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ABSTRACT
Divergence measures are statistical tools designed to distinguish
between the information provided by distribution functions of f(x) and
g(x). The magnitude of divergence has been defined using a variety of
methods such as Shannon entropy and other mathematical functions
through a history of more than a century. In the present study, we have
briefly explained the Lin–Wong divergence measure and compared it to
other statistical information such as the Kullback-Leibler, Bhattacharyya
and v2 divergence as well as Shannon entropy and Fisher information on
Type I censored data. Besides, we obtain some inequalities for the
Lin–Wong distance and the mentioned divergences on the Type I cen-
sored scheme. Finally, we identified a number of ordering properties for
the Lin–Wong distance measure based on stochastic ordering, likelihood
ratio ordering and hazard rate ordering techniques.
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1. Introduction

Entropy is generally a measure of irregularity. This measure of variability for continuous
variables is defined as

Hg Xð Þ ¼ �
ð1
�1

g xð Þ log g xð Þ dx: (1)

Shannon (1948) applied this concept to the information theory for discrete variables,
while an immediate extension leads to its continuous analog called the differential
entropy. That is the differential entropy of a continuous random variable X with distri-
bution density functions of g(x) which was introduced by Cover and Thomas (1991).
For convenience, we use log e ¼ ln function when referring to all logarithm incidents
in the rest of this article. Shannon entropy measure was extended into other fields and
was implemented within significant applications. For instance, the Kullback-Leibler (KL)
divergence measure which was defined by Kullback and Leibler (1951) is a well known
measure of difference between probability distributions or information divergence, and
it is based on the Shannon entropy. Furthermore, various types of divergence measures
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are being used in addition to KL measure. One of them is the Lin–Wong (LW) divergence
measure which was introduced by Lin and Wong (1990). However, some data distribution
difference measures exist which were introduced before the KL divergence measure or the
Shannon entropy. For example, the Bhattacharyya (B) and v2 distance measures. For more
details, see Burgess (1928), Ferger (1931) and Deza and Deza (2009).
Here, we mainly focus on the LW divergence which is defined as

DLW gjjf� � ¼ ð1
�1

g xð Þ ln
2g xð Þ

g xð Þ þ f xð Þ dx: (2)

However, the LWmeasure is in close relationship with the KL, and it is generally charac-
terized and presented by within the relevant literature as a new directional distance meas-
ure which avoids the pitfalls in which observed with the KL. For instance the KL measure
can be calculated infinity. For example, suppose that v ¼ ð0; 1Þ; be the unit interval and
two densities gðxÞ ¼ 1; and f ðxÞ ¼ e�x

0:148, implies DKLðgjjf Þ ¼ 1: In fact, many desirable
features such as being finite and non negative, being bounded on one side (or two sides
under certain conditions) are pointed out by the proposing authors. LW measure of diver-
gence was further developed and extended by Lin (1991), Shioya and Da-Te (1995) as well
Jain and Saraswat (2012). Furthermore, Abbasnejad et al. (2012) proposed an improvement
of goodness of fit measure for exponential distributions based on this divergence as well,
Khalili et al. (2017) studied some properties of LW on the past lifetime data.
In particular, there are studies focused on some specific data including stated calibra-

tion and detection limits. Environmental data, for example, often include values
reported as these calibrations, such as a below detection limit along with the stated
detection limit. The reader is referred to Kleinbaum and Klein (2006) and Helsel
(2010). A sample contains censored observations if the information have been about
some of the observations which they are below or above a specified value.
The density function for a Type I censored variable minðX;CÞ, where C is the censor-

ing point and is assumed to be a constant, is defined as

fC xð Þ ¼ f xð Þ if x<C
�F Cð Þ if x � C;

�
(3)

in which, f ðxÞ; FðxÞ; �FðxÞ ¼ 1�FðxÞ; represent density, distribution and survival func-
tions, respectively.
The rest of this article is structured as follows. Section 2, expresses the LW, KL, B

and v2 divergences on Type I censored data and review the properties of LW divergence
measure on the mentioned censored data. Section 3, provides general introduction of
the LW divergence measure and some other prominent measures of distance, along
with a review of relations between them. In Section 4, we obtain some bounds for them
from the well-known inequalities when applied on Type I censored data. Section 5,
includes the LW divergence stochastic order properties and the bounds of it. Section 6,
includes discussion and our conclusions.

