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Abstract The presented work provides a procedure for optimizing the communication cost
of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations.
Because of technology limitations which do not allow large quantum computers to work as
a single processing element, distributed quantum computation is an appropriate solution to
overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quan-
tum system for special cases and applications. In this study, a general approach is proposed
to optimize the number of teleportations for a DQC consisting of two spatially separated
and long-distance quantum subsystems. To this end, different configurations of locations for
executing gates whose qubits are in distinct subsystems are considered and for each of these
configurations, the proposed algorithm is run to find the minimum number of required tele-
portations. Finally, the configuration which leads to the minimum number of teleportations
is reported. The proposed method can be used as an automated procedure to find the config-
uration with the optimal communication cost for the DQC. This cost can be used as a basic
measure of the communication cost for future works in the distributed quantum circuits.
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1 Introduction

Quantum computation [1] is an emerging field of study with great potential to outperform
classical computers in certain problems such as integer factorization [2], discrete logarithm
finding, and database search [3].

Despite the theoretical advantages of quantum computations, realization of a large-scale
quantum system is a real challenge [4]. It is mainly because that quantum computation
technologies have limitations in the number of qubits they can process [5] and building a
large-capacity quantum computer is hard [6] which makes distributed implementations of
quantum technologies necessary [7].

One of the limitations of quantum implementations is due to the interactions of qubits
with the environment that leads to the decoherence and when the number of qubits increases,
the quantum information becomes more fragile and more susceptible to errors [8]. To over-
come the mentioned problems, using distributed nodes or subsystems in a quantum system
is a reasonable solution in which fewer qubits are used in each node or subsystem. There-
fore, to have a large quantum computer, one appropriate solution is to build a network of
limited-capacity quantum computers which are interconnected through a quantum or clas-
sical channel and altogether can implement the behavior of the whole quantum system [9].
This structure is known as distributed quantum computer.

In order to perform a distributed quantum computation, there should be a reliable
mechanism for communication between separate nodes of a distributed quantum system.
Long-distance quantum communication is a technological challenge for physical realiza-
tions of quantum communication [10]. In this regard, teleportation [11] is a primitive
protocol for such this communication that uses entangled qubits to distribute quantum
information [12]. This protocol has been experimentally implemented in many quantum
technologies such as quantum photonics [13], NMR [14], and trapped ions [15].

In teleportation, qubit states are teleported from one node to another, without physically
moving them and then computations are performed locally on qubits, which is also known
as teledata. There is an alternative approach, called telegate that executes gates remotely
using the teleported gate approach without the need for qubits to be nearby [16]. For some
applications, like some adder algorithms it has been shown that teledata outperforms tele-
gate and also its performance is independent of the network topology [17]. In this study,
teledata is considered for communication between distributed nodes.

Teleportation is a costly operation in a distributed quantum system. Moreover, accord-
ing to no-cloning theorem [18], when a qubit is teleported to a destination subsystem, it can
no longer be used in its own subsystem. Therefore, minimizing the number of teleporta-
tions in a distributed quantum system is an important concern. In this study, this problem is
considered and an algorithm is presented to optimize the number of teleportations for a dis-
tributed quantum system consisting of two spatially separated and long-distance quantum
subsystems.

The paper is organized as follows: Section 2 explains some basic concepts and definitions
of quantum computation and distributed quantum computing. Related work is presented in
Section 3. Section 4 then establishes some definitions and notation needed for the proposed
algorithm. Our proposed algorithm for optimal distributed quantum circuit is described in
Section 5. Finally in Section 6, we conclude the paper.
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2 Background

A generic scenario for a distributed quantum computation consists of n nodes in a quan-
tum network. These nodes agree on performing a given computation by using a distributed
quantum circuit (DQC). A DQC consists of n limited capacity quantum circuits or partitions
which are located far from each other and altogether emulate the functionality of a large
quantum circuit. Partitions of a DQC communicate by sending their qubits to each other
using a specific quantum communication channel through teleportation.

In this study, it is assumed that data transfer between distributed nodes in the system is
performed by teleportation. Teleportation allows us to send the state of a qubit from point
A to point B by communicating only two classical bits. To complete this task, the sender
and the receiver at the beginning need to share a maximal entangled state which serves as
the quantum channel. Figure 1 shows the quantum circuit for a basic quantum teleportation
as described in [1]. In this figure, the two top lines represent the sender’s system and the
bottom line is the receiver’s one. The meters represent measurement, and the double lines
coming out of them carry classical bits.

