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  Abstract- In system-level design, applications are presented as 
task graphs where tasks; i.e. nodes of the graph, have several 
implementation options differing in some criteria such as time, 
area and power. Systems designed with this approach are those 
that are application specific and for performance reasons are 
implemented in a hardware/software codesign manner. In this 
paper the most important design issues in these systems i.e.
partitioning and scheduling are investigated. Our approach, 
namely CSPA, is a heuristic algorithm inspired by the biological 
immune system and attempts to obtain an optimal design for a 
given system composed of several hardware and software 
components. We use a graph representation of the system where 
nodes are operational components and edges are communication
links between them. We propose an immune-based approach 
which based on artificial immune system and apply the clonal 
selection algorithm as one of the different types of algorithms 
inspired by biological systems. To date there is no work in this 
field that uses the clonal selection algorithm for optimization of 
partitioning. Empirical results show a suitable improvement by 
using this approach in comparison with traditional evolutionary 
algorithms and also traditional immune-based approach.

Keywords- CoDesign, Hardware/Software Partitioning, Scheduling, 
Artificial Immune System and CSPA.

I. INTRODUCTION

  Embedded systems have important roles in the world of 
autonomous systems. They are the fundamental elements in 
most of the innovations in many fields. So optimizing them in 
the design time is a major task. One of the primary features of 
these systems is their speciality to needs of each field. They 
don’t be designed to be responsible to several needs that 
conflict in definitions and tasks. These systems are said mixed 
since they are usually a combination of hardware and software 
components. 
  The most important step in designing such systems is 
partitioning, that is how computation is divided between 
hardware and software elements so that overall cost of 
implementation is minimized. Scheduling in such systems is 
also of critical importance. Scheduling is the task of 
determining the starting time for each task of the system.
Really those two parts, i.e. partitioning and scheduling, could 
not be viewed separately, because each part has influence in 
the other part. Scheduling needs knowledge about the 
execution of each component, i.e. execution start and end 
times, and this knowledge is only obtained when we know 
where components are to be executed and on what platform to 

calculate its execution time and its possibility for concurrent 
execution with other components.

These two problems known to be NP-hard. In this paper a 
novel bio-inspired algorithm is introduced for solving 
partitioning problem in combination with scheduling.Similarly 
to the way nervous system inspired the development of 
artificial neural networks (ANN), the immune system has now 
led to the em ergence of artificial immune systems (AIS), as a 
novel computational intelligence system. 
  The proposed Clonal Selection Partitioning Algorithm named
CSPA is based on the clonal selection in the human body 
immune system. It is designed to solve partitioning problem 
with the clonal selection of solutions and applying the 
algorithm to them. Our approach aims at using ideas gleaned 
from immunology. The artificial immune system (AIS) for 
hardware/software partitioning is used in [1] under the name 
“evolutionary immune system”.   
  Some of our work in this paper which applies AIS is based 
on the approach used in [1]. But we have developed this 
approach and combined it with the clonal selection theory as 
another algorithm in this field. On the other hand, our paper 
more precisely and completely investigates the immune 
system method.
  The remainder of this paper is divided to these parts: first 
in the following section we consider some works in this area. 
Then in section III we outline the main components in the 
immune system and illustrate its role in the optimization 
problems. Section IV shows our proposed work in more 
details. In section V we brought some discussion of our 
algorithm and its ability to escape from local optimal. Section 
VI illustrates the fitness function used and scheduling method
we applied. Finally we investigate experimental results and 
conclusion remarks.

II.   RELATED WORKS

  We can divide partitioning algorithms with two categories 
include: those that their criterion is improvement of a cost 
function which is a combination of all necessary factors [8]. 
And those that attempt to optimize one parameter in design 
while constrain other factors [7]. Our algorithm is in the first
class.
  On the other hand, algorithms used in the optimizations in 
this field have been very diverse. A large numbers of them are 
heuristic approaches [9, 10]. This is because the problem’s
nature is NP-complete and when the dimensions of the 
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problem are large, finding an acceptable solution is not 
possible.
  Immune-based systems have become popular in recent 
years as a novel approach for solving several problems in 
many fields. The artificial form of clonal selection has been 
popularized mainly by de castro and Von Zuben, beginning 
with an algorithm which they called CLONALG (de castro 
and Von Zuben, 2000). CLONALG currently exists in two 
forms [16] - one for optimization and one for pattern 
matching. In [13] theoretical advances in the AIS’s field have 
reviewed And shown that to date these advances include 
immune networks, clonal selection and negative selection. In 
[17] the ability of clonal selection to escape from local optima 
is proved with one technique called receptor editing that 
occasionally allows accepting less promising regions. The 
authors in [6] propose another variation of AIS namely 
DISAS. It is based on discrimination between self and non-
self in the human immune body.
  However there are a lot of studies in both partitioning and 
AIS, but our work is a new one which applies the clonal 
selection mechanism with other features of AIS to 
partitioning. In the following sections we describe the details 
of it.