2. LW divergence measure properties on type I censored data

Various types of distance measure, same as the LW, KL, B and v2 divergences are
defined within the realms of information theory and statistics which are not in a same
class but some relationships can be found between them. In following section we denote
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these divergences on Type I censored data. First at all, the LW divergence is expressed
on Type I censored data as

DC�I
LW gjjf� � ¼ ð1

�1
gC xð Þ ln 2gC xð Þ

gC xð Þ þ fC xð Þ dx

¼
ðC
�1

g xð Þ ln 2g xð Þ
g xð Þ þ f xð Þ dxþ

�G Cð Þ ln 2�G Cð Þ
�G Cð Þ þ �F Cð Þ ;

(4)

where g(x) and f(x) are probability density functions of F(x) and G(x), respectively, and
G(x) is absolutely continuous with respect to F(x), besides, �GðxÞ and �FðxÞ, represent
survival functions respectively.
Obviously limC!1DC�I

LW ðgjjf Þ ¼ DLWðgjjf Þ:
Park and Shin (2014) regarded the KL divergence measure for Type I censored

variable as

DC�I
KL gjjf� � ¼ ðC

�1
g xð Þ ln g xð Þ

f xð Þ dx þ
�G Cð Þ ln

�G Cð Þ
�F Cð Þ : (5)

Park (2016) expressions for the KL information on a mixer of Type I and II censor-
ing scheme considering order statistics.
Finally, the Bhattacharyya (B) and v2 as a well-known distance measures can be

defined on Type I censored data as

DC�I
B gjjf� � ¼ ðC

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g xð Þf xð Þ

p
dxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�G Cð Þ�F Cð Þ

p
: (6)

DC�I
v2 gjjf� � ¼ ðC

�1

g xð Þ2
f xð Þ dx þ

�G Cð Þ2
�F Cð Þ �1: (7)

Theorem 2.1, states the LW divergence measure on Type I censored data is increasing
on C.

Theorem 2.1. Suppose that X is a continuous real-valued function on Type I censored
variable. Then, the LW divergence measure is a monotonous increasing function of C.

Proof.

@DC�I
LW gjjf� �
@C

¼ g Cð Þ ln
2g Cð Þ

g Cð Þ þ f Cð Þ� ln
2�G Cð Þ

�G Cð Þ þ �F Cð Þ�1

 !

þ g Cð Þ þ f Cð Þ� �
�G Cð Þ

�G Cð Þ þ �F Cð Þ ¼ g Cð Þ Y Cð Þ� lnY Cð Þ�1ð Þ;

where YðCÞ ¼ ðgðCÞþf ðCÞÞ
hGðCÞð�GðCÞþ�FðCÞ, and hGðCÞ ¼ gðCÞ

�GðCÞ : It would mentioned that

Y Cð Þ� lnY Cð Þ�1 � 0 8 Y Cð Þ>0: (8)

In fact YðCÞ� lnYðCÞ�1; attains it’s minimum at YðCÞ ¼ 1; with value zero.
By using the (8), we obtain that

@DC�I
LW gjjf� �
@C

¼ g Cð Þ Y Cð Þ� lnY Cð Þ�1ð Þ � 0: (9)

Inequality (9) holds by (8) and gðCÞ � 0: Hence, the proof is complete. w
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3. The LW divergence in relation with other information on type I
censored data

A number of studies have addressed those relationships, for instance Kapur (1984), Lin
(1991), Shioya and Da-te (1995), Dragomir (2003), Kumar and Taneja (2006). The
divergence issue over this kind of data has been discussed by Joarder et al. (2011),
Pakyari and Balakrishnan (2013), Park and Shin (2014), Pakyari and Resalati Nia (2017)
amongst others. It is clear that the magnitude of H is less than that of the B. Dragomir

(2003) showed the DL�2 ¼ B relationship, where DL�2ðgjjf Þ ¼
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðxÞf ðxÞp
dx:

Accordingly, we derive the relation between LW, KL and H divergence measures.
Trough Theorem 3.1, we obtain a boundary for the values of LW divergence using

KL values obtained when applied on Type I censored data. Then we address the rela-
tion between LW divergence and Fisher information measures in the context of Type
I censored data within the Theorem 3.2. Theorems 3.3 and 3.4 lead the relationship
between LW divergence corresponding to B and v2 distance measures on Type I
censored data.

Theorem 3.1. There is a relation between LW and KL divergence measures on Type I
censored data which can be expressed as

DC�I
LW gjjf� � � ln

4

3� DC�I
KL gjjf� �þ e�DC�I

KL gjjfð Þ : (10)

Proof. Take the term ln 2
1þeX ; which has the property of concavity. From the Jensen’s

inequality we would haveðC
�1

g xð Þ ln 2g xð Þ
g xð Þ þ f xð Þ dx ¼

ðC
�1

g xð Þ ln 2

1þ e ln
f xð Þ
g xð Þ

dx � ln
2

1þ e
Ð C
�1 g xð Þ ln f xð Þ

g xð Þdx
:

Similarly,

�G Cð Þ ln 2�G Cð Þ
�G Cð Þ þ �F Cð Þ � ln

2

1þ e
�G Cð Þ ln �F Cð Þ

�G Cð Þ
:

Therefore, we can write

DC�I
LW gjjf� � � ln

2

1þ e
Ð C
�1 g xð Þ ln f xð Þ

g xð Þdx
þ ln

2

1þ e
�G Cð Þ ln �F Cð Þ

�G Cð Þ

¼ ln
4

1þ e
Ð C
�1 g xð Þ ln f xð Þ

g xð Þdx þ e
�G Cð Þ ln �F Cð Þ

�G Cð Þ þ e�DC�I
KL gjjfð Þ

:

At the other hand, from the Mac Loren’s expansion for ex � 1þ x; we can get

e
Ð C
�1 g xð Þ ln f xð Þ

g xð Þdx þ e
�G Cð Þ ln �F Cð Þ

�G Cð Þ � 2�DC�I
KL gjjf� �

:

So, the inequality (10) is established and the proof is complete. w

Remark 3.1. Similar to Theorem 3.1 there is a relation between LW and KL divergence
measures on general data as follow
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DLW gjjf� � � ln
2

1þ e�DKL gjjfð Þ :

Clearly, using the elementary geometric-arithmetic inequality, there is a relationship
between LW distance value and KL divergence on Type I censored variable as follow

DC�I
LW gjjf� � � 1

2
DC�I

KL gjjf� �
: (11)

The Fisher information is a way of measuring the amount of information that a ran-
dom variable X, and defined as (see Lehmann and Casella 2006)

I hð Þ ¼
ð �

@

@h
ln f x; hð Þ

�2

f x; hð Þdx:

A relationship exists between the KL divergence and the Fisher information. Kullback
(1959) described this relation as the following

DKL f x; hð Þjjf x; hþ Dhð Þ� �� Dhð Þ2
2

I hð Þ:

Ferentinos and Papaioannou (1981), Gertsbakh (1995), Dabak and Johnson (2002),
Park and Shin (2014) calculated the relationship between KL and Fisher information.
Here we address a connection for LW divergence and the Fisher information measures
on Type I censored variable.
The Fisher information about h in X on Type I censored data is expressed as

I hð ÞC�I ¼
ð1
�1

fC x; hð Þ @

@h
ln fC x; hð Þ

� �2

dx

¼
ðC
�1

f x; hð Þ @

@h
ln f x; hð Þ

� �2

dxþ �F C; hð Þ @

@h
ln �F C; hð Þ

� �2

:

(12)

It can easily be shown that

DC�I
KL f x; hð Þjjf x; hþ Dhð Þ� �� Dhð Þ2

2
I hð ÞC�I
� 	

: (13)

Here, we examine the relation between LW divergence and Fisher information meas-
ures in the context of Type I censored data.

Theorem 3.2. There is a relation between Fisher information and the LW divergence
on Type I censored data as below

DC�I
LW f x; hð Þjjf x; hþ Dhð Þ� �� Dhð Þ2

8
I hð ÞC�I

: (14)

Proof. We would haveðC
�1

f x; hð Þ ln 2f x; hð Þ
f x; hð Þ þ f x; hþ Dhð Þ dx�

ðC
�1

f x; hð Þ ln f x; hð Þ
f x; hþ Dh

2

� 	 dx:
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Similarity, we can obtain

�F C; hð Þ ln 2�F C; hð Þ
�F C; hð Þ þ �F C; hþ Dhð Þ dx�

�F C; hð Þ ln
�F C; hð Þ

�F C; hþ Dh
2

� 	 dx:
Hence, we have

DC�I
LW f x; hð Þjjf x; hþ Dhð Þ� ��DC�I

KL f x; hð Þjjf x; hþ Dh
2

� �� �
: (15)

Because of by taking Dh
2 in (13) we would have

DC�I
LW f x; hð Þjjf x; hþ Dhð Þ� ��DC�I

KL f x; hð Þjjf x; hþ Dh
2

� �� �
� Dhð Þ2

8
I hð ÞC�I

: (16)

Comparing (13) and (14) states LW and KL divergences between fhþDh and fh; is
proportional to Fisher information at h and hþ Dh; where Dh is a perturbation.
Theorem 3.2 illustrates in effect that the divergence between two distributions with
respect to LW and KL divergences is the same as that with respect to Fisher information
on Type I censored case whenever the size difference between the two parameters hþ
Dh; and h; is a perturbation.
Let / : ½0; Þ ! R be a convex function. Then Csisz�ar (1963) introduced the

/�divergence functional as a generalized measure of information on the set of probabil-
ity distribution. The /�divergence can be written as

D/ g; fð Þ ¼
ð1
�1

f xð Þ / t xð Þð Þ dx; (17)

where tðxÞ ¼ gðxÞ
f ðxÞ.

Some properties of /�divergence are as /00ðxÞ � 0 and /ð1Þ ¼ 0.
In following, we obtain a boundary for LW based on B distance considering

/�divergence definition.