As stated in [11] and mathematically proved in [6], it can be concluded that teleporting a
quantum state works even if that state is a mixed or an entangled state and so it can be used
as communication protocol between distributed quantum systems.

The quantum channel connecting A and B is considered to be maximally entangled in
order to achieve faithful teleportation. However, due to interactions with the environment,
an entangled state may lose its coherence and become a mixed one, which reduces the effi-
ciency of the protocol. Therefore, in order to obtain secure teleportation, the noisy quantum
channel should be fixed using some approaches including quantum distillation [19] or by
using weak measurement to improve the fidelity of teleportation via noisy channels [20].

3 Related Work

Distributed quantum computing has been studied for more than fifteen years [6] and the
first suggestions were made by Grover [21], Cleve and Buhrman [22] and later by Cirac
et al., [23]. In [21], Grover presented a distributed quantum system where there are some
particles at remote locations and each one performs its computation and sends the required
information to a base station when necessary. He mentioned that the issue in distributed
quantum computing is how to optimally divide the problem into the different quantum com-
puting units. The answer to this question effects the performance of the proposed problem
in this work that can be considered in the future. Grover showed that using this distributed
approach, the overall computation time is faster proportional to the number of such dis-
tributed particles. In the same paper, he also presented a quantum algorithm and adapted it
to distributed computation where communication is costly.

Beals et al. [24] provided some algorithms for efficiently moving and addressing quan-
tum memory in parallel. This imply that the quantum circuit model can be simulated with a

Fig. 1 Quantum circuit for
teleporting a qubit [1]
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low overhead by a distributed quantum computer with nodes connected using a hypercube
graph.

Yepez [25] presented an architecture for distributed quantum computing with two types
of communication which were called type I and type II. Type I quantum computer uses quan-
tum communication between subsystems and type II quantum computer exploits classical
communication between subsystems of the distributed computer. Using this classification,
our distributed quantum circuit is of type I.
Related to teleportation cost, Streltsov et al., [26] posed the question of the cheapest way for
distributing entanglement and provided the minimal quantum cost for sending an entangled
composite state in a long distance. They showed that regarding the most general distribution
protocol, the amount of entanglement sent in the total process of distributed communication
cannot be larger than the total entanglement cost for sending the ancilla particle and sending
back that particle.

Classical communication cost is the subject of the study in [27]. Authors conjecture that
in a two-stage teleportation, each step requires a single bit of classical communication and in
general, for an arbitrary N -dimensional pure state, 2log2N bits of classical communication
is required for remote preparation which is different from the usual teleportation in which
the precise state of the qubit to be prepared in the receiver is known to the sender.

Ying and Feng [6] provided some definitions of a distributed quantum computing sys-
tem and defined an algebraic language to describe quantum circuits for distributed quantum
computing. Van Meter et al., [16] designed a fixed distributed quantum circuit for VBE
carry-ripple adder. They evaluated the cost of the teleportation for the designed distributed
system. They compared two approaches, namely teledata and telegate topologies of quan-
tum circuits and showed that teleportation of data (the one we use in our work) is better than
teleportation of gates. They also compared it to a monolithic machine and showed that as
the node sizes are increased the multicomputer architecture has better performance in large
problem sizes. But their distributed quantum circuit was a predesigned architecture and they
did not make any specific change in the system to reduce the number of teleportation circuits
in the design.

Also in [28], authors used the teleportation communication model for implementing a
distributed version of Shor’s algorithm. But like the one in [29], their method for assigning
logical qubits to distributed nodes is an ad-hoc method specific for implementing Shor’s
algorithm. In their implementation, each computing node holds n/4 qubits from each reg-
ister and output of each computing node is teleported to the next computing node. So
there is no optimization in the number of teleportations and also the authors did not con-
sider the cost of returning the teleported qubits back into their own subsystems. In [30,
31], the path through scalable quantum computers using distributed-memory multicomputer
architectures is considered.

4 Definitions and Notations

In this section, we establish some assumptions and notations before proceeding with the
main development of the study. First of all, we assume that there is a quantum circuit, QC

as input with width W , size S, and depth D with the following definitions as stated in [32]:
The width of a quantum circuit is defined as the total number of qubits in the circuit. The

size of a quantum circuit is the total number of its gates from a set of universal quantum
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gates. The depth of a quantum circuit is the number of timesteps, D required for executing
the circuit. In each timestep one or more gates can be executed in parallel.

