
International Journal of Dynamics and Control
https://doi.org/10.1007/s40435-018-0441-z

Analytical modeling of a 3-D snake robot based on sidewinding
locomotion

Mohsen Malayjerdi1 · Alireza Akbarzadeh1

Received: 21 January 2018 / Revised: 11 May 2018 / Accepted: 15 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In this paper, we restrict our attention to sidewinding locomotion and present detailed kinematics and dynamics of a 3-D
multi-link snake robot. To obtain kinematics of three-dimensional snake-like robot modeling, first, a virtual structure with an
additional six degrees of freedom is attached to the tail of the robot. Denavit–Hartenberg method is next employed to derive
the kinematics relationships. A spring and damper model is used to realistically model contacts between ground and the robot.
Gibbs–Appell’s method is next utilized to obtain the 3-D robot dynamics. To validate the dynamics equations, SimMechanic
software is used. Finally, a 3-D snake robot, referred to as FUM-Snake 5, is constructed and utilized to experimentally show
the sidewinding locomotion. The theoretical derived equation in this study can also be used to generate both other 2-D and
3-D snake robot locomotions.

Keywords Dynamic analysis · Gibbs–Appell · 3-D snake-like robot · Friction and ground model

1 Introduction

Snake robots offer potential in assisting in areas such as fire-
fighting, rescue missions and maintenance due to their high
maneuverability and ability to move through tight spaces.
These robots are able to bend and adapt to the form of the
terrain on which they move. The most famous gaits used
by snakes are lateral undulatory (serpentine), concertina,
sidewinding and rectilinear locomotion [1–10]. Snake-like
robots were introduced by Shigeo Hirose [1]. Since Hirose
initial study,many snake robots are designed. Existing snake-
like robot designs have different physical configurations
and purpose. They mostly attempt to mimic locomotion of
real snakes; however, some use non snake-like gaits [2–4].
Hasanzadeh and Akbarzadeh [2] presented a novel gait, for-
ward head serpentine (FHS), for a two-dimensional snake
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robot. In their work, they used Lagrange’s method to obtain
dynamic equation. Kalani and Akbarzadeh [3] restricted
their attention to worm-like, vertical traveling wave loco-
motion and presented detailed kinematics and dynamics of
a planar multi-link snake robot. They employed Lagrange’s
method to obtain the robot dynamics. Furthermore, authors
in [4] used Newton’s method to obtain dynamic equations
of traveling wave locomotion. Saito et al. [5] constructed a
snake robot without wheels. This robot has great potential to
adapt to various environments at the cost of increased power
consumption. They obtained total equations of motion for
a multi-link snake robot traveling with serpentine locomo-
tion. They also showed that the unsymmetrical body curve
increases the robot’s performance. Ma [6] formulated the
kinematics and the dynamics of a 2-D snake-like robot in
closed form. The derived robot dynamics were used to ana-
lyze the 2-D creeping locomotion [6–8]. Ma et al. [9] also
considered formulation of the kinematics and dynamics of
a three-dimensional (3-D) snake robot and analyzed creep-
ing locomotion. They investigated the motion efficiency of
a sinus-lifting motion in comparison with normal creeping
locomotion. The 3-D dynamics of a snake robot during loco-
motion across flat surfaces is considered in [9,11–14]. A
mathematical model of a 3-D snake robot with 2-d.o.f. revo-
lute joints using the Newton–Euler’s algorithm is presented
by Liljebäck et al. [11,12].
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In addition to more popular dynamics methods, Gibbs–
Appell’s formulation is relatively less used to derive the
system dynamics. This method is similar to the Lagrange.
However, unlike Lagrange equationswhich use velocity vari-
ables, Gibbs–Appell employs acceleration variables, that
offers various advantages, such as simplifying dynamic equa-
tions, resulting in reduction of simulation time [15]. These
properties are useful in deriving the snake formulation with
high volume of symbolic computations specially for 3-D
multi-link snake robot.Vossoughi et al. [10] presented a novel
structure of a snake-like robot. He used the Gibbs–Appell’s
method to derive dynamic equations for motion in a hori-
zontal plane. To the best of author’s knowledge, no study
exists on dynamics of a 3-D snake robot using Gibbs–Appell
formulation.

