
Clonal Selection Algorithm for Partitioning and
Scheduling of Codesign Systems

1Maryam Zomorrodi Moghaddam and 2Ahmad Kardan
1Department of Engineering, Bojnord University, Bojnord, Iran

2Department of Computer Engineering and IT, Amirkabir University of Technology, Tehran, Iran

 Abstract- In system-level design, applications are presented as
task graphs where tasks; i.e. nodes of the graph, have several
implementation options differing in some criteria such as time,
area and power. Systems designed with this approach are those
that are application specific and for performance reasons are
implemented in a hardware/software codesign manner. In this
paper the most important design issues in these systems i.e.
partitioning and scheduling are investigated. Our approach,
namely CSPA, is a heuristic algorithm inspired by the biological
immune system and attempts to obtain an optimal design for a
given system composed of several hardware and software
components. We use a graph representation of the system where
nodes are operational components and edges are communication
links between them. We propose an immune-based approach
which based on artificial immune system and apply the clonal
selection algorithm as one of the different types of algorithms
inspired by biological systems. To date there is no work in this
field that uses the clonal selection algorithm for optimization of
partitioning. Empirical results show a suitable improvement by
using this approach in comparison with traditional evolutionary
algorithms and also traditional immune-based approach.

Keywords- CoDesign, Hardware/Software Partitioning, Scheduling,
Artificial Immune System and CSPA.

I. INTRODUCTION

 Embedded systems have important roles in the world of
autonomous systems. They are the fundamental elements in
most of the innovations in many fields. So optimizing them in
the design time is a major task. One of the primary features of
these systems is their speciality to needs of each field. They
don’t be designed to be responsible to several needs that
conflict in definitions and tasks. These systems are said mixed
since they are usually a combination of hardware and software
components.
 The most important step in designing such systems is
partitioning, that is how computation is divided between
hardware and software elements so that overall cost of
implementation is minimized. Scheduling in such systems is
also of critical importance. Scheduling is the task of
determining the starting time for each task of the system.
Really those two parts, i.e. partitioning and scheduling, could
not be viewed separately, because each part has influence in
the other part. Scheduling needs knowledge about the
execution of each component, i.e. execution start and end
times, and this knowledge is only obtained when we know
where components are to be executed and on what platform to

calculate its execution time and its possibility for concurrent
execution with other components.

These two problems known to be NP-hard. In this paper a
novel bio-inspired algorithm is introduced for solving
partitioning problem in combination with scheduling.Similarly
to the way nervous system inspired the development of
artificial neural networks (ANN), the immune system has now
led to the em ergence of artificial immune systems (AIS), as a
novel computational intelligence system.
 The proposed Clonal Selection Partitioning Algorithm named
CSPA is based on the clonal selection in the human body
immune system. It is designed to solve partitioning problem
with the clonal selection of solutions and applying the
algorithm to them. Our approach aims at using ideas gleaned
from immunology. The artificial immune system (AIS) for
hardware/software partitioning is used in [1] under the name
“evolutionary immune system”.
 Some of our work in this paper which applies AIS is based
on the approach used in [1]. But we have developed this
approach and combined it with the clonal selection theory as
another algorithm in this field. On the other hand, our paper
more precisely and completely investigates the immune
system method.
 The remainder of this paper is divided to these parts: first
in the following section we consider some works in this area.
Then in section III we outline the main components in the
immune system and illustrate its role in the optimization
problems. Section IV shows our proposed work in more
details. In section V we brought some discussion of our
algorithm and its ability to escape from local optimal. Section
VI illustrates the fitness function used and scheduling method
we applied. Finally we investigate experimental results and
conclusion remarks.