It is assumed that there is an appropriate ordering of gate executions in the sense the
number of timesteps is minimal. In each timestep, a set of gates that can be performed in
parallel are executed.

For simplicity, in this paper it is assumed that there are just two partitions in DQC, each
with the size of W/2. Without losing the generality, W is assumed to be an even number.
Qubits are numbered from top to bottom from one to n in each partition, where the ith line
of the circuit from top to bottom represents the ith qubit, qi .

The gates are numbered in order of their executions in the QC and gi means the ith gate
which is executed according to a scheduling algorithm. For gates which can be executed
in parallel, the priority of their numbering is arbitrary. The set of all gates in the circuit is
represented by G.

There are three kinds of quantum gates in the DQC, namely, single-qubit, local and global
CNOT gates and their definitions and representations are as follows:

– A single-qubit gates is shown as gate namei(p, j). p, indicates the index of partition
to which the gate gate namei belongs and j indicates the index of the qubit the gate
acts on.

– A local CNOT gate is the one whose control and target qubits belong to the same par-
tition and is shown as CNOTi (p, jc, jt ). p indicates the index of partition to which the
gate CNOTi belongs. jc(jt ) indicates the index of control (target) qubit in its partition.

– A global CNOT gate is the one whose control and target qubits belong to different parti-
tions is called a global CNOT gate shown as CNOTi (pc, jc, pt , jt ). jc(jt ) indicates the
index of control (target) qubit in its home partition. The partition to which each qubit
q of a global CNOT gate belongs is called the home partition of q. pc(pt ) indicates the
index of partition to which the control (target) of CNOTi belongs.

It is supposed that local gates including single-qubit and local CNOT gates are performed
in their local partitions. The total number of gates in a QC and the number of global gates
are denoted by mt and mg respectively. Also a subset of G for representing the set of global
gates is denoted by Gd .

Conf ig-Arr , is an array with the size of mg , whose elements show the partitions each
global gate is supposed to be executed. The value of ‘0’ (‘1’) for the elements of this array
means the corresponding gate is assumed to be executed in P0 (P1). The partition in which
the gate g is supposed to be executed based on the Conf ig-Arr array is denoted by g.l.

Definition 1 In order to perform a global CNOT gate, one of its two qubits should be
teleported from its home partition to another. This qubit is called a migrated qubit, as long
as it is not teleported back to its home partition.

To keep load balancing of quantum subsystems, it is assumed that at each time, the
number of migrated qubits is at most one.

For example, in the circuit of Fig. 4, the set G is represented as:
{CNOT1(0, 0, 1)CNOT2(1, 0, 0, 0)CNOT3(0, 0, 1, 1)H4(1, 1)
CNOT5(1, 1, 0, 1)H6(0, 1)CNOT7(0, 1, 1, 1) CNOT8(0, 0, 1)CNOT9(1, 1, 0, 0)}

As non-commutativity property of gates is an important concept in our algorithm, it is
considered in the following. First we examine the non-commutativity of two CNOT gates.
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Two CNOT gates do not commute when the index of control qubit of CNOT gate is the same
as the index of target qubit of other gate [33] as shown in Fig. 2. As shown in this figure, the
third output in circuit in the left is |b ⊕ c〉, while it is |a ⊕ b ⊕ c〉 in the circuit in the right.

Now the commutativity relations of two adjacent CNOT and a single-qubit gate are
considered.

1. If the single-qubit gate, U is applied to the same qubit of control of the CNOT gate,
they commute if:

(U ⊗ I )CNOT = eiθCNOT(U ⊗ I ) (1)
where θ ∈ [0, 2π). Examining (1), θ is obtained 0, and U is a diagonal unitary matrix
as follows:

U =
[

u0 0
0 u1

]
.

2. If the single-qubit gate, U is applied to the target qubit of CNOT gate they commute if
that the X gate and U gate commute. X gate and a U gate commute if:

XU = eiθUX, (2)
Examining (2), we found that θ is either 0 or π . In the case of θ = 0, the structure

of U is a unitary matrix as follows:

U =
[

u0 u1
u1 u0

]
,

and where θ = π, the structure of U is a unitary matrix as follows:

U =
[

u0 u1
−u1 −u0

]
.

The number of required teleportations for a given DQC, namely its teleportation cost is
considered as the figure of merit for the proposed approach as explanted in Section 5.

5 Proposed Approach

In this section, first the proposed algorithm for optimizing the teleportation cost of a given
DQC is explained and then, it is performed on a simple running example.

