates bismuth germanate (BGO) or sodium iodide (NaI(Tl))
scintillators. The quantitative results are basically undertaken through full–spectrum analysis method which
requires an efficient noise reduction procedure to optimize PGNAA data. Here in this study, the empirical mode
decomposition (EMD) technique has been used to reduce the noise level of PGNAA spectra of a neu-
tron–irradiated NaCl·H2O solution and then the results have been compared with those of wavelet technique.
The mean square errors (MSEs) comparisons confirm that both EMD and wavelet techniques can be efficiently
used for noise reduction purposes, however, this study recommends the EMD technique for its independency of
basic functions, simplicity and spectrum data-based operation.

1. Introduction

PGNAA has been extensively used in various applications such as
explosive and drug identifications in passenger luggage, landmine de-
tection, separation of chemical from non–chemical explosives in old
remnants of wars, cement and coal industries, etc. (Oden et al., 2006;
Charbucinski et al., 2003; Lim and Abernethy, 2005; Gozani and
Strellis, 2007; Bergaoui et al., 2014). The PGNAA gamma ray spectrum
may be analyzed either through peak search or full spectrum. The peak
search method is generally implemented in case of high–resolution
detector such as high–purity germanium (HPGe) where the qualitative
and quantitative studies are undertaken according to the position and
area under a specific peak. The full–spectrum method, on the other
hand, is popular in case of relatively poor–resolution detectors such as
BGO or NaI(Tl) scintillators (Ghal-Eh et al., 2016). In full–spectrum
method, the gamma–ray spectra corresponding to specific amounts of
all elements of interest are obtained either through measurement or
simulation to form spectrum libraries. Then the unknown sample
spectrum which is assumed to be a linear superposition of library
spectra is unfolded with one of the several mathematical methods such
as least–squares (Gardner and Xu, 2009), fixed–point iterations
(Akkurt, 2002), artificial neural networks (Doostmohammadi et al.,

2010), etc., leading to quantitative and qualitative elemental data.
This analysis method has been commonly used in commercial

PGNAA systems such as those used in on–line coal and cement raw
material analysis. The full–spectrum analysis is unfortunately an in-
verse–problem type in which there may be numerous solutions for a
single input condition. An inverse problem is actually the process of
calculating the causal factors of a set of observations (e.g., calculating
an image in X-ray computed tomography from detectors data). It is
called an inverse problem because it starts with the results and then
calculates the causes. This is the inverse of a forward problem, which
starts with the causes and then calculates the results (Tarantola, 2005).

Therefore, in order to improve the precision of this method, one has
to reduce the noise in gamma ray spectrum in addition to appropriate
boundary condition determination. The gamma ray spectrum noise may
be attributed mainly to low counting statistics which is itself due to
short spectroscopy time, low detection efficiency at high–energy region
of spectrum (e.g., 10.8MeV nitrogen peak) or the small sample activity.
The statistical noise of gamma ray spectrum normally decreases after a
very long acquisition time but since this is not applicable in most cases
one has to use computational methods for filtration and noise reduc-
tion. Filtration for noise reduction is used in many science and en-
gineering disciplines. Well known filtration techniques such as FT,
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STFT, wavelet and PCA depending on signal characteristics (i.e., sta-
tionary or non–stationary, linearity or non–linearity, etc.) may be used
in time, frequency or time–frequency domains.

Since the PGNAA spectrum is of non–stationary nature, there are
very limited number of noise reduction techniques (e.g., wavelet)
proposed for this purpose (Barzilov et al., 2015). Although the wavelet
method represents a relatively appropriate time–frequency resolution,
the choice of basic function determines the accuracy of this method
which is not always an easy task (Martis et al., 2011; Singh and Tiwari,
2006).

The EMD technique was first presented by Huang in 1998 (Huang
et al., 1998). The validity of this method in non–stationary and even
non–linear signal analysis has been proved. EMD is totally adaptive and
data driven and it does not require basic function selection. In this
method, a non–stationary non–linear signal is decomposed into a sta-
tionary linear component of intrinsic mode function (IMF) together
with a remainder (i.e., a constant value or signal trend) such that the
original signal can be completely reconstructed with these components.
Therefore, high–frequency components (i.e., noise) can be simply dis-
criminated from main data (Boudraa et al., 2007; Tsolis and Xenos,
2011). The EMD techniques has been used in signal analysis and clas-
sification as well as noise reduction in biomedical engineering, seis-
mology, mechanical engineering, optics, etc. (Colominas et al., 2014;
Rojas et al., 2013; Su et al., 2010; Wang et al., 2012; Yin et al., 2015).

In this research, EMD has been used for the noise reduction of an
NaI(Tl) spectrum when exposed to prompt gamma rays of a neu-
tron–activated sample. The results have been compared with wavelet
output data to show the feasibility of the proposed method.

