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a b s t r a c t

In this paper a simulation of the transverse localization of light in 1D array of optical waveguides in the

presence of off-diagonal disorder is presented. Effects of self-focusing and self-defocusing Kerr

nonlinearity on the transverse localization of surface and bulk modes of the disordered waveguides

array are taken into consideration. The simulation shows that in the off-diagonal disordered array at

low nonlinear parameters, the transverse localization of light becomes more than that of the

corresponding diagonal disordered array. However by increasing the nonlinear parameters the diagonal

disordered array is localized more than the associated off-diagonal disordered array for both surface

and bulk modes. It is also found that the surface modes become more localized than the bulk modes by

increasing the nonlinear parameter. The calculated effective beam width versus propagation distance

for off-diagonal disordered arrays confirms these results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the first paper on the localization of the electron wave
function, published by Anderson about half century ago [1], this
area has still survived for theoreticians and experimentalists. This
phenomenon is due to wave interference in disordered systems,
so it is natural to expect that it could be applied in any wave
system such as condensed matter systems, elastic and optical
systems [2–8]. The Anderson localization of photons can be
visualized easily; hence much theoretical and experimental work
has been done on the optical Anderson localization [7–11]. One of
the interesting topics in light localization is the transverse
localization of light which was predicted in 1989 for the first
time [12]. About two decades later, this phenomenon was
observed experimentally in disordered photonic lattice systems
[13]. After this experiment, disordered photonic lattice systems
have attracted increasing attention as a ground to study the
transverse localization of light [14–23]. One of the most experi-
mentally realizable systems for studying transverse localization is
a 1D array of optical waveguides [14,23]. This array can be built
by methods such as optical induced techniques in photo refractive
materials, laser writing methods or common lithographic meth-
ods [13,18–22,14].

In the presence of Kerr effects, Maxwell equations can be
reduced to nonlinear Schrödinger equations [13–17,21–24]. To
study the effect of Kerr nonlinearity on the transverse localization
of light in disordered photonic lattices, the system of nonlinear
Schrödinger equations is solved numerically and results are
verified experimentally [13–17,21–23]. The impact of the non-
linear Kerr effect on the transverse localization in the diagonal
disordered array of waveguides has been investigated theoreti-
cally and experimentally [14,23]. To study the effect of positive
Kerr effect on the bulk and surface modes in the diagonal
disordered waveguides array, nonlinear Schrödinger equations
have also been solved numerically [23].

In this work, the 1D array of optical waveguides is considered.
Disorder is introduced by changing the coupling coefficient randomly
between each of the waveguides. The effect of self-focusing and self-
defocusing Kerr nonlinearity on the transverse localization of light in
this off-diagonal disordered waveguides array is studied. The results
are compared to those of diagonal disordered array in the presence of
positive and negative Kerr nonlinear effects.

The paper is organized in four sections. Section 2 contains the
theoretical models for diagonal and off-diagonal disordered
arrays. Discussion on the numerical simulation results is pre-
sented in Section 3 and Section 4 is devoted to conclusions.

2. Theoretical models

Fig. 1 shows the structure of a disordered one dimensional
array of single mode-optical waveguides. For the single-mode
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operation of optical waveguides, the waveguide width is deter-
mined by the light wavelength, while the coupling coefficients
between waveguides are determined by the separation distance
between adjacent waveguides [25]. At the entrance plane, light is
injected in one of the waveguides of the disordered array and can
be coupled to the neighboring waveguides by the tunneling effect.
The slowly varying envelope approximation (SVEA) method is
employed to write the propagation equation in the presence of
nonlinear Kerr effect in an array of 1D waveguides [26]. In the
tight-binding approximation governing equations have the simple
form [14,23,26,27]