Theorem 3.3. There is a relationship between LW and B distance measures on Type I
censored data as follow

DC�I
LW gjjf� � � DC�I

B gjjf� ��1: (18)

Proof. Let /1ðtðxÞÞ ¼ tðxÞ ln 2tðxÞ
tðxÞþ1 and /2ðtðxÞÞ ¼ 1� ffiffiffiffiffiffiffiffi

tðxÞp
: Because of /1ð1Þ ¼

/2ð1Þ ¼ 0; besides /00
1ðtðxÞÞ and /00

2ðtðxÞÞ; be greater than or equal to zero, we denote
them as a / divergence functional. Now take /3ðtðxÞÞ ¼ /1ðtðxÞÞ þ /2ðtðxÞÞ; that

implies, /3ðtðxÞÞ is functional Csisz�ar’s measure. Therefore, by substituting tðxÞ ¼ gðxÞ
f ðxÞ ;

we can get ðC
�1

g xð Þ ln 2g xð Þ
g xð Þ þ f xð Þ dx �

ðC
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g xð Þf xð Þ

p
dx�F Cð Þ: (19)
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Similarly, by taking tðCÞ ¼ �GðCÞ
�FðCÞ in

Ð1
C f ðxÞcðtðCÞÞ dx; one can write

�G Cð Þ ln 2�G Cð Þ
�G Cð Þ þ �F Cð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�G Cð Þ�F Cð Þ

p
��F Cð Þ: (20)

Summing (19) and (20) gives (18). w

Theorem 3.4. Let X and Y be a continuous random variable on Type I censored data.
Then there is a relationship between LW and v2 distance measures as follow

DC�I
LW gjjf� � � DC�I

v2 gjjf� ��1

2
: (21)

Proof. From Jensen inequality in view of ln function, besides, using (7), we have

DC�I
KL gjjf� � � ln

ðC
�1

g xð Þ g xð Þ
f xð Þ dxþ ln �G Cð Þ �G Cð Þ

�F Cð Þ

�
ðC
�1

g2 xð Þ
f xð Þ dx þ

�G2 Cð Þ
�F Cð Þ �2 ¼ DC�I

v2 gjjf� ��1:

So, considering (11), the proof is complete. w

Remark 3.2. Similarity to Theorem 3.4 we have on general situation

DLW gjjf� � � Dv2 gjjf� �
2

:

4. Bounds for the LW divergence on type I censored data

In following section, we obtain some bounds for LW divergence measure on general
and Type I censored scheme. The mentioned inequalities are given as Cassels and
Diaz–Metcalf for integral version in which can be as a reverse Caushy-Schwarz
inequality in various frameworks, e.g. integrals or inner product spaces as Hilbert space.
For instance see Moslehian et al. (2011).
In 1950, The Cassels inequality can be expressed as (see Watson et al. 1997)Ð

w xð Þa2 xð Þ dx:
Ð
w xð Þb2 xð Þ dxÐ

w xð Þa xð Þb xð Þ dx
� �2 � mþMð Þ2

4mM
; (22)

where aðxÞ>0; bðxÞ>0; and wðxÞ � 0; with m ¼ min

 aðxÞ

bðxÞ
�
and M ¼ max


 aðxÞ
bðxÞ
�
:

Theorem 4.1. Let X and Y be continuous random variables on Type I censoring scheme
with g(x) and f(x) probability mass functions respectively. Then

DC�I
LW gjjf� � � ln 2� 2m

mþMð Þ
ffiffiffiffiffiffiffiffiffi
mM

p ffiffiffiffiffiffiffiffiffiffiffi
�G Cð Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
G Cð Þ

p� 	
; (23)

where m ¼ min
n ffiffiffiffiffiffiffiffiffiffiffi

GðCÞp
ln gðxÞþf ðxÞ

gðxÞ ;
ffiffiffiffiffiffiffiffiffiffiffi
�GðCÞ

p
ln

�GðCÞþ�FðCÞ
�GðCÞ

o
; 8x � C; and

M ¼ max
n ffiffiffiffiffiffiffiffiffiffiffi

GðCÞp
ln gðxÞþf ðxÞ

gðxÞ ;
ffiffiffiffiffiffiffiffiffiffiffi
�GðCÞ

p
ln

�GðCÞþ�FðCÞ
�GðCÞ

o
:
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Proof. Considering m ¼ minfm1;m2g; 8x � C; and M ¼ maxfM1;M2g; in which,

m1 ¼ min
n ffiffiffiffiffiffiffiffiffiffiffi

GðCÞp
ln gðxÞþf ðxÞ

gðxÞ
o

8x � C;M1 ¼ max
n ffiffiffiffiffiffiffiffiffiffiffi

GðCÞp
ln gðxÞþf ðxÞ

gðxÞ
o
, m2 ¼ M2 ¼ffiffiffiffiffiffiffiffiffiffiffi

�GðCÞ
p

ln
�GðCÞþ�FðCÞ

�GðCÞ and taking wðxÞ ¼ gðxÞ; aðxÞ ¼ ln gðxÞþf ðxÞ
gðxÞ ; and bðxÞ ¼ 1ffiffiffiffiffiffiffiffi