II. RELATED WORKS

 We can divide partitioning algorithms with two categories
include: those that their criterion is improvement of a cost
function which is a combination of all necessary factors [8].
And those that attempt to optimize one parameter in design
while constrain other factors [7]. Our algorithm is in the first
class.
 On the other hand, algorithms used in the optimizations in
this field have been very diverse. A large numbers of them are
heuristic approaches [9, 10]. This is because the problem’s
nature is NP-complete and when the dimensions of the

978-1-4244-4152-5/09/$25.00 ©2009 IEEE 269

2009 5th International Colloquium on Signal Processing & Its Applications (CSPA)

problem are large, finding an acceptable solution is not
possible.
 Immune-based systems have become popular in recent
years as a novel approach for solving several problems in
many fields. The artificial form of clonal selection has been
popularized mainly by de castro and Von Zuben, beginning
with an algorithm which they called CLONALG (de castro
and Von Zuben, 2000). CLONALG currently exists in two
forms [16] - one for optimization and one for pattern
matching. In [13] theoretical advances in the AIS’s field have
reviewed And shown that to date these advances include
immune networks, clonal selection and negative selection. In
[17] the ability of clonal selection to escape from local optima
is proved with one technique called receptor editing that
occasionally allows accepting less promising regions. The
authors in [6] propose another variation of AIS namely
DISAS. It is based on discrimination between self and non-
self in the human immune body.
 However there are a lot of studies in both partitioning and
AIS, but our work is a new one which applies the clonal
selection mechanism with other features of AIS to
partitioning. In the following sections we describe the details
of it.

III. USING ARTIFICIAL IMMUNE SYSTEM IN OUR WORK

 Artificial Immune Systems (AIS) have become an
increasingly popular area for study by computer scientists in
recent years. The term AIS refers to any computer system
which is inspired by the natural immune system [3]. Artificial
Immune Systems are a group of methods that inspired from
the community of immunology [4]. Body immune system
which is part of this system is distributed around the body and
protects us from attacks of foreign bodies known as
pathogens.
 The job of the immune system is to monitor the body and
make classifications as to whether the items it encounters are
self or non-self. Everything which the immune system
categorizes non-self must be destroyed. Everything which is a
natural and healthy part should remain untouched by the
immune system. Antibodies are features inside cells that used
for recognition of antigens. The term antigen is said to
everything that immune system is capable to recognize it.
 The part of antibody that is responsible to recognizing
antigen is said paratope which also called V shape (because of
its variability). The model used in this paper is the
discriminated-based immune system such as the model that is
pointed in [6] and named DAIS. But we applied clonal
selection within it.
 For us those parts of the immune system operations that
generate final T cells are considerable. Its complete and
precise discussion is in [5]. Actually, optimal or near optimal
solution for partitioning is the same as final T cells which are
generated after cell cloning and maturation. Clonal selection is
a process in the immune system where matching cells are
proliferated in order to population of best matching cells
become great. These are then can response better to incoming

pathogens. Fig. 1 illustrates the process of clonal selection.
This figure is taken from [16].
 The immune system approach is also usually imparted
from a segment of immune system operation namely negative
selection. The purpose of negative selection mechanism is to
give some tolerance to self cells. This part of immune system
operations occurs in thymus uses capability of immune system
to appear unknown antigens, while do not react to self cells
[14].
 Self-set in our algorithm is set of solutions that their
implementation costs are high. In other word their fitness that
is a criterion about the goodness of some solution in the word
of genetic algorithms is low. The algorithm attempts to find
which selected solutions have maximum distance to self set.
This is the same as immune system does about the selection of
T cells and tries the population of pathogen distinguisher cells
have maximum distance to self cells to restrain the immune
system from destroying itself. Matching rule can be hamming
distance, r-bit continuous matching and so on. Matching
threshold is shown with .

 According to the r-contiguous matching rule used in [13],
we have the following definition for matching between two
solutions:

Definition 1- an element  L
e with),,,(21 Leeee 

and detector  L
d with),,,(21 Ldddd  , match

according to the r-contiguous bit rule, if a position p exists
where ii de  for 1,1,,  rLprppi  .