5.1 The Proposed Algorithm

In this section, the proposed algorithm to find the optimal number of teleportations and
their sequence for a given DQC is presented. The algorithm is motivated by the fact that

(a) (b)

Fig. 2 a and b show when the index of the control qubit of one CNOT is the same as the index of the target
of the other, two CNOTs do not commute [33]
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teleportation is a costly operation and reducing the number of teleportations in a given DQC
is of great importance.

We intend to start with a quantum circuit QC, composed of basic gate library [34], i.e.,
CNOT and single-qubit gates operating on 2n qubits. As mentioned earlier, for simplicity, in
this paper it is assumed that there are just two partitions in DQC, each with the size of n. The
proposed approach should first assign qubits to two partitions. To this end, Kernighan-Lin
(K-L) algorithm as used in the VLSI design algorithms [35] is applied. The K-L algorithm
is an O(n2log(n)) heuristic algorithm for solving the graph partitioning problem, in which
we attempt to partition a graph into two partitions in such a way the interconnection cost
between different partitions is minimized.

The K-L algorithm starts with a QC already split into two partitions, P0 and P1 each
with n qubits. To apply this algorithm, the problem of assigning qubits to partitions should
be represented by a graph. In this graph, each qubit represents a node and each CNOT gate
relates to an edge between the nodes of graphs (the qubits) of the gate that it is applied to.
The weight of each edge is equal to the total number of CNOT gates which operate on these
two qubits. For example, for the circuit shown in Fig. 3a, the corresponding graph is shown
as Fig. 3b.

After this graph representation, the K-L algorithm is applied to swap nodes (qubits) in
partitions in such a way that the interconnection cost between partition is minimized.

After the initial partitioning by the K-L algorithm, the rest of proposed approach is
explained. Suppose there are mg global CNOT gates in the given DQC. In general, each of
these gates can be executed in either P0 or P1 and hence there are 2mg different configura-
tions for executing mg global gates. In the proposed approach, each of these configurations
is considered and for each of which, the minimum number of teleportation and their corre-
sponding sequence are analytically determined. Finally, the configuration which leads to the
minimum number of teleportation is reported. This procedure is performed by Algorithm 1
as explained in the following.

In Algorithm 1, teleportation cost for different configurations of executing mg global
gates is considered and the configuration with the minimum cost is reported as output. To
this end, function MIN -T ELEPORT AT ION is called which takes a DQC with the
ordered list of gates, G, and Conf ig-Arr as inputs and returns the minimum number of
teleportations and their sequence for that configuration. This algorithm is first called with
nt = 0. The subset of global gates, Gd is also used in the algorithm for reporting the
sequence of teleportations. In different steps of this algorithm, the general and the global
gates which are executed are removed from G and Gd , respectively.

(a)                      (b)

H

H
P0

P1

1

2

3

4

21

3 4

2

2 2

P0

P1

1

Fig. 3 a A sample QC split into two partitions b The corresponding graph
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This algorithm starts from the first gate in list G of DQC. If it is a local gate, then
no teleportation is needed for it and this gate is removed from G. Otherwise, the qubit is
teleported to the destination and the teleportation cost (nt ) is increased by one. Furthermore,
to show the sequence of teleportations, Gd [0](C/T ) is printed. Based on Conf ig-Arr , C/

T determines whether the control/ target qubit of Gd [0] should be telepoted to the other
partition. When the number of teleportations (nt ) for a configuration exceeds or equals to
the minimum number of them produced so far, the MIN -T ELEPORT AT ION function
is forced to end.

When a qubit of a global gate, temp in algorithm, is teleported to the other partition,
the whole circuit is tracked and as much as possible number of gates that can be executed
without the need of teleporting back the qubit are executed. This means that the migrated
qubit has been used optimally by other gates before it is teleported back to its own partition.

Three characteristics of gates that can not be executed are explained in the NON -
EXECUT E function. This function returns TRUE when any of these characteristics
occurs. When there is a gate, G[i], for which NON -EXECUT E(temp,G[i]) function
returns FALSE, there are possibly some gates before G[i] which have not been executed. In
this case, G[i] can be executed just in case that it can commute with all of these gates. The
commutativity of gates is checked in the NON -COMMUT E function. The mentioned
functions are introduced in the following:

– NON -EXECUT E(g, g′), takes two gates, g and g′ as inputs. It returns TRUE, if the
migrated qubit of g should be returned to its home partition due to the three different
cases mentioned below and then g′ can be performed. It returns FALSE otherwise.