GðCÞ
p ; in

(22) we have

G Cð Þ Ð C�1 g xð Þ ln g xð Þþf xð Þ
g xð Þ

� 	2
dxÐ C

�1 g xð Þ ln g xð Þþf xð Þ
g xð Þ dx

� 	2 � mþMð Þ2
4mM

:

SoðC
�1

g xð Þ ln g xð Þ þ f xð Þ
g xð Þ dx

 !2

� 4mM:G Cð Þ
mþMð Þ2

ðC
�1

g xð Þ ln
g xð Þ þ f xð Þ

g xð Þ
� �2

dx

� 4mM:G Cð Þ
mþMð Þ2

ðC
�1

g xð Þ mffiffiffiffiffiffiffiffiffiffiffi
G Cð Þp� �2

¼ 4m3M:G Cð Þ
mþMð Þ2 :

Therefore, ðC
�1

g xð Þ ln g xð Þ þ f xð Þ
g xð Þ dx � 2m

mþMð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m:M:G Cð Þ

p
: (24)

Similarly,

�G Cð Þ ln
�G Cð Þ þ �F Cð Þ

�G Cð Þ � 2m
mþMð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m:M:�G Cð Þ

p
: (25)

Hence, from (24) and (25) we have

Ð C
�1 g xð Þ ln g xð Þ

g xð Þ þ f xð Þ dx þ
�G Cð Þ ln

�G Cð Þ
�G Cð Þ þ �F Cð Þ

� � 2m
mþMð Þ

ffiffiffiffiffiffiffiffiffi
mM

p ffiffiffiffiffiffiffiffiffiffiffi
�G Cð Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
G Cð Þ

p� 	
:

Thus, (23) is hold. w

Remark 4.1. Clearly, for general scheme we can get

DLW gjjf� � � ln 2� 2m
mþMð Þ

ffiffiffiffiffiffiffiffiffi
mM

p
; (26)

where 0<m � ln gðxÞþf ðxÞ
gðxÞ � M:

Diaz and Metcalf (1963) illustrated the Diaz–Metcalf inequality for continuous ver-
sion of real valued functions t1ðxÞ and t2ðxÞ (never zero) on the finite interval as followð

p xð Þt21 xð Þ dxþ ab
ð
p xð Þt22 xð Þ dx � aþ bð Þ

ð
p xð Þt1 xð Þt2 xð Þ dx; (27)

in which a � t1ðxÞ
t2ðxÞ � b; and pðxÞ>0 with

Ð
pðxÞ dx ¼ 1:
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Theorem 4.2. There is the upper bound for LW divergence on Type I censored scheme
as follow

DC�I
LW gjjf� � � aþ bð Þ�ab�1

2
; (28)

where a and b be minimum and maximum values of
n

gðxÞ
f ðxÞ ;

�GðCÞ
�FðCÞ

o
; x � C; respectively.

Proof. First, suppose that a and b be minimum and maximum the term
n

gðxÞ
f ðxÞ ;

�GðCÞ
�FðCÞ

o
;

respectively. Let pðxÞ ¼ gðxÞ; t1ðxÞ ¼
ffiffiffiffiffiffi
gðxÞ
f ðxÞ

q
; t2ðxÞ ¼

ffiffiffiffiffiffi
f ðxÞ
gðxÞ

q
; so from (27) we haveðC

�1

g2 xð Þ
f xð Þ dx þ abF Cð Þ � aþ bð ÞG Cð Þ: (29)

Similarly, by taking pðxÞ ¼ gðxÞ; t3ðxÞ ¼
ffiffiffiffiffiffiffiffi
�GðCÞ
�FðCÞ

q
; t4ðxÞ ¼

ffiffiffiffiffiffiffiffi
�FðCÞ
�GðCÞ

q
; in (27) we have

G2 Cð Þ
�F Cð Þ þ ab�F Cð Þ � aþ bð Þ�G Cð Þ: (30)

Therefore, from (7) one can write the v2 distance as we have

DC�I
v2 gjjf� � ¼ ðC

�1

g2 xð Þ
f xð Þ dx þ G2 Cð Þ

�F Cð Þ �1 � aþ bð Þ�ab�1: (31)

Thus, considering (21) and (31) implies (28). w

Remark 4.2. Consider to Remark 3.2 and Theorem 4.2 can be states on general data.

Example 4.1. Let X and Y be two exponentially distributed random variables with the
mean values of 2h and h, respectively in which h>0 and suppose that C be the median
point for G(x).