i
dEn

dz
þKnEnþCn,nþ1Enþ1þCn,n�1En�1þg Enj j

2En ¼ 0 , n¼ 1,2,. . .,N

ð1Þ

Here En is the amplitude of electric field in waveguide n. N is
the total number of waveguides. Kn the propagation constant of
light in site n, depends on the refractive index and the width of
the corresponding waveguide. Cn,m is the coupling coefficient
between waveguides n and m. The coupling coefficients can be
calculated by coupled mode theory, which depends on the
separation distance and refractive index of material between
waveguides [25]. The physical dimension of coupling coefficient
is the inverse of length. g¼ n2o=cAef f is the Kerr coefficient
[1/Wm], where Aeff is the effective area of the fundamental
modes. c is the speed of light in free space and n2 is the nonlinear
refractive index ½m2=V�. The nonlinear Kerr coefficient can be
positive or negative corresponding to the self-focusing and self-
defocusing behavior respectively [23].

Diagonal disorder can be introduced in this system using
randomized propagation constants of each waveguide. It is possible
by randomized refractive index or the width of each waveguide.
The off-diagonal disorder can be introduced by randomizing the
coupling coefficient between the nearest neighbor waveguides.
Once refractive index is randomized, the diagonal disorder
will unavoidably be introduced. The regular part of propagation
constants and coupling coefficients are defined by K0 and C

respectively.
In the presence of diagonal and off-diagonal disorders, the

following normalized variables are employed [23]:

Kn ¼ K0þCen,Cn,n71 ¼ C 1þen,n71

� �
; s ¼ Cz; Un ¼

EneiK0s=Cffiffiffi
P
p ;

w¼ gP

C
, ð2Þ

where P is the power of incident light, and en and en,n71 are the
normalized random parts of the propagation constants and
coupling coefficients respectively. The propagation equation (1)
versus the normalized variables can be rewritten as follows:

i
dUn

ds
þenUnþ 1þen,n�1

� �
Un�1þ 1þen,nþ1

� �
Unþ1þw9Un9

2
Un ¼ 0,

ð3Þ

where n¼1,2,y,N. In diagonal disordered arrays en,n71 are zero
and en is a random variable distributed on the ½�Dd,Dd� interval

uniformly, while for off-diagonal disordered arrays en,n71 s are
distributed uniformly on the interval ½�Do,Do� and en s are zero.
Dd and Do are called the strength of diagonal and off-diagonal
disordered arrays respectively.

To compare the diagonal and off-diagonal disorder effects on
the transverse localization, it is assumed that both of the disorder
strength for diagonal and odd-diagonal disordered arrays have
the same value (Dd¼Do¼D). 1 and N waveguides are defined as
the surface or edge of the array of optical waveguides and modes
of propagation in the one and N waveguides are called the
surface modes.

In order to define the initial value for the governing equations
it is assumed that light is injected to one of the waveguides i.e.
Un s¼ 0ð Þ ¼ dn,n0

. When n0 is set to 1 or N, the surface modes are
excited, while for other values n0a1,Nð Þ the bulk modes can be
excited [23].

The transverse localization length and participation rate are
defined as transverse localization measures. If light is localized in
the transverse direction, we expect that the light intensity decays
exponentially in the transverse direction, with the decay constant
being equal to the inverse localization length.

The participation rate (PR) is defined as follows [15–17,23]:

PR sð Þ ¼

PN
n ¼ 1 UnðsÞ

�� ��2� �2

PN
n ¼ 1 UnðsÞ

�� ��4
* +

ð4Þ

Due to the statistical nature of disordered systems the average
is taken over realizations of disordered waveguide arrays. In a
completely transverse localized system Unðsð ÞCdn,mÞ the PR of the
system is approximately equal to one PRC1ð Þ, while in a
completely extended system the energy is uniformly distributed
on the N waveguides, that is the intensity in each waveguide is
proportional to the inverse of the number of waveguides and the
normalized field intensity is equal to the inverse of the square
root of the number of waveguides (delocalized,UnðsÞC1=

ffiffiffiffi
N
p

).
In this case, the participation rate approaches the number of
waveguides PRCNð Þ. The effective beam width is defined as the
square root of the participation rate wef f ¼

ffiffiffiffiffiffi
PR
p� �

[15–17].
To study the evolution of surface and bulk modes of diagonal

or off-diagonal disordered waveguide arrays in the presence of
focusing or defocusing nonlinearities, the transverse localization
length and the effective beam width for different physical para-
meters are calculated.