This paper is organized as follows. In Sect. 2, the kinemat-
ics of a 3-D snake robot is developed and the displacement,
velocity and acceleration of each link are calculated. In
Sect. 3, the dynamics of the robot using Gibbs–Appell’s
method is obtained. In Sect. 4, dynamics equations are coded
in MATLAB and joints torques for the 3-D sidewinding
locomotion are obtained. This section also presents SimMe-
chanics simulation results. In Sect. 5, more details for the
design of the FUM-Snake 5 robot is presented. In follow-
ing experimental observations, to implement the same 3-D
sidewinding locomotion as used in Sect. 4 is considered and
snap shots of the FUM-Snake 5 locomotion is presented.
Finally, Sect. 7 presents concluding remarks.

2 Kinematics model of a 3-D snake robot

In this section, kinematics of a 3-D snake robot with six
cylindrical links is discussed. First, a virtual structure for ori-
entation and position, VSOP, with an additional six degrees
of freedom is added to the tail link of the robot. Next,
Denavit–Hartenberg convention is used to derive the kine-
matics relationships. It should be noted that since we do not
wish to generate workspace trajectory for the robot, the direct
kinematics solution is sufficient.

The mechanism of a snake robot resembles the mech-
anism of conventional series robot manipulators. Thus, it
would be reasonable to use conventionalmethods of robotics,
presented in relevant textbooks, to model the snake robot.
In general, one end of a robotic manipulator, is attached to
ground. Therefore, any movement can be easily defined rel-
ative to this base point. However, mobile and snake robots
do not have such a base or mounting point and their entire
mechanism can freely move in three-dimensions or rotate
around any possible axis in space. This problem is solved by
introducing a virtual structure for orientation and position-
ing. This means that the six extra degrees of freedom, that
make the snake robot free from being fixed to a base point,
is accounted for by using six virtual links having zero mass
and length at one end of the snake robot. As a result, a hypo-
thetical base point can be added by assuming that this virtual
structure is fixed at one end to ground. This fixed point is
added at the origin of a fixed base coordinate system, indi-
cating the robot absolute position. The resulting structure for
the whole robot is shown in Fig. 1a. In this figure, the joints

Fig. 1 a Using the virtual
structure for orientation and
positioning for our mobile
snake-like robot, b generlized
coordinateds on snake robot and
c frames resulted from the
Denavit–Hartenberg convention.
In this figures, cylinders and
cubes indicate revolute and
prismatic joints, respectively
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between each pair of links are universal. This is vital in order
to obtain maneuverability in three dimensions. Using a uni-
versal joint between every two link makes the motion of the
robot smoother while reducing the number of needed mod-
ules.Hence, the total degrees of freedomof a snake-like robot
will be 6+2(n−1), where n is the number of modules. Since
the robot studied in this work has six links, its total degrees
of freedom is 16.

As mentioned before, the kinematics relationships are
derived usingDenavit–Hartenberg, D–H. To use thismethod,
we first attach the link frames to the links according to D–
H convention. Fig. 1b shows the generalized coordinates, qi
which are defined to obtained the kinematics equations. The
resultant frame systems can be seen in Fig. 1c. Six frames,
representing VSOP are all located at one point. Two frames
having the same origin are used for representing each of
the universal joints. We can now construct a transformation
matrix that defines i th frame relative to the (i − 1)th frame
as follows:

i−1
i T =

⎡
⎢⎢⎣

cθi −sθi 0 ai−1

sθi cαi−1 cθi cαi−1 −sαi−1 −sαi−1di
sθi sαi−1 cθi sαi−1 cαi−1 cαi−1di

0 0 0 1

⎤
⎥⎥⎦ (1)

where ai−1 is the distance from Zi to Zi+1 measured along
Xi , αi−1 is the angle from Zi to Zi+1 measured about Xi ,
di is the distance from Oi−1 (Origin of (i − 1)th frame) to
Oi (Origin of i th frame) measured along Zi and θi is the
angle from Xi−1 to Xi measured about Zi . In general, this
transformation will be a function of the four link parameters.
For any given robot, this transformation will be a function of
only one variable, the other three parameters are fixed by its
mechanical design.