1. g′ is a local gate whose one of qubits is the same as the migrated qubit of g.

2. g′ is a global gate with different label of g, i.e., g′.l! = g.l.

3. g′ is a global gate and g′.l = g.l, but it requires another teleportation in order to
execute g′.

– NON -COMMUT E(g, g′), takes two gates, g and g′ as inputs. It returns TRUE,
if the gates g and g′ do not commute and returns FALSE otherwise. According to
discussions in Section 4, the non-commutativity of two gates happens in three cases:

1. The two gates are CNOTs where the index of control qubit of one of them is the
same as the index of target qubit of the other.

2. One of the gates is CNOT and the other is a non-diagonal single-qubit gate that
acts on the control qubit of CNOT.

3. One of the gates is CNOT and the other is a single-qubit gate which acts on the
target qubit of CNOT and does not have any of the structures as explained in (1) or
(2).

At the end of each run of the algorithm, nt is increased by one once more because another
teleportation is required to return the teleported qubit back. Then the algorithm recursively
is called with the new existing gates until there is no gate in the set G and the minimum
number of teleportations (nt ) is obtained.
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Fig. 4 A sample DQC

5.2 Running Example

In this section, the proposed algorithm in Section 5.1 is explained by a running example.
This example is illustrated in Fig. 4 and the proposed algorithm is applied to it.

The algorithm starts by taking an already two-partite DQC as an input. This circuit con-
sists of nine gates including two single-qubit gates, two local CNOT gates and five global
CNOT gates. Since there are five global gates, the Conf ig-Arr has five elements and
25 = 32 different configurations. Algorithm 1 for all these configurations calls function
MIN -T EELEPORT AT ION which finds the minimum number of teleportation and
their sequence for that configuration. If in this function, the computed number of telepor-
tations for a special configuration exceeds a previously computed miniminm number of
teleportation, this function is forced to end. The proposed algorithm finally reports the con-
figuration with the smallest number of teleportations. Therefore, for the given DQC this
approach finds the minimum number of teleportations.

Let us consider Conf ig-Arr={0, 1, 0, 0, 1} as a sample configuration. Function MIN -
T ELEPORT AT ION starts with the first gate in G, i.e., CNOT1(0, 0, 1) which is a local
gate. Therefore, it is executed in its own partition and is then removed. The next gate in this

1001

1 5 97 86

H

H
P0

P1

3 42

Fig. 5 New DQC after the first run of MIN-TELEPORTATION
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100

1 5 97 86

H
P0

P1

3 42

Fig. 6 New DQC after the second run of MIN-TELEPORTATION

array is CNOT2(1, 0, 0, 0) which is a global gate and based on the first element of Conf ig-
Arr , this gate is executed in P0. For executing this gate, qubit #0 in P1 is teleported to P0,
the number of teleportations, nt is increased by one and then this gate is removed. In the
outer loop of Algorithm 2 (Line 15), for all other gates, they are removed from the list, if
they can be executed before teleporting back this migrated qubit.

The steps for the first run of function MIN -T ELEPORT AT ION are as follows.

– NON -EXECUT E(CNOT2(1, 0, 0, 0),CNOT3(0, 0, 1, 1))= TRUE according to the
second condition of Non-Execute function as they are intended for execution in
different partitions.

– NON -EXECUT E(CNOT2(1, 0, 0, 0),H4(1, 1))= FALSE. Therefore, in the inner
loop of function MIN -T ELEPORT AT ION (Line 17), this gate is checked
with the set of all previous existing gates whether they can commute. As NON -
COMMUT E(CNOT3(0, 0, 1, 1),H4(1, 1))= TRUE, H4(1, 1) can not be executed
and is not removed.

– NON -EXECUT E(CNOT2(1, 0, 0, 0),CNOT5(1, 1, 0, 1))= TRUE according to the
third condition ofNON -EXECUT E function as a different qubit should be teleported
for the execution of this gate.

– NON -EXECUT E(CNOT2(1, 0, 0, 0),H6(0, 1))= FALSE. Therefore, the algorithm
enters the inner loop where this gate is checked with the set of all previous existing

1

1 5 97 86

P0

P1

3 42

Fig. 7 New DQC after the third run of MIN-TELEPORTATION function
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gates for possible commutativity. In this case, NON -COMMUT E(CNOT5(1, 1,
0, 1),H6(0, 1))= TRUE and hence, H6(0, 1) cannot be executed and is not removed.