3. Results and discussion

For numerical simulation, a 1D array of N¼200 coupled
waveguides with boundary conditions U0ðsÞ ¼UNþ1ðsÞ ¼ 0 is
taken into consideration. To study the effects of the off-diagonal
disorder on the waveguide arrays’ behavior, the coupling coeffi-
cients random variables are uniformly chosen on the interval
[�D, D]. To obtain the normalized field amplitudes, Un, the
system of governing Eq. (3) is solved by the Runge–Kutta–
Fehlberg method [28]. To investigate the statistical behavior of
the disordered systems, a number of realizations (nr) of disor-
dered arrays are generated and the field intensity distribution for
each of the disordered systems is calculated. Then the statistical
calculations are done on the number of different realizations.

3.1. Inverse localization length

For calculating the inverse localization length, after solving
Eq. (3) and calculating the evolution of Un up to the output
position s0, the output data are fitted with the exponential

Z

X

Fig. 1. Schematic of an array of 1D optical waveguides.
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function by the least square method [29]:

Un s¼ s0ð Þ
�� ��2D E

¼ Umax s¼ s0ð Þ
�� ��2exp �

9n�m9
l

� 	
ð5Þ

where m is the number of waveguide in which 9U s¼ s0ð Þ9 takes its
maximum value and /. . .S denotes the statistical average over
realizations of disordered systems. The parameter l is the trans-
verse localization length.

The inverse localization length versus dimensionless positive
and negative nonlinear parameters for three different values of
disorder strengths and for surface (n0¼1) and bulk (n0¼10)
modes are calculated and results are presented in Fig. 2. In low
nonlinear parameters, by increasing the disorder strength, the
transverse localization is enhanced. But as it is expected the self-
trapping effect [30,31] causes the high transverse localization at
high nonlinearity coefficients both for positive and negative
nonlinear parameters, which is obvious from Fig. 2. Fig. 2 shows
a transition to high localized states by increasing the nonlinear
parameter for surface and bulk modes in low disorder strength.

Similar behavior was reported in diagonal disorder array [23].
Due to the existence of critical nonlinearity coefficients in self-
trapping effects [30,31], for low strength of disorders, the varia-
tion of localization length versus the nonlinear coefficient has a
break point, where the corresponding nonlinear parameter is
called the critical nonlinear parameter [23]. The break point is
the intersection of the first two linear parts of the piecewise linear
approximation of the curves corresponding to the low strength of
disorder as shown (Do¼0.4) in Fig. 2. The values of critical
nonlinear parameters are about wcE73.8 for surface mode and
wcE73.6 for bulk mode as can be found in Fig. 2(a) and (b)
respectively. Fig. 2 shows that as the disorder level is increased,
the inverse localization length curves tend to smooth ones and no
critical behavior is observed in figures for high disorder strengths.

For two different disorder strengths (Do¼0.4, Do¼1.0) in
off-diagonal disordered arrays, the inverse localization length
versus nonlinear parameters of the surface and bulk modes are

compared in Fig. 3. As shown in Fig. 3a, due to the repulsive
effects of boundaries in low nonlinear parameters the surface
modes are more extended relative to the bulk modes in low
disorder strength. For the diagonal disordered arrays this effect is
reported previously [18,23,32]. The boundary repulsive effect is
compensated by the localization effect due to high disorder
strength (Fig. 3b). In high absolute value of both the positive
and negative nonlinear parameters, the self-trapping effect can be
found in Fig. 3(a) and (b).

As it is expected self-trapping is saturated for high values of
nonlinear parameters and for the intermediate values of non-
linear parameters, the surface modes are more localized than the
bulk modes. As it is expected due to the boundary repulsive, for
small nonlinear parameters, the surface modes push toward the
bulk localized modes, while for the intermediate nonlinear para-
meter the surface modes are highly localized relative to the bulk
modes which is in agreement with those obtained in Fig. 3. In the
diagonal disordered array, this effect is reported previously [23].