2. Materials and methods

2.1. PGNAA measurement setup

The prompt gamma spectrum of a neutron–activated sample has
been measured with a portable PGNAA tool as shown in Fig. 1. The
setup has been located at 95 cm and 200 cm distances from the la-
boratory ground and surrounding walls, respectively. The setup consists
of a 10mCi 252Cf neutron source, a Scionix 3–inch by 3–inch right
cylinder NaI(Tl) scintillator, a NIM–standard spectroscopy electronics
and appropriate detector shielding.

The shielding consisting 18.5 cm iron followed by 31.5 cm high–-
density polyethylene (HDPE) has been constructed in such a way that
the thermal neutron fluence at sample position is optimized (Bayat
et al., 2016). In order to suppress the background count rate, the NaI
(Tl) detector has been placed inside a 2.5 cm thick lead shield. The
sample has been 400 g NaCl dissolved in 4 l H2O.

The gamma–ray spectra has been measured with a 13–bit (or
equivalently, 8192–channel) analog–to–digital convertor (ADC) to in-
tentionally enhance the noise contribution.

The noisy and reference PGNAA spectra of the sample have been
measured in 600 s and 15 h, respectively. In order to balance the
spectroscopy time with the contribution of delayed gamma rays origi-
nating from sample, detector and shielding elements, the long

acquisition has been undertaken prior to the short one. The low–-
amplitude pulse height region of PGNAA spectrum includes many peaks
associated with prompt and delayed characteristic gamma rays, as well
as single– and double–escape peaks corresponding to higher–energy
gammas. The background gamma–rays, almost all Compton continua,
backscattering peaks, electronic noise and the dark current of photo-
multiplier tube (PMT), etc. also contribute in small pulse height region.
This clearly causes a high counting rate and consequently large dead
time.

This pulse–height region of PGNAA spectrum would not provide
useful information if poor resolution detectors such as NaI(Tl) scintil-
lator are used which is due to many peak overlaps. This also perturbs
the full spectrum analysis such that a small variation in high–energy
region would not result in an observable effect which weakens the
analysis sensitivity. In full spectrum analysis, depending on the ele-
mental characteristic gamma rays, the low pulse–height region is
omitted as much as possible. In this research, the PGNAA spectrum of
neutron–activated NaCl.H2O solution below 700 keV is omitted because
the sodium and chlorine characteristic gamma rays are (1368 keV,
2027 keV, 2754 keV, …) and (789 keV, 1164 keV, 1951 keV, 1959 keV,Fig. 1. Schematics of a portable PGNAA measurement system.

Fig. 2. Neutron–activated prompt (and delayed) gamma rays spectra of
NaCl·H2O solution measured in two different live times (600 s and 15 h).

Fig. 3. Comparison between denoised prompt gamma ray spectrum using wa-
velet method (with DB3 basic function) and reference spectrum.
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6111 keV), respectively (see Fig. 2).
In order to dismiss the low-amplitude region of spectrum (i.e., the

region associated with both low-energy gamma rays and low-amplitude
electronic noises), it has been decided to set the lower level dis-
criminator (LLD) of the ADC at about channel number 400. This actu-
ally ignores the first 400 channels which are corresponding to an energy
range of 0 to about 700 keV. The sudden jump at channel number 401
normally disturbs the noise reduction procedures. To fix this problem,
one has to shift the channel number 400 to the origin, however, the
noise reduction procedure remains unaffected following this change.

2.2. Noise reduction implementation procedure

Both the reference and short–time spectra are normalized to lie
within 0 and 1. The noise–reduction techniques have been performed

on normalized short–time spectrum and then it has been compared with
the normalized reference spectrum simply through visual observation.
Then the mean squared error (MSE) factor is calculated to estimate the
noise reduction quality as follows:

=
∑ −

=
−

MSE
R x S x

L
( ( ) ( ))t

L
n0

1 2

(1)

Where R(x), Sn(x) and L are normalized reference spectrum, noise-
d–reduced normalized short–time spectrum and number of channels,
respectively. The L value in denominator may be ignored as the number
of channels in reference spectrum and all noise–reduced spectra are the
same. Clearly, smaller MSE corresponds to more efficient noise reduc-
tion.

The noise reduction using wavelet has been performed with Origin
software (Originlab, 2017). Using Origin, the main basic functions

Fig. 4. S(x) spectrum decomposed into IMFs using EMD algorithm.
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normally used in wavelet method and also the optional settings can be
simply incorporated. The noise reduction of PGNAA spectrum has been
undertaken with Daubechies (DB), biorthogonal (Bior) and Haar basic
functions in different levels and then compared. Finally it has been
found that DB3 at level 5 represents the best noise reduction results as
seen in Fig. 3. The EMD technique uses sifting–to–IMFs procedure for
spectrum (or signal) decomposition as follows:

(1) Separate interpolations have been performed among maxima and
minima of normalized short–time spectrum, S(x), to obtain upper
and lower envelopes and their average function (m1(x)).