In our work, elements in e and detector set d have 0 or 1
values. L is the number of graph nodes.
r is some percent of L.

 Also because of two implementation options in our work,
hardware and software, the generated strings are binary, and

our alphabet is   0,1 .

 In the phase where clones are created, however we used
the hamming distance with the following equation to achieve
the similarity between an individual’s clones.

)1(


 


 otherwise

tSAbif
whereD ii

L

i
0

)(1
,

1



In (1):
D is the hamming distance.
Abi is the i’th gene in antibody or i’th node in the process
graph.
S(t)i is the i’th gene in the self-set.
 The selection of the r-contiguous bit matching rule in the
operational graph of the embedded system leads to increasing
in speed to reach acceptable solutions. This is because of the
more similarity in graphs matched with this model from the
communication cost’s point of view.

978-1-4244-4152-5/09/$25.00 ©2009 IEEE 270

2009 5th International Colloquium on Signal Processing & Its Applications (CSPA)

Fig. 1. The clonal selection principle

 One of the operations take places in B cells is the
generation of random genetic changes that expressed as
diverse antibody patterns to system. In addition to somatic
hypermutation and receptor editing, a fraction of newcomer
cells from the bone marrow is added to the prior lymphocytes
in order to maintain the diversity of the population. This may
yield to not landing in local optima [16]. Finally we eliminate
newly differentiated lymphocytes carrying low affinity
antigenic receptors.

IV. PROPOSED APPROACH

 Before describing the proposed algorithm, we first
introduce symbols and assumptions used in the paper.
Just like the original genetic algorithm suppose there are a
population of solutions in each generation, rather than one
solution in each step. Also each solution in the population is
considered as an individual in the population and the final goal
is improvement in the individual’s genes in each generation.
 Each individual in the set is mapped to a process graph; so
that:

For each individual there exists a graph G:
{Node (i); 0 < i < L}

Each individual has various genes that are various nodes in
the process graph. Genes have several properties that their
mapping to the process graph is the various parameters such as
execution time, implementation area, power consumption and
so on. In addition, each node has two types of specific
implementations that are software implementation and
hardware implementation. With these assumptions, each gene

is encoded as a binary number which may be zero for
hardware implementation and one for software
implementation or vice versa.
 In CSPA algorithm, we use the process of generating
defender cells in the body. These cells are mapped to good
solutions in the partitioning problem. So the goal in our
application domain is achieving antigenic pattern with a
difference that we have not pathogen, but know its features. In
this manner, antibodies after production in each step of
algorithm are proliferated or if they didn’t match gradually
decreased. According to [15, 18], iterations in AIS are
obtained from the following formula:

)2(































































i

N

j
jiji

i

xkyxmk

rate

death

recognised

antigens

dt

dx

3
1

2

Where:
N is the number of antigens, or the same good solutions,
xi is the concentration of antibody i.
yj is the concentration of antibody.
k2 is the stimulation effect and k3 is the death rate.
mji is matching function between antibody i and antigen j.

 Some symbols used in the paper are as follows:
Each antibody in the individual set of each generation is
presented with Ab(t) and antigens with Ag(t). The affinity
function; that shows how much a solution is good, is presented
with AF(t).

The proposed algorithm is as follows:
1- Generate an initial population Ab(0) with randomly

encoding, from B-cells involving antibodies or in our
analogy the partitions. Set the iteration generations equal
to zero. Encoding in this work involves binary encoding,
with the probability 0.5 for each one.

 Gen = 0, t = 0, N = number of antibodies.
2- Initial evaluation – Intrinsic affinity of each immature

antibody is calculated. This is done via affinity function
and its calculation is in section VI. The value of this
function constitute a vector and we have:
Af (t) = { Afj (j) ; such that j is between 0 and N }

3- M antbodies with highest affinity are selected from Ab set
and constitute a new set Ab(t){M} of high affinity
antibodies.