In order to compare the effects of physical parameters on the
localization in diagonal and off-diagonal disordered arrays, the
transverse localization in diagonal and off-diagonal disordered
arrays for surface and bulk modes and for two different disorder
strengths are obtained and results are shown in Fig. 4. The
disordered parameters are chosen from the same interval uni-
formly. In Fig. 4(a–d) in low nonlinear parameters, the off-
diagonal disordered arrays are more localized relative to the
diagonal disordered arrays, but by increasing the positive and
negative nonlinear parameters the diagonal disordered arrays are
more localized than off-diagonal disordered arrays. This behavior
is similar to that reported in continuous disordered systems
[33,34]. As it is expected, due to the self-trapping effect, transition
to high localized states is obtained in both diagonal and off-
diagonal disordered systems.

The mode profiles for surface and bulk modes as a function of
the waveguide number n at s ¼10,000 for different nonlinearity
parameters are shown in Fig. 5. This figure shows that at large
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Fig. 2. Inverse localization length of (a): surface mode (n0¼1) and (b): bulk mode (n0¼10) versus nonlinear parameter for off-diagonal disordered systems, for different

values of disorder strength D, D¼0.4 (red), D¼0.6 (green), D¼1.0 (blue), nr¼1000, s0¼100. (For interpretation of the reference to color in this figure legend, the reader is

referred to the web version of this article.)
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propagation distance the focusing nonlinear array localized
slightly more than the defocusing nonlinear waveguides array.
The same results are reported in continuous arrays [13].

Two selected propagation images for small (w¼1.4) and high
(w¼7.0) nonlinear parameters are shown in Fig. 6. This figure
shows high localized light wave in high nonlinear parameters.
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3.2. Effective beam width

The effective beam width versus propagation distance, in off-
diagonal disordered arrays for various positive nonlinear parameters,

is plotted in Figs. 7 and 8 for surface (n0¼1) and bulk (n0¼100)
modes, respectively. It is shown that for the same value of
nonlinear parameters, the effective beam width for the bulk
modes (n0¼100) are higher than that of the surface modes
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(n0¼1). This result is in agreement with those shown in
Figs. 3 and 5. Thus, the incident light tends to expand over a
large number of waveguides for bulk modes relative to the surface
modes. As shown in these figures, for small values of nonlinear
parameter, initially, the effective beam width is increased and
then approached a saturated value around the entrance wave-
guide for bulk modes and shifted toward the bulk mode due to
the surface repulsion for surface modes. For nonlinear parameter
sufficiently larger than its critical value, self-trapping effect
prohibits the expansion of light and light is localized in the
entrance waveguide.

4. Conclusion

In summary, the effect of nonlinearity on the transverse
localization of light in a 1D array of optical waveguides with

off-diagonal disorder was studied numerically. The transverse
localization length and the effective beam width are calculated as
two important measures to study transverse localization. The
transition to high localized states in the off-diagonal disordered
array occurs faster than that in the diagonal disordered array in
low nonlinear parameters. However by increasing the positive
and negative nonlinear parameters the diagonal disordered array
is more localized than the off-diagonal disordered arrays. Varia-
tion of the participation rate versus propagation distance con-
firms these results. The curves of inverse localization length
versus nonlinear parameters tend to be smoother, by enhance-
ment of the disorder strength. The surface modes are more
sensitive to the nonlinear parameter relative to bulk modes.

The large values of nonlinearity parameters cause faster transverse
localization for focusing parameters compared to defocusing ones in
the diagonal and off-diagonal disordered arrays.
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Fig. 7. Effective beam width for off-diagonal disorder, focusing nonlinearity.

D¼0.6, n0¼1, nr¼1000, s0¼10,000.
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Fig. 8. Participation rate for off-diagonal disorder, focusing nonlinearity. D¼0.6,

n0¼100, nr¼1000, s0¼10,000.
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