III. USING ARTIFICIAL IMMUNE SYSTEM IN OUR WORK

  Artificial Immune Systems (AIS) have become an 
increasingly popular area for study by computer scientists in 
recent years. The term AIS refers to any computer system 
which is inspired by the natural immune system [3]. Artificial 
Immune Systems are a group of methods that inspired from 
the community of immunology [4].  Body immune system 
which is part of this system is distributed around the body and 
protects us from attacks of foreign bodies known as 
pathogens. 
  The job of the immune system is to monitor the body and 
make classifications as to whether the items it encounters are 
self or non-self.   Everything which the immune system 
categorizes non-self must be destroyed. Everything which is a 
natural and healthy part should remain untouched by the 
immune system. Antibodies are features inside cells that used 
for recognition of antigens. The term antigen is said to 
everything that immune system is capable to recognize it. 
  The part of antibody that is responsible to recognizing 
antigen is said paratope which also called V shape (because of 
its variability). The model used in this paper is the 
discriminated-based immune system such as the model that is 
pointed in [6] and named DAIS. But we applied clonal 
selection within it.
  For us those parts of the immune system operations that 
generate final T cells are considerable. Its complete and 
precise discussion is in [5]. Actually, optimal or near optimal 
solution for partitioning is the same as final T cells which are 
generated after cell cloning and maturation. Clonal selection is 
a process in the immune system where matching cells are 
proliferated in order to population of best matching cells 
become great. These are then can response better to incoming 

pathogens. Fig. 1 illustrates the process of clonal selection. 
This figure is taken from [16]. 
  The immune system approach is also usually imparted 
from a segment of immune system operation namely negative 
selection. The purpose of negative selection mechanism is to 
give some tolerance to self cells. This part of immune system 
operations occurs in thymus uses capability of immune system 
to appear unknown antigens, while do not react to self cells 
[14].
  Self-set in our algorithm is set of solutions that their 
implementation costs are high. In other word their fitness that 
is a criterion about the goodness of some solution in the word 
of genetic algorithms is low. The algorithm attempts to find 
which selected solutions have maximum distance to self set. 
This is the same as immune system does about the selection of 
T cells and tries the population of pathogen distinguisher cells 
have maximum distance to self cells to restrain the immune 
system from destroying itself. Matching rule can be hamming 
distance, r-bit continuous matching and so on. Matching 
threshold is shown with .

  According to the r-contiguous matching rule used in [13], 
we have the following definition for matching between two 
solutions:

Definition 1- an element  L
e with ),,,( 21 Leeee 

and detector  L
d with ),,,( 21 Ldddd  , match 

according to the r-contiguous bit rule, if a position p exists 
where ii de  for 1,1,,  rLprppi  .

In our work, elements in e and detector set d have 0 or 1 
values. L is the number of graph nodes.
r is some percent of L.

  Also because of two implementation options in our work, 
hardware and software, the generated strings are binary, and 

our alphabet is   0,1  . 

  In the phase where clones are created, however we used 
the hamming distance with the following equation to achieve 
the similarity between an individual’s clones.

)1(  


 


 otherwise
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,
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In (1):
D is the hamming distance.
Abi is the i’th gene in antibody or i’th node in the process 
graph.
S(t)i is the i’th gene in the self-set.
  The selection of the r-contiguous bit matching rule in the 
operational graph of the embedded system leads to increasing 
in speed to reach acceptable solutions. This is because of the 
more similarity in graphs matched with this model from the 
communication cost’s point of view.
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Fig. 1. The clonal selection principle

  One of the operations take places in B cells is the 
generation of random genetic changes that expressed as 
diverse antibody patterns to system. In addition to somatic 
hypermutation and receptor editing, a fraction of newcomer 
cells from the bone marrow is added to the prior lymphocytes 
in order to maintain the diversity of the population. This may 
yield to not landing in local optima [16]. Finally we eliminate 
newly differentiated lymphocytes carrying low affinity 
antigenic receptors. 