4- Clonal Expansion- M antibodies in Ab(t){M} are cloned
according to their affinities and form a set namely Ac of
clones. This process is performed according to the
proportions. The higher the affinity, the larger the clone
size for each of the M selected antibodies. This statement
is given by equation 3. From the following formula it
should be considered that each antibody with smaller
number has more antigenic affinity.

978-1-4244-4152-5/09/$25.00 ©2009 IEEE 271

2009 5th International Colloquium on Signal Processing & Its Applications (CSPA)

(3)

)(

,
.

)(

1

jNN

j

N
jN

M

j
AcAc

Ac


















In this formula:
NAc (j) is the number of clones for j th selected antibody,
i.e. Ab(t){M (j).
N is the number of total antibodies in the Gen generation.
M is the number of superior antibodies which are selected
for clonal expansion.
NAc is the total generated clones and finally,
 is the coefficient factor that used for adjusting to the

application domain.
5- Mutation- generated clones are go through mutation

process and make the Ac* set. Mutation is actually a
change in one of the gene patterns in the individual. It is
one kind of clonal expansion. It includes genetic mutation
of clones and is inversely proportional to their antigenic
affinities and number of iterations in the algorithm. This is
viewed in equation 4. The higher the affinity of an
individual, the lower mutation rate.

(4)












tj

L
k

flippedbitskrandomlywithexceptjAcjAc

*

.

)()(*



In this equation, L is the number of coded information of
the cell that is expressed in many applications as binary
strings and in our work is the number of the nodes of
process graph.
j is the number of selected antibodies according to the
affinity function.
 is the coefficient factor that is used for adjusting to the

application domain.
6- Evaluation- the affinity AF* with relation to new immature

antibodies is calculated.
7- Learning process- from AF*, those individuals with

highest affinity are selected and added to MB memory set.
Solutions are retained in the memory for the future
reference.

8- Negative selection- all antibodies are filtered by negative
selection. Some of them are excluded, because they match
one or more self-individuals, while others are regarded as
mature antibodies and enter the system as a learned group.
The matching rule could be hamming distance; r-
continuous-bits matching rule and so on.

9- Updating- worst solutions by K percent are added to the
self-set and self-set is updated just like a queue.

10-e antibodies with lowest affinity are selected from Ab and
removed from current generation.

11-Selection- N antibodies of new generation are selected
from past antibodies (those generated in the first step) and
intermediate antibodies and compose the Ab(t) of t
generation. This selection can be roulette wheel or
tournament selection.

12-If the number of iterations is not reached, Gen = Gen + 1, t
= t + 1 and go to step 4. Otherwise best individual between
the current generation Gen and the memory MB is selected
as final solution.

V. ALGORITHM ABILITY TO ESCAPE FROM LOCAL OPTIMAL

 Most of the traditional algorithms in partitioning domain
and evolutionary methods are not capable to escape from local
optimal and so they can result in suboptimal solutions. In this
section we argue that our algorithm is capable to escape from
local optimal in normal situations. This prove is based on the
work in [1].
 Suppose there is a local optimum in current population Abi

that our algorithm is converged to it and individual xlocal that is
a local optimum is in it. Because of similarity in the pattern of
various individuals, most algorithms can accept the population
as the final solution. But CSPA algorithm can escape
according to following method:

 We suppose antibody set is  N
tttt xxxAb ,,, 21  ,

at the end of the current generation and after mitosis, mutation
and final selection for the next generation, in this generation K
individuals with lowest affinities are added to current self-set.
This is prior to final selection step. Also the (K < N) relation is

true. These individuals are:  K
ttt xxx ,,, 21  .