Clearly GðCÞ ¼ 1
2 ; C ¼ ln

ffiffi
2

p
h ; and FðCÞ ¼ 1ffiffi

2
p we have

ffiffiffiffiffiffiffiffiffiffiffi
�GðCÞ

p
ln

�GðCÞþ�FðCÞ
�GðCÞ �ffiffi

1
2

q
lnð1þ ffiffiffi

2
p Þ ’ 0:623; as well as, we can get

0:287 ’
ffiffiffi
1
2

r
ln

3
2

� �
�

ffiffiffiffiffiffiffiffiffiffiffi
G Cð Þ

p
ln

g xð Þ þ f xð Þ
g xð Þ �

ffiffiffi
1
2

r
ln

2þ ffiffiffi
2

p

2

� �
’ 0:378: 8x � C

Thus, considering Theorem 4.1, we would have m¼ 0.287 and M ¼ 0:623:
Therefore, DC�I

LW ðgjjf Þ � 0:316.

Furthermore,
�GðCÞ
�FðCÞ ¼

ffiffi
2

p
2 and

ffiffiffi
2

p � gðxÞ
f ðxÞ ¼ 2e�hx � 2: Then, from Theorem 4.2 we would

have a ¼
ffiffi
2

p
2 and b¼ 2 that implies DC�I

LW ðgjjf Þ � 0:146.
Considering Theorems 4.1 and 4.1 we would have a sharper upper boundary for LW

between f0; 0:146:g

5. Some boundaries for the LW divergence from conditional stochastic
ordering on type I censored data

Stochastic (st) ordering concept is a prominent and useful approach in statistics and
probability theory, which quantifies the concept of one random variable being “larger”
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than another. These are usually partial orders, so that one random variable X may be
neither stochastically greater, equal or less than another random variable Y. Many
different orders exist, which have various applications. This concept can be defined vari-
ously from the properties of probabilistic functions such as distribution, survival failure,
probability density, etc.
Let X and Y be continuous random variables with distribution functions of G(x) and

F(x), respectively. Also assume that they support ðlX; uXÞ; and (lY, uY), where �1 �
lX � uX � 1; and �1 � lY � uY � 1. Since X and Y are assumed to be strictly con-
tinuous, functions of probability density for those two variables are denoted as g(x) and
f ðxÞ; respectively. The st ordering is the most common indicator which compares ran-
dom variables to each other.
A lot of works has been done in the literature on ordering statistics. For a glimpse of

this, see the books by David (1981), Arnold et al. (1992), as well, Shaked and
Shanthikumar (1994). Furthermore, Takahasi (1988) showed some results on hazard
rate ordering. According to the referenced notes we have the following definitions for
the order of X and Y.

Definition 5.1. A random variable X is said to precede another random variable Y in
sense of st order (denoted as X�st Y), if and only if �GðxÞ � �FðxÞ: This is equivalent
to GðxÞ � FðxÞ; 8x�R:

Definition 5.2. X is said to be smaller than Y in terms of likelihood ratio order

(denoted as X�lr Y), if gðxÞ
f ðxÞ ; is an increasing function of x, 8x � 0.

Definition 5.3. X be smaller than Y in terms of hazard rate order (denoted as X�hr Y)

if
�GðxÞ
�FðxÞ ; is an increasing function of x 2 ð�1;maxðuX; uYÞÞ.
It should be noted that X�hr Y is equivalent to set of inequalities

PðX�t>xjX>tÞ � PðY�t>xjY>tÞ, for all values of x � 0; and t.
What we already know about the relation between the KL and LW measures, is that

the LW divergence value is defined on ½0; 1� and the magnitude of KL measure is always
larger than twice the magnitude of this measure (Lin 1991).
The following Theorem addresses this difference under the st order condition.

Theorem 5.1. If X�st Y; then the distance between the KL and LW divergence values
would lie in the following interval on censored data

DC�I
KL gjjf� �þ F Cð Þ ln G Cð Þ

F Cð Þ þ 2�G Cð Þ ln
�F Cð Þ
�G Cð Þ � DC�I

LW gjjf� � � DC�I
KL gjjf� �þ G Cð Þ ln 2;

and if X�st Y; then the interval would be

DC�I
KL gjjf� �þ F Cð Þ ln F Cð Þ

G Cð Þ � DC�I
LW gjjf� � � DC�I

KL gjjf� �þ G Cð Þ ln 2þ �F Cð Þ ln
�F Cð Þ
�G Cð Þ :
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Proof. In order to find the lower boundary, under the st condition we can write