IV. PROPOSED APPROACH

  Before describing the proposed algorithm, we first 
introduce symbols and assumptions used in the paper.
Just like the original genetic algorithm suppose there are a 
population of solutions in each generation, rather than one 
solution in each step. Also each solution in the population is 
considered as an individual in the population and the final goal 
is improvement in the individual’s genes in each generation.
  Each individual in the set is mapped to a process graph; so 
that:

For each individual there exists a graph G:
{Node (i); 0 < i < L}

Each individual has various genes that are various nodes in 
the process graph. Genes have several properties that their 
mapping to the process graph is the various parameters such as 
execution time, implementation area, power consumption and 
so on. In addition, each node has two types of specific 
implementations that are software implementation and 
hardware implementation. With these assumptions, each gene 

is encoded as a binary number which may be zero for
hardware implementation and one for software 
implementation or vice versa.
  In CSPA algorithm, we use the process of generating 
defender cells in the body. These cells are mapped to good 
solutions in the partitioning problem. So the goal in our 
application domain is achieving antigenic pattern with a 
difference that we have not pathogen, but know its features. In 
this manner, antibodies after production in each step of 
algorithm are proliferated or if they didn’t match gradually 
decreased. According to [15, 18], iterations in AIS are
obtained from the following formula: 
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Where:
N is the number of antigens, or the same good solutions,
xi is the concentration of antibody i.
yj is the concentration of antibody.
k2 is the stimulation effect and k3 is the death rate.
mji is matching function between antibody i and antigen j.

  Some symbols used in the paper are as follows:
Each antibody in the individual set of each generation is 
presented with Ab(t) and antigens with Ag(t). The affinity 
function; that shows how much a solution is good, is presented 
with AF(t).

The proposed algorithm is as follows:
1- Generate an initial population Ab(0) with randomly 

encoding, from B-cells involving antibodies or in our 
analogy the partitions. Set the iteration generations equal 
to zero. Encoding in this work involves binary encoding, 
with the probability 0.5 for each one. 

      Gen = 0, t = 0, N = number of antibodies.
2- Initial evaluation – Intrinsic affinity of each immature 

antibody is calculated. This is done via affinity function 
and its calculation is in section VI. The value of this 
function constitute a vector and we have:
Af (t) = { Afj (j) ; such that j is between 0 and N }

3- M antbodies with highest affinity are selected from Ab set 
and constitute a new set Ab(t){M} of high affinity 
antibodies.

4- Clonal Expansion- M antibodies in Ab(t){M} are cloned 
according to their affinities and form a set namely Ac of 
clones. This process is performed according to the 
proportions. The higher the affinity, the larger the clone 
size for each of the M selected antibodies. This statement 
is given by equation 3. From the following formula it 
should be considered that each antibody with smaller 
number has more antigenic affinity.
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In this formula:
NAc (j) is the number of clones for j th selected antibody, 
i.e. Ab(t){M (j).
N is the number of total antibodies in the Gen generation.
M is the number of superior antibodies which are selected 
for clonal expansion.
NAc is the total generated clones and finally,
 is the coefficient factor that used for adjusting to the 

application domain.
5- Mutation- generated clones are go through mutation

process and make the Ac* set. Mutation is actually a 
change in one of the gene patterns in the individual. It is 
one kind of clonal expansion. It includes genetic mutation 
of clones and is inversely proportional to their antigenic 
affinities and number of iterations in the algorithm. This is 
viewed in equation 4. The higher the affinity of an 
individual, the lower mutation rate.
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In this equation, L is the number of coded information of 
the cell that is expressed in many applications as binary 
strings and in our work is the number of the nodes of 
process graph.
j is the number of selected antibodies according to the 
affinity function.
 is the coefficient factor that is used for adjusting to the 

application domain.
6- Evaluation- the affinity AF* with relation to new immature 

antibodies is calculated.
7- Learning process- from AF*, those individuals with 

highest affinity are selected and added to MB memory set. 
Solutions are retained in the memory for the future 
reference.