 By selecting a suitable K, when the algorithm reaches at
local optimal for Abi population, it finds one individual

 Kax a
t 1 in the self-set so that:

(5)  local
a
t xx

Where  is a positive number. This is because of similarity
between patterns of current generation that led to locality of
solutions.
In the next iteration of the algorithm the antibody set is:

 N
tttt xxxAb 1

2
1

1
11 ,,,    .Because of negative selection, no

individual in the generation matches the self-set

 K
ttt xxx ,,, 21  according to matching rule. So if the

matching threshold is selected suitable value  2 , we have

the following formula:
(6).1,21 Nixx a

t
i
t  

So:

(7)

.2

()(

1

11

 







a
tlocal

a
t

i
t

a
tlocal

a
t

i
tlocal

i
t

xxxx

xxxxxx

 We consider that because of negative selection, individuals
in the t+1 generation can escape from local optimal. And so
on this algorithm is escaped from local optimal step by step.

978-1-4244-4152-5/09/$25.00 ©2009 IEEE 272

2009 5th International Colloquium on Signal Processing & Its Applications (CSPA)

VI. COST OR AFFINITY FUNCTION

 Affinity function in terms of immune systems shows the
suitability of one implementation that is the reverse of cost
function in our work. To obtain the cost of a system, one
should find parameters that lead to cost in digital systems and
then enter them into the function.
 The partitioning algorithm is guided by this cost function
that allows evaluating the quality of a given solution. The
characteristics which are taken into account in our cost
function are space, execution time and power.
Execution time criterion- It is obvious that execution-time
reduction is one of the most important factors that needed to
be thought about it in each step of creating a system,
especially in design phase. In codesign systems this factor is
computed for each node, when constructing process graph and
partitioning the system to appropriate component regarding its
mapping choice.
 In the communication cost of the system, the cost of
hardware-hardware interfacing and also software-software
nodes is usually negligible and not considered. The only
important cost in the node communication is between
hardware and software nodes. For each node we also consider
the number of executions in each run of the system for
execution time and power consumption. But area is considered
only one.
 With these descriptions we express the execution time such
as [9].

(8)
 

 ji
ij

N

i
ii commitertsT

s

,1

)*(

Where T is the overall execution time of the system, Ns is
number of nodes implemented in software, tsi is the execution
time of software node i, iteri is the iteration of node i, and
commij is the time required for communication between nodes
with various implementation options.Now we consider the
influence of each of these factors in the affinity function.
 We use normalization to accommodate the conflicting
factors in one term. In addition we apply a coefficient which
adjusts the importance of various factors with regard to
designer needs. We select the cost function as [10] and the
affinity function as [11] that is the reverse of the cost function
plus 1 to stands between zero and one.

)9(

pc

ti

PC

M

qTimeT
funct

funct
affinity










)1()1(

)Re(
exp_cos

_cos1

1









where:

)10(

powSWpowHW

TimeHWqTime

qTimeTimeSW

CostSWtHW

p

t

c












)Re

,Remax(

cos

 Also in this formula T, C and P are execution time,
hardware area cost and power consumption for a given
partitioning respectively. TimeSW and TimeHw denote
overall execution time of the system when all nodes are in
software and hardware respectively. CostSW and CostHW
denote overall cost of area when all nodes are in software and
hardware respectively and finally powSW and powHW are
just like the above.
 TimeReq is the system time constraint given by designer.
 is the coefficient that adjusts cost and time factors. We
chose it 0.5. We adaptively select Mi equal to 1 and decrease
it with the equation Mi+1=0.96Mi like in the [1].