Moreover, the homogeneous transformation matrix of
coordinate system, {i} , in an arbitrary coordinate system,
{j} , can be found by multiplication of the consecutive trans-
formation matrices as follows:

0
i T = 0

1T
1
2T . . . i−1

i T (2)

Refer to Fig. 1, there are three prismatic joints having veloc-
ities and accelerations as:

i = 0, 1, 2

{
veli+1 = i+1

i Rveli + [
0 0 q̇i+1

]T
acci+1 = i+1

i Racci + [
0 0 q̈i+1

]T (3)

where q̇i and q̈i show the first and second derivative of gen-
eralized coordinates, respectively. Also, veli and acci denote
velocity and acceleration of i th frame. Moreover, kinematics
parameters of revolute joints can be defined as:

Table 1 Denavit–Hartenberg parameters for a six-link three-
dimensional snake-like robot

i ai-1 αi-1 di θ i i ai-1 αi-1 di θ i

1 0 0 q(1) 0 10 0 − π
2 0 q(10)

2 0 − π
2 q(2) − π

2 11 L π
2 0 q(11)

3 0 − π
2 q(3) − π

2 12 0 − π
2 0 q(12)

4 0 − π
2 0 q(4) 13 L π

2 0 q(13)

5 0 π
2 0 q(5) + π

2 14 0 − π
2 0 q(14)

6 0 π
2 0 q(6) + π

2 15 L π
2 0 q(15)

7 L π
2 0 q(7) 16 0 − π

2 0 q(16)

8 0 − π
2 0 q(8) 17 L π

2 0 0

9 L π
2 0 q(9)

i = 3, 4, . . . , 16

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ωi+1 = i+1
i Rωi + [ 0 0 q̇i+1 ]T

αi+1 = i+1
i Rαi + i+1

i Rωi × [ 0 0 q̇i+1 ]T + [ 0 0 q̈i+1 ]T

veli+1 = i+1
i R(veli + ωi × αi )

acci+1 = i+1
i R(αi × ai+1 + ωi × (αi × ai+1) + acci

(4)

where ωi , αi , veli and acci denote angular velocity, angu-
lar acceleration, linear velocity and accelerations of frame
{i}, respectively. Table 1 summarizes values for the Denavit–
Hartenberg convention parameters of the snake robot.

In this table, L is the length of each link. Moreover, values
denoted by q (i) are generalized coordinates caused by the
degrees of freedom of the robot. Note that q (1) , q (2) and
q (3) are in meter and describe the position at the tail of the
robot, while the rests are angular positions and are in radian.
In this paper, mass and length of all six links are considered
to be the same.

3 Dynamics modelling of 3-D snake robot

3.1 Groundmodelling

A snake-like robot can be subjected to external forces in
an arbitrary point along its structure, or to be exact, in the
point that is in contact with the ground. This contact leads to
normal and frictional forces on the links that are needed for
the snake’s locomotion. The friction between the ground and
links ensures that the robot is able to move forward. Each
module is regarded as infinitely thin rod with a revolute joint
at each end. The center of mass (center of gravity) is assumed
to be exactly in the middle of each link. It is also presumed
that the gravity, normal forces and frictional forces are only
applied to the center of mass of each link.
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Fig. 2 The employed mass-spring-damper system to model the ground. Each link of the snake-like robot is regarded as infinitely thin rod with a
revolute joint at each end

The snake robot contact with the ground is modeled as
a mass-spring-damper system. Since the ground is usually
hard, the spring is assumed to be rather stiff. Dampers are also
considered for this system to dampen the spring movement.
Without attenuation of spring force, snake robot jumps up
and down like a bouncing ball. Fig. 2 illustrates the model
for the ground. Center of gravity (CG) of each link is subject
to a normal force corresponding to the force of a spring with
spring constant k, and a damper with damper constant d.