DC�I
LW gjjf� � � ðC

�1
g xð Þ ln g xð Þ

f xð Þ dx þ
�G Cð Þ ln 2�G Cð Þ

�G Cð Þ þ �F Cð Þ þ G Cð Þ ln 2

�
�G��F

ðC
�1

g xð Þ ln g xð Þ
f xð Þ dx þ

�G Cð Þ ln
�G Cð Þ
�F Cð Þ þ G Cð Þ ln 2

� DC�I
KL gjjf� �þ G Cð Þ ln 2;

and for the upper boundary, we can get

DC�I
LW gjjf� ���G��F

Ð C
�1 g xð Þ ln g xð Þ

f xð Þ dx þ
ðC
�1

g xð Þ ln 2f xð Þ
g xð Þ þ f xð Þ dxþ

�G Cð Þ ln
�F Cð Þ
�G Cð Þ

� DC�I
KL gjjf� �þ Ð C�1 g xð Þ ln 2f xð Þ

g xð Þ þ f xð Þ dxþ 2�G Cð Þ ln
�F Cð Þ
�G Cð Þ :

Since, from the log-sum inequality, we can write

DC�I
LW gjjf� � � DC�I

KL gjjf� �þ G Cð Þ ln 2F Cð Þ
G Cð Þ þ F Cð Þ þ 2�G Cð Þ ln

�F Cð Þ
�G Cð Þ

��G��F DC�I
KL gjjf� �þ G Cð Þ ln G Cð Þ

F Cð Þ þ 2�G Cð Þ ln
�F Cð Þ
�G Cð Þ :

The proof for condition X�st Y; is similar, hence we don’t repeat. w

Meanwhile, in consideration of increasing and decreasing nature of above terms,
boundaries can be found for DC�I

LW ðgjjf Þ:
Using the following theorem, we try to find an interval smaller than (0, 1) for the

magnitude of LW divergence measure value considering the lr order condition.

Example 5.1. Suppose that X and Y be two exponentially distributed random variables
with the means values of 2, and 1, respectively. It is clear that X�st Y; from �GðxÞ �
�FðxÞ: A graphical comparison of bounds mentioned in Theorem 5.1 for C 2 ð0; 1� is
shown in Figure 1.

Theorem 5.2. If X and Y are lifetime variables, and X�lr Y and C>0; then on censored

data, we have DC�I
LW ðgjjf Þ � GðCÞsðCÞ þ �GðCÞ�kðCÞ; where sðCÞ ¼ ln 2gðCÞ

gðCÞþf ðCÞ
and �kðCÞ ¼ ln 2�GðCÞ

�GðCÞþ�FðCÞ.

For the case of X�lr Y , and C>0; the direction of inequality would be reversed.

Proof. According to (4) for X�lr Y , and 8 C>0; we haveðC
0
g xð Þ ln 2g xð Þ

g xð Þ þ f xð Þ dx ¼ �
ðC
0
g xð Þ ln f xð Þ

2g xð Þ þ
1
2

� �
dx

�

g xð Þ
f xð Þ �

g Cð Þ
f Cð Þ ðC

0
g xð Þ ln 2g Cð Þ

g Cð Þ þ f Cð Þ dx:

So, DC�I
LW ðgjjf Þ � GðCÞsðCÞ þ �GðCÞ�kðCÞ:
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The proof for the case of X�lr Y; is similar. w

Example 5.2. Assume that X be an exponentially distributed random variable with the

parameter 1, and, in the case of Cox Proportional Hazard model, take �FðxÞ ¼ �GhðxÞ
that yields X�lr Y . By letting h¼ 2, Figure 2 shows a graphical comparison of bounds
mentioned in Theorem 5.2 for C 2 ð0; 1�.
Theorem 5.3, aims to find a lower (upper) boundary for the LW measure value using

the hr order condition.

Theorem 5.3. If x � 0, and y � 0, for the case of X�hr Y, we can have the boundary for
DC�I

LW ðgjjf Þ; on Type I censored data, as follow

F Cð Þ�G Cð Þ�G Cð Þ�F Cð Þ
�G Cð Þ þ �F Cð Þ þ G Cð Þ ln G Cð Þ

G Cð Þ þ F Cð Þ ; F Cð Þ þ G Cð Þ ln
�G Cð Þ þ �F Cð Þ

�G Cð Þ

 !
:

Proof. For 8x � C; and by taking YðxÞ ¼ ðgðxÞþf ðxÞÞ
hGðxÞð�GðxÞþ�FðxÞ, and hGðxÞ ¼ gðxÞ

�GðxÞ ; from

Theorem 2.1, and using the X�hr Y; condition we would have YðxÞ � gðxÞþf ðxÞ
gðxÞ