8- Negative selection- all antibodies are filtered by negative 
selection. Some of them are excluded, because they match 
one or more self-individuals, while others are regarded as 
mature antibodies and enter the system as a learned group. 
The matching rule could be hamming distance; r-
continuous-bits matching rule and so on.

9- Updating- worst solutions by K percent are added to the 
self-set and self-set is updated just like a queue.

10-e antibodies with lowest affinity are selected from Ab and 
removed from current generation.

11-Selection- N antibodies of new generation are selected 
from past antibodies (those generated in the first step) and 
intermediate antibodies and compose the Ab(t) of t 
generation. This selection can be roulette wheel or 
tournament selection.

12-If the number of iterations is not reached, Gen = Gen + 1, t 
= t + 1 and go to step 4. Otherwise best individual between 
the current generation Gen and the memory MB is selected 
as final solution.

V.   ALGORITHM ABILITY TO ESCAPE FROM LOCAL OPTIMAL

  Most of the traditional algorithms in partitioning domain 
and evolutionary methods are not capable to escape from local 
optimal and so they can result in suboptimal solutions. In this 
section we argue that our algorithm is capable to escape from 
local optimal in normal situations. This prove is based on the 
work in [1].
  Suppose there is a local optimum in current population Abi

that our algorithm is converged to it and individual xlocal that is 
a local optimum is in it. Because of similarity in the pattern of 
various individuals, most algorithms can accept the population 
as the final solution. But CSPA algorithm can escape
according to following method:

  We suppose antibody set is  N
tttt xxxAb ,,, 21  , 

at the end of the current generation and after mitosis, mutation 
and final selection for the next generation, in this generation K 
individuals with lowest affinities are added to current self-set. 
This is prior to final selection step. Also the (K < N) relation is 

true. These individuals are:  K
ttt xxx ,,, 21  .

  By selecting a suitable K, when the algorithm reaches at 
local optimal for Abi population, it finds one individual 

 Kax a
t 1 in the self-set so that:

(5)   local
a
t xx  

Where  is a positive number. This is because of similarity 
between patterns of current generation that led to locality of 
solutions.
In the next iteration of the algorithm the antibody set is: 

 N
tttt xxxAb 1

2
1

1
11 ,,,    .Because of negative selection, no 

individual in the generation matches the self-set 

 K
ttt xxx ,,, 21   according to matching rule. So if the 

matching threshold is selected suitable value  2 , we have 

the following formula: 
(6).1,21 Nixx a
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i
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  We consider that because of negative selection, individuals 
in the t+1 generation can escape from local optimal. And so 
on this algorithm is escaped from local optimal step by step.
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VI.   COST OR AFFINITY FUNCTION

  Affinity function in terms of immune systems shows the 
suitability of one implementation that is the reverse of cost 
function in our work. To obtain the cost of a system, one 
should find parameters that lead to cost in digital systems and 
then enter them into the function.
  The partitioning algorithm is guided by this cost function 
that allows evaluating the quality of a given solution. The 
characteristics which are taken into account in our cost 
function are space, execution time and power.
Execution time criterion- It is obvious that execution-time 
reduction is one of the most important factors that needed to 
be thought about it in each step of creating a system, 
especially in design phase. In codesign systems this factor is 
computed for each node, when constructing process graph and 
partitioning the system to appropriate component regarding its 
mapping choice.
  In the communication cost of the system, the cost of 
hardware-hardware interfacing and also software-software 
nodes is usually negligible and not considered. The only 
important cost in the node communication is between 
hardware and software nodes. For each node we also consider 
the number of executions in each run of the system for 
execution time and power consumption. But area is considered 
only one.
  With these descriptions we express the execution time such 
as [9].

(8)  
 

 ji
ij

N

i
ii commitertsT

s

,1

)*(  

Where T is the overall execution time of the system, Ns is 
number of nodes implemented in software, tsi is the execution 
time of software node i, iteri is the iteration of node i, and 
commij is the time required for communication between nodes 
with various  implementation options.Now we consider the 
influence of each of these factors in the affinity function.
  We use normalization to accommodate the conflicting 
factors in one term. In addition we apply a coefficient which 
adjusts the importance of various factors with regard to 
designer needs. We select the cost function as [10] and the 
affinity function as [11] that is the reverse of the cost function 
plus 1 to stands between zero and one.
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  Also in this formula T, C and P are execution time, 
hardware area cost and power consumption for a given 
partitioning respectively. TimeSW and TimeHw denote 
overall execution time of the system when all nodes are in 
software and hardware respectively. CostSW and CostHW 
denote overall cost of area when all nodes are in software and 
hardware respectively and finally powSW and powHW are 
just like the above.
  TimeReq is the system time constraint given by designer. 
 is the coefficient that adjusts cost and time factors. We 
chose it 0.5. We adaptively select Mi equal to 1 and decrease
it with the equation Mi+1=0.96Mi like in the [1]. 