(2) The PGNAA spectrum has been subtracted to obtain h1(x),

= Sh (x) (x)–m (x)1 1

(3) Steps (1) and (2) are repeated for h1(x) to form the average of upper

and lower envelopes (m11(x)). The subtraction of m11(x) from h1(x)
gives h11(x):

=h (x) h (x)–m (x)11 1 11

(4) Then steps (1) and (2) are repeated for h11(x) for k times.

=h (x) h (x)–m (x)k1k 1( –1) 1k

The process continues until the standard deviation falls between 0.2
and 0.3 (Huang et al., 1998) following Eq. (2).

∑=
−SD h x h x

h x
( ) ( )

( )x

new old

old

2

2
(2)

Hence h1k(x) is then called IMF1 which is the first building com-
ponent of spectrum with highest frequency compared to other
components.

(5) Now, the IMF1 component is subtracted from S(x) spectrum and the
new spectrum, r1(x), has been obtained:

= Sr (x) (x) –IMF1 1

(6) Steps (1) to (4) on r1(x) are repeated to calculate h2k(x)=IMF2, the
second component of spectrum and then r2(x) is calculated through
r2(x)=r1(x)–h2k(x). The procedure continues as IMF behaves si-
milar to the spectrum trend or ri(x) ≈ 0. The number of IMFs de-
pend on S(x) spectrum.

Therefore, using EMD technique, a spectrum (or signal), simply
without any precondition, is decomposed into a linear superposition of
a number of IMF functions and a remainder which can be a constant
value or a trend as follows:

∑= +
=

S x IMF r x( ) ( )
i

n

i n
1 (3)

The above algorithm has been implemented using MATLAB in
which the spline function due to its better performance has been uti-
lized for interpolation among extrema. First, the capability of EMD
technique has been examined by considering a combination of sinu-
soidal functions together with an additional noise. The results confirm
the noise reduction capability of the proposed method.

The S(x) spectrum has been decomposed into 15 IMF components as
shown in Fig. 4. To perform noise reduction, the spectrum subtractions
from IMFs has been calculated following Eq. (4). The resulting spectra
have been compared with reference spectrum, R(x), following Eq. (1),
as shown in Fig. 5.

∑= −
=

S x S x IMF( ) ( )n
i

n

i
1 (4)

2.3. Results and discussion

The sample spectra have been illustrated in Fig. 2. As seen, the
spectrum is very noisy due to the large number of channels and short
acquisition time (600 s). The reference spectrum exhibits low noise
except in high–energy region (i.e., above 10MeV). The pile up of pulses
corresponding to chlorine and iron gamma rays with lower–energy ones
is the main source of events dominated in above–10MeV region of
spectrum.

As seen in Fig. 3, the noise reduction undertaken using wavelet
method with DB3 basic function at fifth level represents a good per-
formance as gamma ray peaks are well distinguishable in denoised
spectrum. The sum squared errors (MSE×L) value for the denoised
short time spectrum compared to the normalized reference spectrum is
0.18.

In Fig. 4, the IMFs of normalized short–time spectrum, S(x), have
been given. As it can be seen, the first few components demonstrate
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Fig. 5. The sum squared error (MSE×L) calculated for subtractions of different
number of IMFs from S(x).

Fig. 6. Original and denoised PGNAA gamma ray spectra. The noise reduction
performed with EMD technique where the summation of IMF1 to IMF5 has been
subtracted from S(x) spectrum.
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high frequencies which have to be omitted from the main spectrum. The
subtraction of IMF1 to IMF5 components from S(x) spectrum, as seen in
Fig. 5, leads to the best match with reference spectrum, S(x). This can
be clearly seen by comparison between the spectra of Figs. 6 and 7.

3. Concluding remarks

The basic functions play important roles when implementing the
wavelet method. Different basic functions have been studied and
compared. Finally, it has been found that the DB3 function at level 5
represents the best noise–reduction performance on PGNAA spectrum.
The EMD–denoised spectrum when the summation of IMF1 to IMF5
have been subtracted from the original spectrum, similar to wavelet
method, results in a mean square error of 0.18, when compared to re-
ference spectrum. Both EMD and wavelet methods exhibit promising
results in the noise reduction of PGNAA gamma rays measured with NaI
(Tl) scintillator in which the major peaks are well distinguishable as in
reference spectrum. Overall, it can be concluded that the EMD tech-
nique is more preferable compared to wavelet method when dealing
with PGNAA spectra. This is because the EMD technique uses that
original spectrum data and it does not need any precondition. The
simplicity and high computation speed are also two important factors of
EMD technique.
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