It is important to notice that links will be completely dis-
connected from the spring-damper system when the CG is
raised above the surface. Since the origin of the base system
is located at the ground level, it means that the normal force
only applies to a center of mass, if the z-component of that
mass center is less than zero. Please note that normal forces
only act on those links which have mass (and length), that
are links 6, 8, 10, 12, 14 and 16 not VSOP links (see Fig. 1c).

The normal forces that apply to each link can be calculated
as:

Ni =
{
0 Pi,zCG ≥ 0
−k × Pi,zCG − d × Vi,zCG Pi,zCG < 0

(5)

Inwhich k and d are the spring and damper constants, respec-
tively. i represents the link number, Pi,zCG is the z-coordinate
position while Vi,zCG is the z-coordinate velocity of each CG
point.

Biological snakes possess a characteristic that causes the
tangential friction, i.e. the friction along the links, be less than
the friction normal to the links. This indicates a tendency to
slide forward instead of slipping sideways. Such properties
are usually implemented on a snake-like robot by passive
wheels or specially designed skins. Therefore, we assume
that the friction applied to each link consists of two compo-
nents, one component tangent to the link and one normal to
it. Between the two common friction models, Coulomb and
viscose, the viscousmodel is less complex than the Coulomb.
Therefore, the viscose ground friction is employed as:

�Fi,n = −Cn × Ni × �Vi,n

Fig. 3 Schematic equivalent external forces on two link of snake robot

�Fi,t = −Ct × Ni × �Vi,t
�Fi = �Fi,n + �Fi,t + [

0 0 Ni
]T

(6)

where �Fi,n and �Fi,t are normal and tangential friction forces,
respectively, Ni is the exerted normal force acting on the
corresponding CG and can be calculated using Eq. (5), �Vi,n
and �Vi,t respectively are the velocity of link in normal and
tangential directions, Cn is normal friction coefficient, Ct is
tangential friction coefficient and i denotes number of theCG
to which the friction forces are applied. Also, �Fi represents
the resultant force that exerted on each link. Figure 3 shows
the external forces that are applied to snake robot. As can be
seen, we assume that friction and normal forces act on the
gravity center of each link.

3.2 Gibbs–Appell method

In this section, a three-dimensional 6-link snake robot
traveling in sidewinding locomotion is considered and its
mathematical model representing the snake robot dynamics
are obtained. The Gibbs–Appell’s method is used in deriving
the dynamics equations. The snake robot is also modeled in
SimMechanics toolbox of MATLAB. The derived dynam-
ics equation is next verified by simulating the robot in
SimMechanics software. The Gibbs–Appell’s method was
discovered by Gibbs in 1879 and was studied in detail by
Appell in an 1899 publication. It provides a minimal set of
dynamical equations, which are applicable to systems with
quasi-velocities and nonholonomic constraints [17,18]. The
general form of Gibbs–Appell is:
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∂S

∂q̈ j
= Γ j (7)

where S is the Gibbs–Appell function, qi and Γ j are the
general coordinates and generalize forces of the system,
respectively.

The significant aspect of Gibbs–Appell function is that it
allows us to evaluate it in terms of the same quantities as
those used for the Newton–Euler’s equations of motion. The
Gibbs–Appell function for each link in three-dimensional
space is defined as:

Si = 1

2
m

(
acci,CG · acci,CG

) + 1

2
ᾱi · ∂ H̄i,CG

∂t
+ ᾱi · (ω̄i × H̄i,CG) (8)

where H̄i,CG is the angular momentum of each link about
its center of gravity, ᾱi is the angular acceleration, ω̄i is the
angular velocity and acci,CG is the linear acceleration. Also
m is the link mass which is considered equal for all links and
i denotes the number of robot links. Angular momentum of
i th link can be represented as:

H̄i,CG =
⎡
⎣
Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

⎤
⎦

⎡
⎣

ωxi

ωyi

ωzi

⎤
⎦ (9)

where ωxi , ωyi and ωzi are the angular velocity of i th links
about x, y and z axis, respectively.Next by taking time deriva-
tive of Eq. (9), we have:

∂ H̄i,CG

∂t
=

⎡
⎣
Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

⎤
⎦

⎡
⎣

αxi

αyi

αzi

⎤
⎦ (10)

where αxi , αyi and αzi are the angular acceleration of the
i th links about x, y and z axis, respectively. Note that S is a
scalar, so we obtain its value for a system by summing the
contribution of each body as:

S = Slink1 + Slink2 + · · · + Slink6 (11)

Moreover, Γ j is defined as:

Γ j = δW = δWc. + δWnc. (12)

where δWc. and δWnc. are the virtual works that is done
by conservative and non-conservative forces, respectively.
To evaluate conservative forces, potential-energy function is
used as:

V =
6∑

i=1

mgPi,zCG

δWc. = −∂V

∂q
(13)

where V is a scalar that represents the potential-energy of the
whole system. On the other hand, contact forces and joints
torques, should be account in non-conservative forces as:

δWnc. =
6∑

i=1

�Fi · δr̄ i,CG +
10∑
j=1

τ j · δq j (14)

where r̄i,CG is the position vector of center of gravity, τ j is
the joints torques. Also i and j denote the number of the
robot links and number of joints, respectively. By substitut-
ing Eqs. (11), (13) and (14) into Gibbs–Appell formulation,
Eq. (7), the dynamic model for the n−link snake robot can
be derived as:

M (q) �̈q + H (q, q̇) + G (q) + F (q, q̇) = �τ (15)

where M (q) is the n × n positive definite and symmetric
inertia matrix, H (q, q̇) is an n × 1 vector of centrifugal and
Coriolis terms, G (q) is an n × 1 vector of gravity terms,
F (q, q̇) is an n × 1 vector represents friction forces and �τ
is an n × 1 vector of input torques. Also q, q̇ , q̈ and are
generalized coordinates and their derivatives.

In this paper, the inverse dynamics of the snake robot is
considered. In other words, desired time histories of relative
angles of the adjacent links (q7, . . . , q16 and their deriva-
tives) are supplied and generalized coordinates of VSOP
(q1, . . . , q6) as well as required motor torques are obtained.
Therefore, Eq. (15) can be rewritten as:

M16×1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈1
...

q̈6
q̈7
...

q̈16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
16×1

+ H16×1 + G16×1 + F16×1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
τ1
...

τ10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
16×1

(16)

where q̈1, . . . , q̈6 and τ1, . . . , τ10 are the acceleration of
VSOP generalized coordinates and required torques, respec-
tively. These variables are unknowns and are calculated
during the solution process. However, q̈7, . . . , q̈16 are the
acceleration of known relative joint angles which are calcu-
latedusing the sidewinding locomotion.To solve theEq. (16),
this equation is decoupled into two parts:
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Fig. 4 Flowchart of solution for the dynamics equations

Table 2 Simulation parameters
Link length, L (m) 0.2 Normal coef. of friction, Cn 0.6

Number of links, n 6 Tangential coef. of friction, Ct 0.3

Mass of each link, m (kg) 0.25 Stiffness coefficient, k (N/m) 800

Damping coefficient, d (Ns/m) 25

⎡
⎣

uM6×6
u N6×10

dM10×6
d N10×10

⎤
⎦

⎡
⎣
q̈VSOP6×1

q̈ joints10×1

⎤
⎦ +

⎡
⎣

u H6×1

d H10×1

⎤
⎦

+
⎡
⎣

uG6×1

dG10×1

⎤
⎦ +

⎡
⎣

u F6×1

d F10×1

⎤
⎦ =

[
06×1

τ
joints
10×1

]
(17)