– NON -EXECUT E(CNOT2(1, 0, 0, 0),CNOT7(0, 1, 1, 1))= TRUE since the case
three of NON -EXECUT E function is satisfied.

– NON -EXECUT E(CNOT2(1, 0, 0, 0),CNOT8(0, 0, 1))= FALSE but as
NON -COMMUT E(CNOT7(0, 1, 1, 1),CNOT8(0, 0, 1))= TRUE, CNOT8(0, 0, 1)
cannot be executed.

– NON -EXECUT E(CNOT2(1, 0, 0, 0),CNOT9(1, 1, 0, 0))= TRUE since the second
condition of NON -EXECUT E function is satisfied.

Table 1 The sequence and the
number of minimum
teleportations for different
configurations of Fig. 4

Configuration The sequence of qubit teleportations nt

# (in base 10)

0 g2(C), g3(T ), g5(C) 6

1 g2(C), g3(T ), g5(C), not continued 6

2 g2(C), g3(T ), g5(C), not continued 6

3 g2(C), g3(T ), g5(C), not continued 6

4 g2(C), g3(T ), g5(T ), not continued 6

5 g2(C), g3(T ), g5(T ), not continued 6

6 g2(C), g3(T ), g5(T ), not continued 6

7 g2(C), g3(T ), g5(T ), not continued 6

8 g2(C), g3(C), g5(C) 6

9 g2(C), g3(C), g5(C), not continued 6

10 g2(C), g3(C), g5(C), not continued 6

11 g2(C), g3(C), g5(C), not continued 6

12 g2(C), g3(C), g5(T ), not continued 6

13 g2(C), g3(C), g5(T ), not continued 6

14 g2(C), g3(C), g5(T ), not continued 6

15 g2(C), g3(C), g5(T ), not continued 6

16 g2(T ), g3(T ), g5(C) 6

17 g2(T ), g3(T ), g5(C), not continued 6

18 g2(T ), g3(T ), g5(C), not continued 6

19 g2(T ), g3(T ), g5(C), not continued 6

20 g2(T ), g3(T ), g5(T ), not continued 6

21 g2(T ), g3(T ), g5(T ), not continued 6

22 g2(T ), g3(T ), g5(T ), not continued 6

23 g2(T ), g3(T ), g5(T ), not continued 6

24 g2(T ), g5(C) 4

25 g2(T ), g5(C), not continued 4

26 g2(T ), g5(C), not continued 4

27 g2(T ), g5(C), not continued 4

28 g2(T ), g5(T ), not continued 4

29 g2(T ), g5(T ), not continued 4

30 g2(T ), g5(T ), not continued 4

31 g2(T ), g5(T ), not continued 4
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The steps described above correspond to the first run of function MIN -
T ELEPORT AT ION and lead to the DQC of Fig. 5. The next runs of the algorithm are
depicted in Figs. 6 and 7. There is a final run in the algorithm that results in an empty circuit
and it is not shown.

For each configuration of global gates of Fig. 4, Table 1 shows the minimum number of
teleportations and their corresponding sequence. In this table, the general name g for gates
of DQC is used. gk(C/T ) implies that the control/target qubit of gk is teleportated to the
other partition. The configuration used in the example is configuration #9 in Table 1.

In this example, the minimum number of teleportations, which is 4, occurs for the config-
uration #24. This configuration corresponds to the Config-Arr={11000} where the first and
second global gates are executed in P1 and other global gates are executed in partition P0.

In the worst case, this example requires 10 teleportations while the optimizations of the
proposed approach decrease this value to 4. Therefore, a remarkable improvement, i.e., 60%
is obtained for this small circuit by the proposed approach. Table 1 shows the sequence
and the number of minimum teleportations for different configurations of Fig. 4. When the
number of teleportations exceeds or equals to the minimum number of them produced so
far, the MIN -T ELEPORT AT ION function is forced to end and in this table, it is shown
by “not continued” phrase in the second column.

6 Conclusion and Future Works

In this study, we presented an algorithm to optimize the number of teleporta- tions for a
distributed quantum system consisting of two spatially separated and long-distance quantum
subsystems. As teleportation is a costly operation in quantum computation technologies,
reducing the number of such operations is very important for designing distributed quantum
computers.

As future works, proposing a faster algorithm to perform the proposed idea is being
considered. Moreover, extending the proposed approach to the case when the number of
partitions is more than two can be studied. Finally, the used library of gates can be extended
to include three-qubit quantum gates and hence the proposed algorithm should be modified
accordingly.
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