Space criterion- optimizing this factor is needed for producers
and customers and for device portability. This factor gives
system manufacturers with the reduction in the hardware
resources. General purpose processor is not considered as a
hardware resource to account for. So we don’t consider it in
calculating area of the system. The reason is that its area is
negligible and also there is one from it in our system and we
must have at least one processor to execute the software code.
We take into account the area of the special-purpose hardware
such as FPAGs and ASICs. We have:

)11(
 

ji
ij

i
i AcommahC

,

 where C is the total cost of manufacturing area, ahi is the area
of nodes implemented on the hardware platforms and Acommi

is the area of buses.
Power criterion- This criterion is of extra importance
especially in the mobile systems. Although in every system, its
growth leads to lose in energy and needs of recharging the
device with some resource of energy to continue its work.
Growing up power consumption is not acceptable, especially
in battery-enabled devices. We calculate the power
consumption with following equation:

(12)

 
ji

ij
i

ii PcommiterpnodeP
,

)*(

 Where P is the total power consumption of system, pnodei

and iteri are power consumption of node and number of
iterations of that node respectively. And Pcommij is the power
consumed in node’s communication.

Scheduling - Process scheduling means specifying the start
time for every entity in the system [12]. System scheduling for
executing operations is one of the important problems in
partitioning algorithms that in many cases are not considered.
Actually we cannot have exact estimation about execution

978-1-4244-4152-5/09/$25.00 ©2009 IEEE 273

2009 5th International Colloquium on Signal Processing & Its Applications (CSPA)

time of a system without having enough information about
scheduling. We used a list scheduling algorithm [1]. This
scheduling is applied for each new solution and its result is the
execution time of it.

VII. EXPERIMENTAL RESULTS

 In this section the performance of the proposed algorithm
is evaluated with the results obtained from simulation
experiments. Self-set population is selected from the 20
percent of the overall population for each generation. Best
solutions that are cloned contain 5 percent of total individuals
in current generation. Also r selected 0.6N where N is the
graph size and we considered G = 20.
 Our algorithm was written in C++ code and evaluated on
several test samples. We used TGFF software for
benchmarking of our work. Our parameters for graph sizes
applied to this software were 20, 50 and 100. And graphs were
near to these sizes after creation by TGFF. The experiments on
each graph size were taken from more than 20 different
independent runs. We compared our work with two standard
algorithms: genetic and traditional AIS, with the same graphs.
The results are shown in table I. In this table the average cost
is based on the affinity function and execution time denotes
the average total execution time for each graph size.
 Table I shows that we have good improvements in final
costs. Compared to AIS and genetic algorithm, the solutions
have better quality. Increase in execution times compared with
AIS is observed, but its rate per graph size is slow. This is due
to the extra phases included in this algorithm for clonal
selection and learning.

TABLE I
RESULTS OF CSPA COMPARED WITH TWO OTHER ALGORITHMS

CSPA
exe.
Time

(sec)

GA
exe.
Time

(sec)

AIS
exe.
Time

(sec)

CSPA

cost

GA
cost

AIS
cost

N=

1014.2691.4320/86630/85700/862220

3.5006.253.4530/90140/87410/897450

5.8749.5365.6500/87400/86340/8563100

VIII. CONCLUSION AND FUTURE WORKS

 Partitioning for digital systems that consist of
combinations of hardware and software components is one of
the most fundamental steps to reach the good performance of
these systems. In this paper a heuristic approach inspired by
nature called CSPA was proposed. Our algorithm uses the
clonal selection of body immune system which is a new idea
in this area. Results indicate that the quality of solutions in this
approach is better than the evolutionary and traditional
immune-based algorithm. In the future works, this approach
can also be used in the area of reconfigurable systems to

improve several design steps in such systems where they need
optimization.

REFERENCES

[1] Yiguo Zhang, Wenjian Luo, Zeming Zhang, Bin Li, Xufa Wang, “A
hardware / software partitioning algorithm based on artificial immune
principles,” Applied Soft Computing 8 (2008) 383–391.

[2] J. Javier Resano, M. Elena Pe´rez, Daniel Mozos, Hortensia Mecha,
Julio Septien, “Analyzing communication overheads during
hardware/software partitioning,” Microelectronics Journal 34 (2003)
1001–1007.