�GðCÞ
�GðCÞþ�FðCÞ ;

henceðC
0
g xð Þ Y xð Þ�1ð Þ dx � G Cð Þ þ F Cð Þð Þ �G Cð Þ

�G Cð Þ þ �F Cð Þ�G Cð Þ ¼ F Cð Þ�G Cð Þ�G Cð Þ�F Cð Þ
�G Cð Þ þ �F Cð Þ ;

furthermore,

�
ðC
0
g xð Þ lnY xð Þ dx ¼

ðC
0
g xð Þ ln g xð Þ �G xð Þ þ �F xð Þ� �

g xð Þ þ f xð Þð Þ�G xð Þ dx

�
ðC
0
g xð Þ ln g xð Þ

g xð Þ þ f xð Þ dx � G Cð Þ ln G Cð Þ
G Cð Þ þ F Cð Þ :

Besides,ðC
0
gðxÞðYðxÞ�1Þ dx ¼

ðC
0
gðxÞ

� ðgðxÞ þ f ðxÞÞ
hGðxÞð�GðxÞ þ �FðxÞ�1

�
dx �

ðC
0
f ðxÞ dx;

and

�
ðC
0
g xð Þ lnY xð Þ dx �

ðC
0
g xð Þ ln

�G xð Þ þ �F xð Þ
�G xð Þ dx �X�hr Y

G Cð Þ ln
�G Cð Þ þ �F Cð Þ

�G Cð Þ :

So, the proof is complete. w

Example 5.3. Let X be an exponentially distributed random variable with the means

value 1. Obviously X�hr Y; following �FðxÞ ¼ �GhðxÞ with mean value of 2. Figure 3,
shows a graphical comparison of bounds mentioned in Theorem 5.3, for C 2 ð0; 1�.
Clearly, using the log-sum inequality we would have a lower boundary for the magni-

tude of LW divergence value as
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G Cð Þ ln 2G Cð Þ
G Cð Þ þ F Cð Þ þ

�G Cð Þ ln 2�G Cð Þ
�G Cð Þ þ �F Cð Þ :

Also, can be show that the value of LW divergence measure on Type I censored vari-
able is equal to or less than that for the general LW divergence measure.
In Theorem 5.4, we denote the relation between LW divergence measure when

applied to Type I censored data and the LW measure on general situation under the

condition X�hr Y .

Theorem 5.4. If X and Y be two lifetime random variables and X�hr Y; the boundary of
DLWðgjjf Þ�DC�I

LW ðgjjf Þ; is

DLW gjjf� ��DC�I
LW gjjf� � � ð1

C
g xð Þ ln hG xð Þ

hF xð Þ dx;

where, hFðxÞ ¼ f ðxÞ
�FðxÞ ; and hGðxÞ ¼ gðxÞ

�GðxÞ :

Figure 2. The lower and upper boundaries of Example 5.2 against C 2 ð0; 1�.

Figure 1. The lower and upper boundaries of Example 5.1 against C 2 ð0; 1�.

4816 A. PAKGOHAR ET AL.



Proof. Clearly,
Ð1
C gðxÞ ln 2gðxÞ

gðxÞþf ðxÞ dx � Ð1C gðxÞ ln 2gðxÞ
f ðxÞ dx; furthermore, by taking the

hr ordering properties, we have

�G Cð Þ ln 2�G Cð Þ
�G Cð Þ þ �F Cð Þ ¼

ð1
C
g xð Þ ln 2�G Cð Þ

�G Cð Þ þ �F Cð Þ dx �X�hr Y ð1
C
g xð Þ ln 2�G xð Þ

�G xð Þ þ �F xð Þ dx:

Therefore, it would mentioned that

DLW gjjf� ��DC�I
LW gjjf� � � ð1

C
g xð Þ ln hG xð Þ

hF xð Þ
�G xð Þ
�F xð Þ þ 1

 ! !
dx ¼

ð1
C
g xð Þ ln hG xð Þ

hF xð Þ dx:

6. Conclusions

In this paper, we expressed the LW divergence measure on Type I censored data, which
can be considered in computing the divergence on a sub interval between two probabil-
ity functions. We found the LW divergence measure on Type I censored data is monot-
onous increasing of C. We have addressed the problem of finding relationships between
various information and divergence measures such as the Fisher information, the KL
and B and v2 distance measures. We have shown the LW divergence properties com-
parison to the censored Type I scheme and the generally situation. As well as we
obtained some bounds for LW divergence corresponding the mentioned divergences
and the well-known inequalities such as Cassels, Diaz–Metcalf and Kantorovich. Our
findings indicate that the LW divergence value respect to KL and v2 is completely
bounded, while the mentioned informations are semi-bounded. Next, this paper takes
the st ordering concept such as st, lr and hr orders conditions into account to provide
the relationship between the magnitude of the LW divergence value when applied to
censored Type I data and other boundaries same as the value of the LW divergence
when applied to general state data. This issue is a follow-up study of the subject LW
and can be considered as a completion to the results regarding goodness of fit tests for
normal and exponential in relation to Type I censored data which were previously done
within another study of ours.

Figure 3. The lower and upper boundaries of Example 5.3 against C 2 ð0; 1�.
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