Therefore, Eq. (17) can be rewritten as:

q̈VSOP = −uM−1
(
u Nq̈ joints + u H + uG + u F

)
(18)

τ joints = dMq̈VSOP + d Nq̈VSOP + d H + dG + d F (19)

Equation (18) is a 6-dimensional linear equation of six
unknown variables. By solving this equation, the acceler-
ation parameters for VSOP (q̈V SOP ) are obtained. Next,
Eq. (19) is used to obtain the joints torques (τ joints). Sub-
sequently, the VSOP kinematics parameters, qV SOP can all
be obtained through integration. The complete parameters
defining robot motion are now derived for the case when
changes in body shape are known. Therefore, upon speci-
fying changes in body shape, the necessary joint torques to
generate the desired robot motion can be obtained (Fig. 4).

4 Computer simulation

In this section, sidewinding locomotion is simulated.
Sidewinding is the use of continuous and alternating waves
of lateral bending. In robotic application, sidewinding is real-
ized by two waves, one ventral and one lateral that are out
of phase. For an n-link snake-like robot with universal joints
(having two perpendicular revolute joint between each pair
of links), the relative joints angles change as:

ϕih (t) = αh sin (ωht + (i − 1) βh) + γh
ϕiv(t) = αv sin(ωv t + (i − 1) βv) + γv

where i = 1, 2, . . . , 6

(20)

whereϕ is relative joint angle (motor angle).Moreover, v and
h indices are abbreviated forms of vertical and horizontal,
respectively, that indicates the plane which joint operate on.
In this study, the 6-links snake robot has 5 universal (5 vertical
and 5 horizontal) joints. Equation (20) are used to generate
the sidewinding motion [19]. Fixed variables used are:

αh = 25◦ ωh = 110◦/s βh = −50◦ γ = 0
◦

αv = 25◦ ωv = 110◦/s βv = −50◦ γ = 0
◦

(21)

Table 2 shows the parameters used for the simulation.
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Fig. 5 Joint torques: a Horizontall joint # 1, b vertical joint #1, c horizontall joint #2, d vertical joint #2, e horizontall joint #3, f vertical joint #3,
g horizontall joint #4, h vertical joint #4, i horizontall joint #5 and j vertical joint #5
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Fig. 5 continued

In order to verify the derived dynamic equation, the snake
robotmodel prepared in SimMechanics toolbox ofMATLAB
package is used. Results obtained by the derived dynamic
equation closely agree with those of SimMechanics. There-
fore, it proves validity of the obtained dynamic equations.
The changes in joint torques for all joints are shown in Fig. 5.
Moreover, since the results are periodic, only the first five
seconds are shown in each figure. As can be seen, the torque
at the start of the motion, experiences a small hike. This is
related to overcome inertial force to approach initial body
shape.

In addition, joint torques are periodic and amount of max-
imum joint toques for joints 2, 3 and 4 are relatively higher
than joint 1 and 5. This is because joint 2, 3 and 4 are the
nearest joint to the gravity center of the entire snake robot.

In other words, as joints get closer to the center of gravity,
the required maximum torque increases.

Moreover, Fig. 5 indicates that because of gravity accel-
eration, vertical joints experienced more torques than corre-
sponding horizontal joints.

5 FUM-snake 5 robot design

FUM-Snake 5, shown in Fig. 6, is the fifth-generation snake
robot designed in the FUM Robotics center. The first four
robots were designed for planar motions like serpentine and
traveling wave [2–4]. FUM-Snake 5 is designed to move in
the 3-D space. It is made of eight links. Each link is made
of an Aluminum chassis and covered with a composite case
(Fig. 7a, b). All eight links have equal length and are attached

123



Analytical modeling of a 3-D snake robot based on sidewinding locomotion

to each other using a custom made universal joint. The robot
in its fully flat configuration has width 140 mm, height 140
mm and length 1600 mm. The overall weight of the snake
robot, including all motors and all other components is 6.7
kg. Dynamixel-RX64 servomotors that could provide a max-
imumof 5.3N.m stall torque are used. The designedmodules