Space criterion- optimizing this factor is needed for producers 
and customers and for device portability.   This factor gives 
system manufacturers with the reduction in the hardware 
resources. General purpose processor is not considered as a 
hardware resource to account for. So we don’t consider it in 
calculating area of the system. The reason is that its area is 
negligible and also there is one from it in our system and we 
must have at least one processor to execute the software code. 
We take into account the area of the special-purpose hardware 
such as FPAGs and ASICs. We have:

)11(  
 

ji
ij

i
i AcommahC

,

  

 where C is the total cost of manufacturing area, ahi is the area 
of nodes implemented on the hardware platforms and Acommi

is the area of buses.
Power criterion- This criterion is of extra importance 
especially in the mobile systems. Although in every system, its 
growth leads to lose in energy and needs of recharging the
device with some resource of energy to continue its work. 
Growing up power consumption is not acceptable, especially 
in battery-enabled devices. We calculate the power 
consumption with following equation:

(12)

 
ji

ij
i

ii PcommiterpnodeP
,

)*(  

  Where P is the total power consumption of system, pnodei

and iteri are power consumption of node and number of 
iterations of that node respectively. And Pcommij is the power 
consumed in node’s communication.

Scheduling - Process scheduling means specifying the start 
time for every entity in the system [12]. System scheduling for 
executing operations is one of the important problems in 
partitioning algorithms that in many cases are not considered. 
Actually we cannot have exact estimation about execution 
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time of a system without having enough information about 
scheduling. We used a list scheduling algorithm [1]. This 
scheduling is applied for each new solution and its result is the 
execution time of it.

VII. EXPERIMENTAL RESULTS

  In this section the performance of the proposed algorithm 
is evaluated with the results obtained from simulation 
experiments. Self-set population is selected from the 20 
percent of the overall population for each generation. Best 
solutions that are cloned contain 5 percent of total individuals 
in current generation. Also r selected 0.6N where N is the 
graph size and we considered G = 20.
  Our algorithm was written in C++ code and evaluated on 
several test samples. We used TGFF software for 
benchmarking of our work. Our parameters for graph sizes 
applied to this software were 20, 50 and 100. And graphs were 
near to these sizes after creation by TGFF. The experiments on 
each graph size were taken from more than 20 different 
independent runs. We compared our work with two standard 
algorithms: genetic and traditional AIS, with the same graphs. 
The results are shown in table I. In this table the average cost 
is based on the affinity function and execution time denotes 
the average total execution time for each graph size.
  Table I shows that we have good improvements in final 
costs. Compared to AIS and genetic algorithm, the solutions 
have better quality. Increase in execution times compared with 
AIS is observed, but its rate per graph size is slow. This is due 
to the extra phases included in this algorithm for clonal 
selection and learning.

TABLE I
RESULTS OF CSPA COMPARED WITH TWO OTHER ALGORITHMS

CSPA
exe. 
Time

(sec)

GA 
exe. 
Time

(sec)

AIS 
exe. 
Time

(sec)

CSPA

cost

GA 
cost

AIS 
cost

N=

1014.2691.4320/86630/85700/862220

3.5006.253.4530/90140/87410/897450

5.8749.5365.6500/87400/86340/8563100

VIII. CONCLUSION AND FUTURE WORKS

  Partitioning for digital systems that consist of 
combinations of hardware and software components is one of 
the most fundamental steps to reach the good performance of 
these systems. In this paper a heuristic approach inspired by 
nature called CSPA was proposed. Our algorithm uses the 
clonal selection of body immune system which is a new idea 
in this area. Results indicate that the quality of solutions in this 
approach is better than the evolutionary and traditional
immune-based algorithm. In the future works, this approach 
can also be used in the area of reconfigurable systems to 

improve several design steps in such systems where they need 
optimization.
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