[3] Dan W Taylor, David W Corne, “An Investigation of the Negative
Selection Algorithm for Fault Detection in Refrigeration Systems,”
Artificial Immune Systems, Second International Conference, ICARIS
2003, Edinburgh, UK, September 1-3, 2003, Proceedings. Lecture
Notes in Computer Science 2787 Springer 2003, ISBN 3-540-40766-9,
pp.34-45.

[4] Xian Shen, X. Z. Gao, and Rongfang Bie, “Artificial Immune
Networks: Models and Applications,” International Journal of
Computational Intelligence Systems, Vol.1, No. 2 (May, 2008), 168–
176.

[5] Ashraf E. Alfagih, “Artificial Immune Systems,” CISC-491/879 -
Unconventional Computing, November 29, 2007.

[6] Kazushi Igawa and Hirotada Ohashi, “Discrimination-based Artificial
Immune System: Modeling the Learning Mechanism of Self and Non-
self Discrimination for Classification,” Journal of Computer Science 3
(4): 204 -211, 2007, ISSN 1549-3636.

[7] Asawaree Kalavade and Edward A. Lee, “The Extended Partitioning
Problem: Hardware/Software Mapping, Scheduling, and
Implementation-bin Selection,” Journal of Design Automation of
Embedded Systems, vol 2, no.2 pp 226-163, Mar 1997.

[8] Jörg Henkel et al., “Adaptation of Partitioning and High-Level
Synthesis in Hardware/Software Cosynthesis,” ICCAD' 1994.

[9] D. Saha, R. S. Mitra, Anupam Basu, “Hardware Software Partitioning
using Genetic Algorithm,” 10th International Conference on VLSI
Design, January 1997.

[10] T. Wiangtong, P. Y. Cheung, and W. Luk, “Tabu Search with
Intensification Strategy for Functional Partitioning in Hardware-
Software Codesign,” Proceedings of the 10th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM’02),
2002.

[11] Y. Zou, Z. Zhuang, H. Chen, “HW–SW partitioning based on genetic
algorithm,” Proceedings of the CEC’04, 2004, pp. 628–633.

[12] Mouloud Koudil, Karima Benatchba, Amina Tarabet, El Batoul
Sahraoui, “Using artificial bees to solve partitioning and scheduling
problems in codesign,” Applied Mathematics and Computation 186
(2007) 1710–1722.

[13] J. Timmis, A. Hone, T. Stibor, E. Clark, “Theoretical advances in
artificial immune systems,” Theoretical Science
403 (2008) 11–32.

[14] Uwe Aickelin, “Artificial Immune Systems (AIS) – A New Paradigm
for Heuristic Decision Making,” OR46 (2004) AIS for OR, Keynote
Speech.

[15] Farmer J, Packard N and Perelson A (1986), “The immune system,
adaptation, and machine learning,” Physica, vol. 22, pp. 187-204,
1986.

[16] Leandro N. de Castro, Member, IEEE, and Fernando J. Von
Zuben, Member, IEEE, “Learning and Optimization Using the
Clonal Selection Principle,” IEEE Transactions on
Evolutionary Computation, Special Issue on Artificial Immune
Systems, vol. 6, n. 3, pp. 239-251, 2002.

[17] Leandro Nunes de Castro, Fernando J. Von Zuben, “The Colonial
Selection Algorithm with Engineering Applications,” In Workshop
Proceedings of GECCO’00, pp. 36-37, Workshop on Artificial Immune
Systems and Their Applications, Las Vegas, USA, July 2000.

978-1-4244-4152-5/09/$25.00 ©2009 IEEE 274

2009 5th International Colloquium on Signal Processing & Its Applications (CSPA)

[18] Uwe Aickelin, “Artificial Immune Systems (AIS) – A New Paradigm
for Heuristic Decision Making,” OR46 (2004) AIS for OR, Keynote
Speech.

978-1-4244-4152-5/09/$25.00 ©2009 IEEE 275

2009 5th International Colloquium on Signal Processing & Its Applications (CSPA)