Fig. 6 FUM-snake 5

are shown in Fig. 7b. An IP camera is implemented inside
the head module to send live video from the robot workspace
to the user, Fig. 7c. Each link, has an internal control board,
Fig. 8, that collect data from eight force sensors (load cell)
which measure magnitude and direction of the exerted force
to the link as well as eight IR sensors that measure distance
from other objects in the environment. The positions of each
servo are sent by RS232 serial communication to a micro
controller, friendly ARM board, ARM9 (Mini 2440). As
shown in previous work [4], the shape of the links is cho-
sen to be curvilinear, which results in a significant lowering
of the impact forces experienced by the robot during motion.

6 Experimental observations

The selection of the values for the motion variables alpha
(αv,h = 25◦) and beta (βv,h = − 50◦) is due to the limitation
of the custommade universal joints design that has a range of
± 30 degrees. Furthermore, the selection of the value for the

Fig. 7 a Aluminum chassis of the robot’s module, b composite cases that cover each module, and c head module of the robot equipped with IP
camera and LEDs

Fig. 8 Control scheme of the
robot
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Fig. 9 Progression of the snake robot in sidewinding locomotion

motion frequency variable (ωv,h = 110 deg/sec) is based on
the speed limitation of the RX-64 motors. These limits lead
us to find optimum number for fixed variable in Eq. (4) to
have a high performance and elegant appearance of sidewind-
ing locomotion as much as possible. In addition, despite the
various efforts, we were not able to record neither the actual
motor torques of the Rx-64 servo motors (cause: not capable
of reporting consumed torque) nor reliable force magnitude
of the eight force sensors of each link (cause: inappropriate
force sensor that can’t measure force properly), to compare
with theoretical results shown in Fig. 5. However, during the
experiments we observed that motors closer to gravity center
of the robot, repeatedly go into faults due to over current error,
especially the motor number 4 and 5 which are related to the
vertical plane motion. As current has a direct relationship
with torque, it is concluded that the required torque is also
increased. This finding is similar to our derived theoretical
results. As shown in Fig. 5, themaximum torque experienced
for the vertical motor joints 3 and 4 are significantly higher
than the other motors. The progression of the snake robot in
sidewinding locomotion is shown in Fig. 9.

7 Conclusion

In this study, design of the 3-D FUM-snake 5 is briefly
discussed and kinematics, dynamics, simulation and exper-
imental observation of the robot in sidewinding locomotion
are represented in details. We first present the kinematics of
the snake robot using Denavit–Hartenberg convention. Next,
for the first time, the dynamics model of the snake robot
is developed using the Gibbs–Appell method. The derived
dynamics formulations are coded inMATLAB software. The
sidewinding locomotion is considered and the requiredmotor
torques are calculated using the SimMechanics model. The
theoretical formulation and the SimMechanicsmodel is com-
pared. Results indicate that the established kinematics and
dynamics of the snake robot are reasonable. A 3-D snake

robot, the FUM-Snake 5, is designed and its details are pre-
sented. The robot offers a novel shaped link that significantly
minimizes the impact forces experienced by the robot. Exper-
iments shows that when motors get closer to the gravity
center, require more torques same as theoretical result. The
theoretical derived equation in this paper can also be used to
generate both 2-D (i.e. serpentine, concertina and traveling
wave locomotion [2–5]) and 3-D snake motions (i.e. arc and
helix rolling [20]).

The main contributions of this paper are detailed develop-
ment of snake kinematics and dynamics equations of a 3-D
snake based on Gibbs–Appell formulations, verification of
the 3-D dynamic simulation using SimMechanics software,
as well as design and construction of a snake robot having a
novel shaped link. For our future work, we plan to extend the
dynamics equations by considering external forces applied
by obstacles as the snake moves through complex and clut-
tered environments.
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